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Background: Predicting the properties of neutron-rich nuclei far from the valley of stability is one of the major
challenges of modern nuclear theory. In heavy and superheavy nuclei, a difference of only a few neutrons
is sufficient to change the dominant fission mode. A theoretical approach capable of predicting such rapid
transitions for neutron-rich systems would be a valuable tool to better understand r-process nucleosynthesis
or the decay of superheavy elements.
Purpose: In this work, we investigate for the first time the transition from asymmetric to symmetric fis-
sion through the calculation of primary fission yields with the time-dependent generator coordinate method
(TDGCM). We choose here the transition in neutron-rich fermium isotopes, which was the first to be observed
experimentally in the late 1970s and is often used as a benchmark for theoretical studies.
Methods: We compute the primary fission fragment mass and charge yields for 254Fm, 256Fm, and 258Fm from the
TDGCM under the Gaussian overlap approximation. The static part of the calculation (generation of a potential
energy surface) consists of a series of constrained Hartree-Fock-Bogoliubov calculations based on the D1S,
D1M, or D1N parametrization of the Gogny effective interaction in a two-center harmonic oscillator basis. The
two-dimensional dynamics in the collective space spanned by the quadrupole and octupole moments (Q̂20, Q̂30 )
is then computed with the finite element solver FELIX-2.0.
Results: The available experimental data and the TDGCM post-dictions are consistent and agree especially on
the position in the fermium isotopic chain at which the transition occurs. In addition, the TDGCM predicts two
distinct asymmetric modes for the fission of 254Fm.
Conclusions: Thanks to its intrinsic accounting of shell effects and to its ability to describe the dynamics of
the system up to configurations close to scission, the TDGCM is able to describe qualitatively the fission yield
transition in the neutron-rich fermium isotopes. This makes it a promising tool to study the evolution of the fission
yields far from the valley of stability. The main limitation of the method lies in the presence of discontinuities in
the two-dimensional manifold of generator states.
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I. INTRODUCTION

One of the goals of nuclear theory is to provide models
that not only reproduce a large set of available experimental
data in the neighborhood of the valley of stability, but also
have predictive power when computing properties of nuclei
far from this region. Ongoing efforts to better understand
the r process of nucleosynthesis or the decay of superheavy
elements give a particular stake to the neutron-rich part of the
nuclear chart. In the special case of the fission process, it was
shown in Ref. [1] that the discrepancies between models used
to determine the fission fragment yields of the neutron-rich
systems involved in the r process may significantly impact
the predictions of the abundances in the region of rare-earth
peak. This is an incentive to develop a theoretical framework
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capable of predicting the fission properties for a wide range of
neutron-rich nuclei.

At the same time, it is also known that the properties of
fission fragments may vary drastically with the number of
neutrons and protons of the fissioning system. Historically, a
series of experiments conducted in the 1970s and 80s showed
that adding only a few neutrons to 254Fm could totally change
the dominant low-energy fission mode. In these experiments,
the post-neutron emission fragments were characterized either
by radiochemistry or directly by measuring their kinetic en-
ergy. For 254Fm, the mass yields were obtained from spon-
taneous fission [2,3] and clearly showed a mostly asymmet-
ric behavior. When adding a few neutrons, this asymmetric
feature is less sharp. The fission yields of 256Fm both from
the neutron-induced channel [4,5] and the spontaneous fission
channel [6,7] all exhibit a mostly asymmetric behavior but
the group of Ragani et al. detected in addition the presence
of an appreciable symmetric component. For the spontaneous
fission of 257Fm, two papers, by Balagna et al. [8] and
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John et al. [9], reported contradictory results on the dom-
inant fission mode. Finally, symmetric fission clearly dom-
inates in 258Fm as reported in three papers covering both
the neutron-induced and spontaneous fission [10–12]. The
group of Hulet et al. even probed the fission of 259Fm pro-
duced by 257Fm(t, p) and found mostly symmetric yields.
Later on, several experiments relying on inverse kinematic
beams [13,14] highlighted many similar transitions both in
the neutron-rich and neutron-deficient sides of the valley of
stability. A common feature is that the transition often occurs
within a range of just a few nucleons.

Understanding and reproducing these sharp transitions
presents a real challenge for nuclear theory, and different
kinds of approaches have been proposed to tackle this issue.
A common starting point is often the computation of the
potential energy surface for the fissioning system as a function
of a small set of collective degrees of freedom. In 1980,
Lustig et al. were the first to study the asymmetric/symmetric
transition of mass yields in fermium isotopes. They adopted a
purely static picture and computed the energy of the deformed
nucleus within a macroscopic-microscopic model [15]. Later
on, a similar work performed by Cwiok et al. [16] in a
five-dimensional deformation space revealed the existence of
an elongated and a compact fission mode for 258Fm. More
recently, studies of static deformation properties of fermium
isotopes were also performed within a self-consistent mean-
field framework based on Gogny, Skyrme, and covariant
energy density functionals (EDFs) [17–22]. All these papers
emphasized the multimodal character of the fission of fer-
mium isotopes near A = 256 and highlighted the presence of
three major modes: symmetric compact, symmetric elongated,
and asymmetric. Although these static approaches pinpointed
the major fission modes that are energetically favored in low-
energy fission, they did not provide information about the
actual probability of populating each of these modes.

One way to predict fission yields without an explicit treat-
ment of nuclear dynamics is to assume that static nuclear
configurations close to scission are populated statistically
during the fission process. Such scission-point models have
been applied with different choices for the deformed nuclear
configurations [23–26]. These models were able to reproduce
the main features of the symmetric/asymmetric transitions of
the fission yields, for instance, in the thorium and fermium
isotopic chains. However, one of the major limitations of
scission-point models is the somewhat arbitrary definition of
the ensemble of scission configurations which are thermally
populated. One should also keep in mind that they ignore any
possible “memory effect” of the nucleus as it travels through
the potential energy landscape.

Another class of approaches to determine fission yields
involve using static nuclear properties as inputs to the explicit
modeling of nuclear dynamics. Following this idea, Asano
et al. performed Langevin calculations in three-dimensional
collective spaces [27]. This represented the first theoretical at-
tempt to obtain the yields of 256Fm, 258Fm, and 264Fm through
the proper simulation of the time-evolution of the system.
However, the calculation failed to reproduce the observed
transition from asymmetric to symmetric mass yields between
256Fm and 258Fm.

