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Two-neutron transfer reactions and shape phase transitions
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Two-neutron transfer reactions are studied within the interacting boson model based on the nuclear energy
density functional theory. Constrained self-consistent mean-field calculations with the Skyrme energy density
functional are performed to provide microscopic input to completely determine the Hamiltonian of the IBM.
Spectroscopic properties are calculated only from the nucleonic degrees of freedom. This method is applied
to study the (t, p) and (p, t ) transfer reactions in the assorted set of rare-earth nuclei 146−158Sm, 148−160Gd,
and 150−162Dy, where spherical-to-axially deformed shape phase transition is suggested to occur at the neutron
number N ≈ 90. The results are compared with those from the purely phenomenological IBM calculations, as
well as with the available experimental data. The calculated (t, p) and (p, t ) transfer reaction intensities, from
both the microscopic and phenomenological IBM frameworks, signal the rapid nuclear structural change at
particular nucleon numbers.
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I. INTRODUCTION

The simultaneous theoretical description of nuclear struc-
ture and reaction is one of the ultimate goals of low-energy
nuclear physics. At experiment nucleon-pair transfer reactions
are instrumental for studying variety of nuclear structure
phenomena. Of particular interest here is the shape phase
transition [1–4], where nuclear shape/structure changes as
a function of nucleon number and which is identified as an
abrupt change of observables that are considered the order
parameters of the phase transition. For many decades the
two-nucleon transfer reactions, especially the (t, p) and (p, t )
ones, have been used to study rapid structural evolution
from one nuclear structure to another [5–13] and, in that
context, explored by a number of empirical theoretical models
[2,14–16].

The interacting boson model (IBM) [17], a model where
correlated nucleon pairs are represented by bosonic degrees of
freedom, has been remarkably successful in the phenomeno-
logical description of low-energy collective excitations in
medium-heavy and heavy nuclei. The microscopic foundation
of the IBM, starting from nucleonic degrees of freedom, has
been explored for decades [18–22]. Among these studies, a
comprehensive method to derive the Hamiltonian of the IBM
has been developed in Ref. [21]. In this method, potential
energy surface (PES) in the quadrupole deformation space is
calculated within the constrained self-consistent mean-field
(SCMF) method with a choice of energy density functional
(EDF), and is mapped onto the expectation value of the
IBM Hamiltonian in the boson coherent state [23]. This
procedure uniquely determines the strength parameters of the
IBM Hamiltonian. For strongly deformed nuclei in particular,
rotational response of the nucleonic intrinsic state has been

incorporated microscopically in the IBM framework, and this
has allowed for calculating the rotational spectra of deformed
nuclei accurately [22]. Since the EDF framework provides a
global mean-field description of various low-energy proper-
ties of the nuclei over the entire region of the nuclear chart, it
has become possible to derive the IBM Hamiltonian for any
arbitrary nuclei in a unified way.

In this article, we present a first application of the SCMF-
to-IBM mapping procedure of Refs. [21,22] to the nucleon-
pair transfer reactions as a signature of the shape phase
transitions. We demonstrate how the method works for the
description of the transfer reactions, in the applications to the
rare-earth nuclei 146−158Sm, 148−160Gd, and 150−162Dy, which
are an excellent example of the spherical-to-axially-deformed
shape phase transition [2]. To the best of our knowledge, ever
since its first application in 1977 [24], the IBM has not been
used as extensively to describe nuclear reactions, including the
two-nucleon transfer reactions, which involve different nuclei,
as the spectroscopy in a single nucleus. There are a few recent
examples where the IBM was used in phenomenological
studies of (t, p) and (p, t ) reactions [14,16,25,26].

Already in Ref. [27], key spectroscopic properties of the
above-mentioned Gd and Dy nuclei, i.e., energies and elec-
tromagnetic transition rates, that signal the first-order phase
transition, were studied within the SCMF-to-IBM mapping
procedure using the Skyrme SkM* [28] EDF and were com-
pared with the purely phenomenological IBM calculation. The
main conclusion of that study was that the shape transition as a
function of the neutron number N occurred rather moderately
in the microscopically formulated IBM, as compared to the
phenomenological IBM calculation [27].

Here we have made somewhat a similar analysis to the