A fully quantum mechanical alternative to describe nuclear
dynamics is the time-dependent generator coordinate method
(TDGCM) with the Gaussian overlap approximation (GOA).
Goutte et al. used this framework for the first time in 2005
to compute fission yields [28]. Since then, it has been suc-
cessfully applied to several fissioning systems in the actinide
region [29–31] including proton-rich thorium isotopes [32].
However, the reliability of this method in the neutron-rich
sector of the nuclear chart and its ability to predict rapid
structural changes in fission yields is yet to be established.

The goal of this paper is to investigate the robustness
of the TDGCM+GOA approach in reproducing the sym-
metric/asymmetric yield transition in neutron-rich fermium
isotopes. In particular, we will examine in details the depen-
dence of the results on the various inputs to the calculations:
parametrization of the energy density functional, initial con-
ditions, form of the collective inertia tensor, and definition of
scission configurations.

In Sec. II we briefly recall the formal and numerical meth-
ods used to compute fission yields within the TDGCM+GOA.
Section III is devoted to the discussion of the static properties
obtained for the fermium chain and to the comparison between
the computed fission yields and associated experimental data.
In Sec. IV we focus on the reliability of this approach by test-
ing the sensitivity of our results to various input ingredients.

II. METHODOLOGY

A comprehensive presentation of the TDGCM+GOA the-
ory and of our implementation of it can be found in Ref. [30].
In this section we only summarize the necessary ingredients
of the method and refer the reader to our previous work for
further details.

A. Theoretical framework

In the TDGCM approach, the evolution of the many-
body quantum state |�(t )〉 describing the fissioning system
is determined by a variational approximation of the many-
body dynamics. At any time, the many-body wave function
takes the form of a continuous and linear superposition of
constrained HFB states parametrized by a set of collective
coordinates q,

|�(t )〉 ≡
∫

q
f (q, t )|�q〉 dq. (1)

Instead of solving the nonlocal Hill-Wheeler equation result-
ing from the application of the time-dependent variational
principle, we invoke in addition the Gaussian overlap approx-
imation (GOA) [33–35]. This standard scheme reduces the
problem to a local Schrödinger-like equation,

ih̄
∂g(q, t )

∂t
= Ĥcoll(q) g(q, t ). (2)

The complex function g(q, t ) is the unknown of the equation.
It is related to the weight function f (q, t ) appearing in (1) and
contains all the information about the dynamics of the system.
The collective Hamiltonian Ĥcoll(q) is a local linear operator
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acting on g(q, t ),

Ĥcoll(q) ≡ − h̄2

2γ 1/2(q)

∑
i j

∂

∂qi
γ 1/2(q)Bi j (q)

∂

∂q j
+ V (q).

(3)
This operator contains a collective kinetic part characterized
by the inertia tensor B(q) ≡ Bi j (q) and a potential term V (q).
In a generalized version of the GOA [36–38], it also involves
a real and positive metric γ (q). Taking into account this
metric leads to a better reproduction of the exact overlaps
with Gaussian functions by letting the width of the Gaussian
kernels explicitly depend on the position in the collective
space. The locality of the collective Hamiltonian implies a
continuity equation for the square modulus of the collective
wave function |g(q, t )|2,

∂

∂t
|g(q, t )|2γ 1/2(q) = −∇ · J(q, t ), (4)

where J(q, t ) is the collective current defined from g(q, t ).
To compute the fission yields from the solution of Eq. (2),

we define a frontier line that marks the limit between (i)
an inner domain of the collective space where we still have
a compound nucleus and (ii) an outer domain containing
eventually all the split configurations. Within this picture,
each infinitesimal element of the frontier line corresponds to
the entrance point of one possible output channel of the fission
reaction with a given mass and charge for the two primary
fragments. Ideally, the frontier should be chosen in such a
way that output channels are completely decoupled from one
another. In this situation, the collective dynamics in the inner
domain would simulate the evolution up to configurations
where the two fragments could not exchange particles any
more. The quantum probability to measure a mass split AH/AL

would then be given by the projection of the final GCM state
over all output channels leading to this mass split. This is
nothing but the integral of |g(q, t )|2γ 1/2(q) over a set of outer
collective areas, each associated with one output channel.
Leveraging the continuity equation Eq. (4), it can be recast
into a sum of time-integrated flux of probability F (ξ, t ) to
cross an infinitesimal element ξ of the frontier:

F (ξ, t ) =
∫ t

t=0
dt

∫
q∈ξ

J(q, t ) · dS. (5)

For the fragmentation AH/AL, the sum runs over all elements
ξ in which the HFB states have AL/AH particles in the
light/heavy fragment. In practice, the choice of the frontier
is subject to several constraints discussed in Secs. IV D and
Appendix B. In our calculations, the configurations at the
frontier are often characterized by a non-negligible interaction
energy between the prefragments [39]. This means that the
HFB states on the frontier do not yet fully belong to one or the
other of the output channels. In other words, a realistic evolu-
tion of such a state may lead to several mass splits close to our
averaged estimate at the frontier. To take this into account,
several prescriptions have been proposed in the literature such
as convoluting the raw yields with a Gaussian [29] or using
a more sophisticated random neck rupture model [31]. In this
work, we retain a simple prescription and adopt a Gaussian
convolution with a constant width. Doing so, we introduce the

width of the Gaussian used in the convolution as a necessary
arbitrary parameter. All final yields are normalized to 200%.

B. Determination of the GCM+GOA collective Hamiltonian

The first step to build the collective Hamiltonian consists
in building the manifold of generator states. In practice, it
implies performing a series of HFB calculations for the com-
pound nucleus with constraints on the expectation value of the
two collective coordinates Q̂20 and Q̂30, which are here de-
fined with the same conventions as in Ref. [30]. We computed
each point in the regular grid spanning [0, 450] × [0, 100]
(in barn units) with the mesh steps h20 = 2 b and h30 =
1 b3/2. Each HFB calculation is performed by an iterative
solver relying on a two-center harmonic oscillator basis to
discretize the single-particle wave functions. The parameters
of this basis are optimized at each deformation point using a
new method based on Gaussian processes. This new method,
which will be described in details in a future paper, allowed us
to speed up the basis parameter optimization procedure by a
factor 5, compared to the previous numerical procedure. The
HFB calculations have been performed with the D1S, D1N,
and D1M parametrizations of the Gogny effective interaction
for each of the three fermium isotopes.

It is well known that generating a potential energy surface
which minimizes the total binding energy (as is the case using
self-consistent methods) may lead to some issues related to the
imperfect nature of the minimization (local minima) and to the
underestimation of some barrier heights (restricted collective
space) as discussed in Ref. [40]. To fully avoid the issue of
spurious local minima, a special retropropagation scheme is
used, which ensures that all HFB solutions of the potential
energy surface are global minima.

From the ensemble of HFB solutions, the last step is to
determine the collective fields involved in Eq. (3). In the
GCM+GOA formalism, the inertia tensor is related to the
second- order derivatives of the reduced Hamiltonian kernel
with respect to the collective coordinates. In this work, the
GCM inertia and metric are calculated at the perturbative
cranking approximation; see [41] for details. The potential
term provided by the GCM+GOA approach contains the total
HFB energy of the constrained state corrected by a vibrational
zero-point energy associated with our collective degrees of
freedom. The formula used to compute the fields can be found
in Eqs. (9)-(15) of Ref. [30].

C. Solution to the collective Schrödinger equation

After the calculation of the static properties of the system,
we numerically solve the collective Schrödinger-like equa-
tion, Eq. (2), with version 2.0 of the code FELIX [42,43]. We
simulate the collective evolution in a symmetric domain for
the octupole moment with absorption boundary conditions
to avoid spurious reflections. To get the best numerical effi-
ciency, the problem is not discretized on the regular mesh used
to compute the static properties but on a refined and adapted
finite element mesh. The technical details on the simulation
domain, boundary conditions, generation of the mesh, and
spectral elements basis are reported in Appendix A.
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The initial state is built as prescribed in [30] as a superposi-
tion of collective eigenmodes in an extrapolated first potential
well. The weights of this mixture have a Gaussian shape as
a function of the eigenenergies of the modes. The width of
the Gaussian is fixed to σi = 0.5 MeV and its first moment is
chosen so that the initial energy lies 1 MeV above the first
potential barrier. This choice for the initial collective state
distribution simulates the low-energy induced fission while it
allows a significant part of the wave packet to escape from the
first potential well and evolve toward scission. The sensitivity
of our results to the parameter σi and the initial energy is
discussed in Sec. IV B.

Starting from this initial condition, the evolution equation
is integrated in time using a Krylov approximation scheme for
the exponential propagator. We use a dimension-10 Krylov
space along with a time step dt = 2 × 10−4 zs (10−21s).
The propagation runs up to a time of 20 zs, after which the
fission yields are stable with time. According to our previous
benchmark on 256Fm, the absolute numerical convergence of
the resulting mass yields (normalized to 200%) is expected to
be of the order of 0.06%.

D. Extraction of fission mass distributions

The frontier used to compute the fission yields is defined
by the isoline QN = 7.5 of the neck operator [29]

Q̂N = exp

(
− (z − zN )2

a2
N

)
, (6)

with aN = 1 fm, z the coordinate along the main axis of the
system, and zN the position of the neck. This line is chosen
as one of the lowest-value neck isoline that lies above the fis-
sion/fusion valley crossing. This choice is discussed in more
detail in Sec. IV D. In practice, the isoline is discretized as a
succession of square cells edges four times smaller than the
finite element mesh cell edges. The raw yields extracted from
the time-integrated flux through the frontier are convoluted
with a normal distribution as already done in Ref. [30]. Such
a convolution implements our lack of knowledge on the exact
number of particles in the fragments due to several features
that we briefly recall below:

(1) After solving the TDGCM+GOA evolution, a proper
quantum estimation of the number of particles in each
fragment would require first disentangling the two
fragments [39,44], and then projecting on states with
a good particle number, e.g., as in [45]. Since in this
work we only estimate particle numbers based on the
integration of the one-body density, we therefore miss
some of the quantum fluctuations.

(2) By construction, the HFB theory used to determine
the generator states breaks the symmetry associated
with the total number of particles in the fissioning
system. This implies that at the frontier where the
yields are computed the total wave function of the
fissioning system is the superposition of wave func-
tions with different numbers of particles. Once again,
a better approach would involve projecting this wave
function on a good particle number and extracting

the characteristics of the fragments from the projected
density.

(3) For the nuclear configurations at the frontier, the nu-
clear interaction between the fragments can easily be
of the order of dozens of MeV; see, e.g., estimates in
[44]. This implies that several nucleons could be ex-
changed between the two prefragments. Each config-
uration at the frontier therefore contributes to several
neighboring fragmentations.

(4) Finally, the experimental fission yields that we have
used in this study were measured with a detector reso-
lution of 4–5 mass units (full width at half maximum).
This corresponds to a convolution of the raw yields
with a normal distribution parameterized with a width
σ � 2. A similar convolution of the theoretical results
should normally be applied in order to make consistent
comparisons.

Addressing these limitations goes beyond the scope of
this article. At the moment, we therefore make the pragmatic
choice of effectively taking into account these effects by
reducing the resolution of our predictions. To do so we con-
volute the raw fission yields with a Gaussian of width σ = 4
mass units. The choice of this parameter can be justified based
on various physical arguments. Indeed, we have QN = 7.5
for configurations at the frontier, which means that roughly
eight particles are located in a plane within ±1 fm around
the neck position. If the radial total density is constant in
this region, and if we assume a random rupture of the neck
with a normal probability distribution P(xneck + δx) for the
split to happen at xneck + δx, then we obtain a spreading with
the same width (σ � 4 mass units). In others words making
such a convolution on the fragment mass is equivalent to
considering that the neck is randomly cut with a probability
following a normal distribution of width 1 fm. While this
reasoning provides a qualitative motivation for the choice
of the convolution width, it should be clear that the precise
quantitative value of the convolution width σ is still arbitrary.
Hopefully, our previous study [30] shows that changing this
value does not impact significantly the main characteristics of
the fission modes.

III. RESULTS

In this section we present the static and dynamic prop-
erties of 254,256,258Fm obtained within the TDGCM+GOA
approach.

A. Main static properties

For each nucleus, we first computed the generator states
with the D1S parametrization of the Gogny effective inter-
action. The fitting process of this parametrization includes
information on the fission barrier of 240Pu, which makes it
a reference effective interaction for fission studies in general.
Unless specified otherwise, the calculations presented in this
section are based on Gogny D1S.
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FIG. 1. Potential energy surfaces of the 254, 256, and 258 fer-
mium isotopes determined from the D1S Gogny energy density func-
tional. The potential corresponds to the HFB energy corrected from
the GCM zero-point energy. The color scale is shifted by 10 MeV
between consecutive plots. The red continuous line represents the
isoline QN = 7.5 of the neck operator.

1. Global topology

Figure 1 shows the potential energy landscape obtained for
the three nuclei under study. Note that the potential includes
the GCM zero-point energy. The overall topology of theses
potential energy surfaces (PESs) is very similar for the three
nuclei. The energy minimum in the first potential well is
characterized by Q20 ≈ 30 b and Q30 ≈ 0 b3/2. This is typical
of the actinide region. Going toward more elongated shapes,
there is a first potential barrier whose height depends on the
specific nucleus. In our two-dimensional collective space, two
main fission modes are clearly visible. The first one is a rather
broad valley (in the Q30 direction) leading to asymmetric
fragmentations. It reaches neck values QN = 7.5 at large elon-
gations Q20 ∈ [350, 400] b and corresponds to what is called
the asymmetric elongated fission mode. The second fission
mode is a tiny valley that follows symmetric configurations
and reaches the same neck value at much lower elongation
(Q20 � 220 b). Beyond this line, a rapid change in the energy
slope happens around Q20 � 260 b. The collective potential
energy decreases rapidly and the expectation value of the
neck operator also vanishes suddenly. It corresponds to the
symmetric compact fission mode discussed in Ref. [19,21].
For 258Fm, a third symmetric elongated mode has also been

TABLE I. Characteristics of the Gogny D1S potential energy
surfaces for 254,256,258Fm. The minimum of the potential (Vmin) in
the first well is given in MeV along with the energy of the GCM
ground state (E0,GCM). The height of the inner fission barrier (BI ) is
in MeV relative to Vmin. The quantity BI,GCM is the energy that should
be brought to the system in its GCM ground state in order to fission
without tunnel effect.

Vmin E0,GCM BI BI,GCM

254Fm −1886.2 −1883.0 13.3 10.2
256Fm −1896.6 −1893.6 12.4 9.4
258Fm −1906.8 −1903.7 11.8 8.7

described in these previous papers but it is not visible here.
This is because our two-dimensional PES can only show the
lowest energy modes in a given range of Q20, Q30 whereas
the symmetric elongated and compact fission modes span
the same range for these collective variables. As shown in
Ref. [21], introducing an additional dimension through the
Q40 collective coordinate would enable us to capture both
symmetric modes. Note that calculations in three-dimensional
collective spaces [19,21] suggest that the symmetric elongated
mode lies quite higher in energy than the symmetric compact
mode. Therefore, its contribution to the formation of the
symmetric peak in fission fragment distributions should not
be significant.

In detail, the heights of the different barriers and ridges
significantly differ from one nucleus to another. We show in
Table I the first fission barrier heights relative to the minimum
energy in the first potential well. A quantity that has more
physical relevance than the barrier is the quantity of energy
that must be injected into the compound nucleus so that the
fission process may happen without tunneling. In our frame-
work this is given by the difference between the potential at
the saddle point and the energy of the GCM ground state in the
first potential well. We report this quantity as BI,GCM and show
that it is lower than the “classical” barrier by a few MeV. This
“collective” barrier could be further reduced by a few MeV if
axial symmetry were not imposed in our HFB calculations.

2. Competing fission modes

In the TDGCM+GOA picture, the presence of valleys in
the potential energy landscape favors the diffusion of the
collective wave packet towards specific sets of configurations
at scission. As discussed in the previous section, two ma-
jor valleys have been found in the present calculations (see
Fig. 1). These two valleys are separated by a potential ridge
with a shape and height that varies with the nucleus. This
ridge is indeed quite pronounced for 258Fm but progressively
disappears as we go toward the lighter isotopes.

We quantify this behavior in Fig. 2, which shows slices
of the three PESs at the constant quadrupole moment values
Q20 = 140, 180, 225 b. At Q20 = 140 b, symmetric config-
urations are largely favored energetically in all three iso-
topes. Around Q20 = 180 b, the symmetric path is favored
in 258Fm but, in contrast, the asymmetric mode is lower
in energy for 254Fm. Since there is no significant potential
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FIG. 2. Slice of the D1S potential energy surfaces for the three
fermium isotopes at the elongations Q20 = 140, 180, 225 b. To em-
phasize the difference of topology between nuclei, all the curves are
shifted so that V (Q30 = 0) = 0.

barrier between the two valleys, the system can diffuse from
symmetric configurations to asymmetric configurations at the
mouth of the asymmetric valley. In 256Fm, the PES is rather
flat, which provides the opportunity for a collective wave
packet to spread over the two valleys populating both modes.
At larger elongations, Q20 = 225 b, even if the asymmetric
mode becomes energetically more favored in 258Fm, a ridge
of 4 MeV separates it from the symmetric path and hinders
the transition toward the asymmetric elongated mode. Such
changes in the topology of the PES are likely to be highly
correlated with the appearance of gaps in the single-particle
energy spectra as a function of the collective deformations.
Although this analysis based on the static potential energy is
not yet quantitative, most of the physics of the transition can
already be guessed at that level.

B. Fission fragment distributions

We computed the TDGCM+GOA evolution of the 254Fm,
256Fm and 258Fm over a period of 20 zs (10−21 s). During
the propagation, the collective wave function g(q) escapes the
first potential well to populate the available fission valleys.
After crossing the frontier, it is then absorbed by the artificial
imaginary term in the Hamiltonian in the absorption band.
After 20 zs, 34%, 34%, and 28% of the total norm crossed
the frontier for the A = 254, 256 and 258 fermium isotopes
respectively. During the last 1 zs, the yields are nearly stable

FIG. 3. Primary fragment mass yields obtained with the Gogny
D1S effective interaction and compared with various experimental
data sets taken from Refs. [2,3,6,10,12,46]. All the yields are normal-
ized to 200%. The experimental data points all represent post-neutron
evaporation mass yields. The open symbols stand for experimental
data associated with spontaneous fission whereas full symbols are
related to thermal neutron-induced fission.

and we have ||Y(t ) − Y(t f )||∞ < 0.4% for the intermediate
256Fm and ||Y(t ) − Y(t f )||∞ < 0.1% for the others. This
means that, although some of the wave packet is still leaking
from the first potential well, 20 zs is enough time to obtain the
qualitative features of the yields.

Figure 3 presents the primary fission mass yields obtained
for the fermium isotopic chain compared to a series of experi-
mental data. When adding only four neutrons to the compound
system, the behavior radically changes from a mostly asym-
metric to a mostly symmetric fission. The TDGCM+GOA
dynamics applied with the Gogny D1S effective interac-
tion successfully captures this rapid transition. The number
of neutrons at which this transition is predicted, N = 156,
matches the experimental observations. On the other hand, the
mass-by-mass values of the yields sometimes differ from the
experimental by up to 2% (in absolute value). In particular,
the results obtained for the intermediate nucleus 256Fm do
not reproduce the double-humped shape of the experimental
data. In Appendix B, we relate this peculiarity of 256Fm to
the position of some discontinuities in the two-dimensional
generator state manifold.
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There are several reasons why this comparison between
theory and experiment must be kept at the qualitative level.
First, for all experimental data the mass of the fragments is
measured after the evaporation of prompt neutrons. Taking
into account the neutron evaporation would shift our predic-
tions by a few units toward lighter masses as well as bring
additional structure and asymmetry between the light and
heavy peaks. It could partly be responsible for the light peak
of 254Fm being roughly 7 mass units too high. The shift of the
light peak depends non trivially on the fragmentation, and a
first account of neutron evaporation would at least require the
knowledge of the average neutron multiplicity as a function of
the fragment mass. We did not apply such a correction here.
A second important effect that also impacts the comparison
with experiment is the initial energy of the fissioning system.
Some of the experimental data sets are from spontaneous
fission whereas others come from induced fission. In the
actinide region, where fission is mostly asymmetric, adding
more energy to the system is known to enhance the symmetric
component of the yields [47–49]. Such behavior may explain
the difference between the two data sets of Flynn for 256Fm
[6,10], as well as the high symmetric yields obtained in 254Fm
compared with spontaneous fission experiments. For 258Fm,
the situation is the opposite: increasing the energy is expected
to flatten the main symmetric peak. This is actually the be-
havior that we obtain when increasing the energy of the initial
state of our dynamic calculation (see Sec. IV B). As the energy
increases, the wave packet spreads more easily and populates
the modes that are not the most energetically favorable. This is
consistent with the fact that the experimental data by Hoffman
and Hulet associated with spontaneous fission are much more
peaked compared with the data of Flynn and our results for
induced fission.

One should emphasize that changes in the principal fission
modes cannot be detected when looking only at the structure
of scission configurations along the frontier where the flux
is computed. At first glance, this seems totally inconsistent
with the fact that scission-point models such as Refs. [24,26]
could be able to reproduce this transition between symmetric
and asymmetric yields for fermium isotopes. In such models,
the statistical population of a given mass and charge split is
often given by a Boltzman factor that depends on the free
energy at the scission configurations of interest. Figure 4
shows that the collective potential energy as a function of the
proton number of the heavy fragment is remarkably similar
for all three isotopes (notwithstanding a trivial shift due to
the binding energy of the extra neutrons). A thermal occupa-
tion of these “scission” configurations (along the QN = 7.5
isoline) would be very similar and should result in mostly
asymmetric yields for the three fermium isotopes. The fact
that statistical models are somewhat capable of reproducing
the experimental transition therefore suggests that the scission
configurations they are using are rather different from the
ones we observe along the QN = 7.5 isoline. More precisely,
we should expect that these configurations correspond to
geometrical shapes that are somewhat equivalent to the shapes
we observe in our calculations in the area around Q20 =
180 b, where the system “chooses” between the two different
modes.

FIG. 4. Total energy as a function of the heavy fragment charge
along the isoline QN = 7.5.

C. Structure of asymmetric modes in 254Fm

Looking more closely at the fission of 254Fm, we found
that the large asymmetric peak in the mass yields is actually
coming from two well-separated valleys. This is particularly
visible in Fig. 5, where we show the charge yields obtained
without any convolution with a Gaussian form factor. One
asymmetric mode is centered at Z = 57 while the other one
lies around Z � 54. The first one corresponds to the output

FIG. 5. Primary fragment charge yields (normalized to 200%)
obtained with the Gogny D1S effective interaction. The black dotted
line represents raw results directly obtained from the flux through the
frontier, whereas the red full line accounts for the convolution of the
raw results with a Gaussian of width σ = 4.0 × Z/A.

024611-7



D. REGNIER, N. DUBRAY, AND N. SCHUNCK PHYSICAL REVIEW C 99, 024611 (2019)

of the large asymmetric valley corresponding to configura-
tions around (350, 50) in barn units. It corresponds to rather
elongated configurations. The other one corresponds to a tiny
valley starting at lower elongation and asymmetry, around
(270,25) barn units. Looking at the evolution of the raw
yields as a function of neutron number, we find that the most
asymmetric mode in the fermium chain (the one centered
on Z = 57 for the heavy fragment) is pretty stable. When
the number of neutron increases, it is the less asymmetric
mode that vanishes and becomes the symmetric mode. We
may speculate that these two asymmetric modes could well be
related to the standard-1 and standard-2 modes widely used to
fit actinides fission yields [50].

IV. STABILITY OF THE RESULTS

A. Parametrizations of the Gogny EDF

The main input of the TDGCM+GOA approach for the
determination of fission yields is the energy density functional
underpinning all the calculations. Although this input should
ultimately be related to the bare interaction between nucle-
ons, practical applications in heavy nuclei rely on empirical
parametrizations fitted on various key nuclear observables.
In the case of the Gogny effective interaction, the three
major parametrizations differ in the methods adopted for the
fitting procedure. Although it is the oldest one, the D1S
parametrization [51,52] includes constraints on the fission
barrier height of 240Pu estimated at the HFB level and can give
a rather good description of most nuclear properties. For this
reason, we have used it in this work as a reference. The D1N
parametrization [53] was designed to better reproduce the
properties of neutron matter at the HFB level and is therefore
expected to perform better in the neutron-rich sector of the
nuclear chart. Finally, D1M [1] was especially designed to
reproduce the masses and radii of the entire nuclear chart at
the 5DCH level, i.e., within a static GCM+GOA framework
including all quadrupole degrees of freedom. The impact of
the choice of parametrization of the Gogny interaction on
some fission properties such as barrier heights and half-lives
has been investigated in Ref. [54]. Although it is clear that
significant differences appears between parametrizations, e.g.,
D1S underestimates nuclear binding energies compared with
the two others, the topologies of the least-action fission paths
are qualitatively similar. Therefore, the impact on the fission
yields can only be tested in a fully dynamical calculation.

In this section, we compare the fission yields obtained
from the three parametrizations. All the codes and numerical
parameters are exactly the same for each calculation, which
provides for the first time a clean view of the sensitivity of the
yields to the Gogny parametrization. The results are plotted in
Fig. 6. The most important conclusion of this study is that the
transition from asymmetric to symmetric fission in fermium
isotopes holds for all three interactions. In fact, results from
the different parametrizations in 254Fm and 258Fm, where
one of the modes is strongly favored, are remarkably close.
This suggests that for this kind of nuclei the TDGCM+GOA
method provides a robust method of predicting the qualitative
feature of the yields. On the other hand, the yields obtained

FIG. 6. Comparison of the primary fragment mass yields ob-
tained with the D1S, D1N, and D1M parametrizations of the Gogny
force. All the yields are normalized to 200%.

for 256Fm differ significantly. The D1N effective interaction
gives a wide symmetric peak whereas the yields are pretty flat
for D1S and D1M. In this transition nucleus, the sensitivity
to the details of the energy functional is much more pro-
nounced. Since the yields result from the competition between
several modes, results are much more sensitive to the small
changes in the PES topology that different parametrizations
can induce. In such nuclei, the TDGCM+GOA is much less
predictive, mostly because of our lack of constraints on the
underlying EDF. On the other hand, if all other limitations
of the TDGCM+GOA could finally be taken care of, these
transition nuclei could provide good test benches to validate
energy density functionals.

B. Initial state

The goal of this section is twofold: first, to study the
impact of the initial energy of the fissioning system and try
to assess how meaningful the comparison with experimental
data shown in Fig. 3 is; second, to check that changing the
Gaussian width σi used to build the initial state within a
reasonable range does not affect our global conclusions.

For thermal neutron-induced fission, the initial energy
should be the neutron separation energy of the studied fer-
mium. This is typically Sn � 6 MeV according to the ENSDF
database [55]. In addition, the neutron-induced fission of
256Fm and 258Fm is known to occur already significantly with
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FIG. 7. Evolution of the primary fragment mass yields as a
function of the initial energy for 254Fm and 258Fm. The energy is
given in MeV relative to the energy of the saddle point of the first
fission barrier.

a thermal neutron beam as reported in Ref. [10]. This means
that the initial energy of the system is higher than the fission
barrier, 	Ei = (E∗

i − BI ) > 0. Since the fission barrier energy
is positive for these systems, it means that the initial energy
relative to the fission barrier should be in the range

Sn > 	Ei > 0. (7)

To assert the sensitivity of the fission yields in this energy
range, we performed a series of calculations with various
initial energies. We emphasize here that our theoretical frame-
work is based on a zero-temperature formalism with HFB
vacua generator states; see Sec. II. This implies that the
collective potential V (q) and inertia tensor Bi j (q) do not
change as we increase the initial energy of the collective
wave packet. While this is a limitation of our approach, the
attempts at extending the TDGCM+GOA to include dissipa-
tion effects, whether through the use of a finite-temperature
formalism [56] or multi-quasiparticle HFB generator states
[57], are not fully developed yet and have not been thoroughly
tested.

The results are reported in Fig. 7. For 254Fm, the main
effect of an increase of the initial energy is a progressive shift
of the asymmetric peak toward more asymmetric fragmenta-
tions. For the extreme case of Ei = BI + 10 MeV, the fission
yields become completely different, which is a consequence
of the collective wave packet spreading without being so much
influenced by the topology of the PES. In the case of 258Fm,
the increase of the collective energy also implies a spreading

FIG. 8. Primary fragment mass yields computed with different
Gaussian width σi to build the initial wave packet. The width is given
in MeV, and all yields are normalized to 200%.

of the fission yields. This is consistent with the experimental
data showing strongly peaked yields for spontaneous fission
and much smoother ones for induced fission. It is important to
emphasize that the major modes predicted do not change when
varying the initial energy in a range of a few MeV around the
fission barrier.

Although the initial energy of the system may be known
in fission experiments, the quantum state of the compound
system is not. We assumed here that the deformation of the
initial state should be close to the one of the ground state
with some fluctuation related to its excitation energy. To be
conclusive, our results should, however, not depend too much
on the details of the initial state. The impact of the choice of
the initial state on TDGCM+GOA yields has already been
explored in the fission of 240Pu and 252Cf in Refs. [30,31]. In
these two cases, the characteristics of the main fission mode
were not drastically affected by initializing the dynamics
with different types of collective states (boosted Gaussian,
Gaussian, or Fermi mixing of eigenmodes of an extrapolated
first potential well). To check the robustness of our conclusion
in the case of the fermium isotopes, we performed calculations
with different values of the Gaussian width used to build the
initial wave packet, σi = 0.1, 0.5, 1.0 and 2.0 MeV. In Fig. 8
we show that the symmetric/asymmetric transition predicted
holds whatever the value of σi. The most notable change
occurs for σi = 0.1 where the initial state reduces to a single
eigenmode of the extrapolated first well. In this extreme (and
somewhat unrealistic) case the yields become indeed more
sensitive to the characteristics of the selected eigenmode.
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FIG. 9. Comparison of the primary mass yields obtained with
the GCM (full red line) and the ATDHF (dashed black line) collec-
tive motion approaches. For completeness, we also give the results
obtained with the GCM approach without the zero point energy
correction on the potential landscape (dotted blue line). All the yields
are normalized to 200%.

C. Theory of collective motion

It is well known that building the GCM on a basis made of
only time-even generator states fails to capture some aspects
of the dynamics of the system [58]. In the special case of
translational motion, this leads to underestimating the col-
lective inertia. To mitigate this issue, one possibility is to
simulate the collective dynamics of the fissioning nucleus
within the requantized adiabatic time dependent Hartree-
Fock-Bogoliubov (ATDHF) theory [59]. Indeed, the Pauli
requantization scheme yields an evolution equation formally
identical to Eq. (2), where the inertia becomes the ATDHF
inertia, the metric is the determinant of this inertia tensor, and
the collective potential does not contain any zero-point energy
contribution.

Figure 9 shows the comparison of primary mass yields
in fermium isotopes between the ATDHF and GCM pre-
scriptions. Although, the fission yields are significantly
impacted by this change in the many-body method, the
asymmetric/symmetric transition is still predicted at the cor-
rect neutron number for both of them. However, it is clear
that the discrepancies resulting from different treatments of
the collective dynamics (ATDHF versus GCM) are more
pronounced than the ones resulting from different choices

of effective interactions, cf. Fig. 6. To pinpoint even more
precisely the origin of these discrepancies, we computed
the GCM dynamics without including the zero-point energy
correction (ZPE) to the potential; see Fig. 9. Clearly, the
energy correction plays a marginal role in determining the
fission fragment mass distribution, and the main source of
differences between ATDHF and GCM results is the collective
mass tensor. This suggests that including the physics of time-
odd components into the GCM (for instance as proposed in
Ref. [60]) should be a priority if one is to improve the accuracy
of these predictions.

D. Position of the frontier

The definition of the frontier in our approach is strongly
constrained by the discontinuity between the fission and fu-
sion valleys. For the TDGCM+GOA to be valid, the dynamics
should only take place in a continuous manifold of generator
states. As a consequence, the frontier must be before the
transition from the fission to the fusion valley. In this paper
we choose to compute the frontier as an isoline of the neck
particle operator Q̂N . For this isoline to be before the fusion
valley, we find that QN must be at least greater than 7.0. To
simulate the dynamics up to configurations that are as close
as possible to scission, the best choice is to put the frontier at
the lowest possible isovalues of QN and we therefore choose
QN = 7.5.

As mentioned in Sec. II D, this definition of the frontier
implies calculating the yields from configurations that still
contain a sizable number of particles in the neck, which
results in a non-negligible nuclear interaction energy between
the fragments. This is an intrinsic limitation of our two-
dimensional collective description of the process. Going be-
yond would require adding some missing intermediate states
close to scission into the GCM. This could be achieved either
by systematically adding some collective degrees of freedom,
at the price of an exponential increase of the numerical cost, or
by finding a better manifold of states connecting continuously
the fission and fusion valleys. In both cases, such a study is
beyond the scope of this work.

To assess the uncertainty coming from the arbitrary po-
sition of the frontier, we computed the yields for different
frontiers defined by QN = 7.0, 7.5, 8.0, 8.5. Figure 10 shows
the location of these frontiers on the PES as well as the yields
obtained for the case of 254Fm. Although the modification of
the frontier does impact the details of the resulting yields,
the asymmetric fission picture remains unchanged. This is
consistent with the fact that the dominant fission mode is
determined at rather low quadrupole deformations (Q20 � 180
b), long before reaching these frontiers. Similar results were
found for the fission of 256Fm and 258Fm. One might use the
results of Fig. 10 to estimate the yields at the asymptotic limit
of vanishing values of the neck.

V. CONCLUSION

We computed the primary fragment mass and charge yields
for the low-energy induced fission of 254,256,258Fm within
the TDGCM under the Gaussian overlap approximation. The
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FIG. 10. (a) Isolines QN = 7.0, 7.5, 8.0, 8.5 of the Gaussian
neck operator used as frontiers to compute the fission yields of 254Fm.
(b) Variation of the primary fragment mass yields of 254Fm with the
neck operator isoline used as frontier.

results obtained with the D1S parametrization of the Gogny
effective interaction successfully reproduce the expected tran-
sition from a mostly asymmetric fission for 254Fm to a mostly
symmetric one for 258Fm. This transition is interpreted in the
framework of collective dynamics as a competition between
different modes that depends on the number of neutrons in the
system. Most of the physics of the transition can already be
inferred from the static analysis of the PES, and we show that
the bifurcation point responsible for the transition happens at
quite low elongations, Q20 � 180 b. In addition, our calcula-
tions suggest two asymmetric modes for the fission of 254Fm.
The sensitivity of our results to all the inputs of the calculation
has been tested and we find that the qualitative picture is
robust. Finally, we show that one of the main limitations of
this approach is the presence of discontinuities that appear
even at low deformation inside the fission valley. In the case
of the fermium isotopes considered in this study, most of
these discontinuities are signaled by an abrupt change in the
Q40 multipole moment value. Extending the calculations to
three-dimensional collective spaces may be sufficient to solve
this problem.

ACKNOWLEDGMENTS

We would like to thank H. Pasca for fruitful discussions
about statistical fission models. Support for this work was
partly provided through the Scientific Discovery through
Advanced Computing (SciDAC) program funded by U.S.
Department of Energy, Office of Science, Advanced Scien-
tific Computing Research and Nuclear Physics. It was partly
performed under the auspices of the U.S. Department of

TABLE II. Inputs used for the setup of the dynamics with
FELIX-2.0.

Option for flx-setup Value
abs-rate 10
abs-width 30
alpha 5
cell hcube
deg 3
eigen-nstates 100
eigen-tol 1e-13
eigen-vmax 50.
extrapol-width 30.
gs 30.,0.0
gs-extrapol-radius 50.
gs-hrefine-vmax 40.
mesh-step 4.24,1.41
outer-well 100.,0.0
qN-cut 7.0
quad-h gaussLegendre
quad-m gaussLobatto
saddle-vmax 30.
scale 1.,1.
v-slope 4e-2

Energy by the Lawrence Livermore National Laboratory un-
der Contract No. DE-AC52-07NA27344. Computing support
for this work came from the Lawrence Livermore National
Laboratory (LLNL) Institutional Computing Grand Challenge
program.

APPENDIX A: SPECTRAL ELEMENT DISCRETIZATION
OF THE COLLECTIVE DYNAMICS

The first step in the numerical resolution of the collective
dynamics consists of building the spectral element basis span-
ning the collective space of interest, and expanding the col-
lective Hamiltonian on this basis. To do so, we used a slightly
modified version of the tool flx-setup provided with the
FELIX package. This tool proceeds through several steps to
transform the information contained in a raw ensemble of
constrained HFB generator states into relevant inputs for the
dynamics. For the sake of reproducibility, we summarize in
this section the main steps of this setup and report in Table II
the complete inputs to flx-setup. The full details on this
setup procedure can be found in Ref. [43].

Starting from a ensemble of Q30 > 0 configurations, the
setup tool first select only states having a neck operator value
above a certain threshold. In order to keep only the fission
valley and avoid the discontinuity between the fission and
fusion valleys we choose the criterion QN > 7.0. This choice
is discussed in more detail in Sec. IV D. The deformation
domain is then augmented with an absorption band of width
30 in barn units. As presented in our previous work, this band
contains an additional Hamiltonian term to absorb progres-
sively the collective wave packet and avoid reflections on the
boundaries of the domain. The absorption is parametrized by
an absorption rate r = 100 zs−1 and a characteristic width
w = 30 in barn units (cf. [42]).
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Guided by the numerical convergence benchmarks per-
formed on 256Fm in Ref. [43], we choose to discretize the
collective Schrödinger equation on a spectral element basis
built with degree-3 polynomials. The spatial domain is par-
titioned as a mesh of squared cells of size h20 = 4.24 b,
h30 = 1.41 b3/2. Within a distance 50 (in barn units) to the
ground-state, we perform one step of h refinement for those
cells for which the energy at the center is lower than 40
MeV above the ground state. This refinement in the first
potential well, where the collective wave function has its most
rapid variations, accelerates the numerical convergence of the
solution with respect to the dimension of the spectral element
basis. Inside the initial domain (defined by QN > 7.0), the
fields of the collective Hamiltonian are estimated at the nodes
of the finite element basis by linear interpolation between
constrained HFB results. In the absorption band, all the fields
are extrapolated continuously based on their distance to the
initial domain in the same way as in Ref. [30].

Once the finite element basis and all the necessary fields
are determined in the Q30 > 0 region, the whole domain is
symmetrized so that the dynamics is performed in a box
containing configurations with both positive and negative
octupole moments. The collective Hamiltonian is assumed
to be symmetric with respect to the z → −z transformation.
One can show that this assumption implies the symmetry
of the fields involved in the collective Hamiltonian and the
antisymmetry of the nondiagonal elements of the inertia
tensor, under the action of this transformation. Note that in
the FELIX-2.0 release, the flx-setup tool assumes for this
operation that all the fields are symmetric. We had to modify
this behavior here so that the nondiagonal parts of the inertia
are instead antisymmetrized during this step. This was the
only modification brought to flx-setup.

APPENDIX B: DISCONTINUITIES IN THE (Q20, Q30)
MANIFOLD

To be mathematically valid, the TDGCM+GOA formalism
requires a continuous and twice differentiable manifold of
generator states. In practice, the PES obtained by series of
constrained HFB calculations does not necessarily satisfy this
property. As stated in Ref. [40] a PES may contain discontinu-
ous HFB states. To detect the presence of such discontinuities,
we need to define a distance between HFB states. A fully
quantum-mechanical distance could be provided based on the
calculation of the overlaps between any pair of states [61,62].
However, in this paper we use a much simpler metric D based
on the one-body local density,

D(q, q′) =
∫

|ρq(r) − ρq′ (r)|d3r, (B1)

where q and q′ refer to two HFB states of the PES and
ρq(r) and ρq′ (r) are their respective local and one-body local
densities. This distance is only sensitive to the diagonal one
body-density and does not involve the anomalous density. As
a consequence, this metric may miss some discontinuities, in
particular the ones related to pairing correlations.

To check the quality and validity of our two-dimensional
PES, we compute for each HFB state q the discontinuity

FIG. 11. Discontinuity indicator plotted on top of the 256Fm PES.
The red color scale represents the value of the discontinuity indicator
I (k). Values below 5.5 are not plotted. The background color map
represents the potential energy surface. Finally, the black dashed line
is the frontier corresponding to QN = 7.5. For the sake of legibility,
we removed the points belonging to the non-converged island of high
energies in the fusion valley (see Fig. 1 for comparison).

indicator I (q),

I (q) = max{D(q, q′) | ∀ q′ neighbor of q}. (B2)

We show in Fig. 11 how this indicator allows us to identify
discontinuities between neighboring areas of the potential
energy surface for 256Fm.

By plotting the highest values of the discontinuity in-
dicator, we clearly see various lines which correspond to
sharp discontinuities between neighboring HFB states. The
topology and geometry of these lines were found to be similar
for the three fermium isotopes and they could be classified as
follows:

(a) Northwest sector of the PES. In this region of exotic
shapes, the density of discontinuities is rather high. However,
the potential energy associated with such configurations is
at least 10 MeV above the energy of the GCM ground state
and quite far from the principal fission valleys. The collective
wave packet does not populate this area during the evolution
and the associated discontinuities therefore have no impact on
the resulting yields.

(b) Top of the first potential barrier. A discontinuity line
is present at the top of the first fission barrier at elonga-
tions around Q20 = 70 b. This typically indicates that our
two-dimensional description underestimates the height of this
first potential barrier. While this could impact significantly
the calculation of fission half-lives for example, we expect
that it is less important for the mass distributions, since this
discontinuity does not affect the competition between the
different fission modes. To gain some information on the
potential influence of this discontinuity on the fission yields,
a three-dimensional study involving the hexadecapole mass
moment operator Q̂40 should be done in the future.

(c) Ridge between the main symmetric and asymmetric
valleys. Between the two main asymmetric and symmetric
valleys also lies a discontinuity line at the top of the po-
tential ridge. The values of Q40 are lower in the symmetric
valley than in the asymmetric valleys. At the frontier between
the symmetric and asymmetric valleys, a gap in Q40 values
can be seen. This is a signature of two separated valleys
in the three-dimensional space (Q20, Q30, Q40) that are now
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overlapping in our two-dimensional working space. However,
this discontinuity line is roughly parallel to the direction of
the main flow of the collective wave packet, which follows
the bottom of the valleys. In the case of 254Fm and 258Fm,
the collective wave packet follows mostly one valley and we
expect that the spurious flux crossing this line is small com-
pared to the total flux crossing the frontier. In this scenario, the
fission yields would not be so much impacted. On the other
hand, for 256Fm, this discontinuity could drastically affect the
competition between the symmetric and asymmetric modes.
This could be partly responsible for the strong symmetric
component found in 256Fm for which the potential energy in
this region is pretty flat.

(d) Fission/fusion transition. Finally, a discontinuity line
starting around Q20 = 250 b for symmetric configurations and

going up to large asymmetries corresponds to the transition
from the fission valley to split configurations. This “scis-
sion” discontinuity has already been extensively discussed
in the literature (see for instance Refs. [20,63]). It is one
of the main limitations of our approach, as it imposes a
frontier on its left-hand side, and therefore we compute the
yields on a set of configurations with a high neck operator
value.

To conclude on the subject of discontinuities, we clearly
see that they are present in the fission valleys in our two-
dimensional description. With the exception of the “scission”
one, these discontinuities are mostly signaled by a jump in
the value of the Q40 multipole moment. Adding this variable
into our dynamical description would therefore remove most
of these “internal” discontinuities.
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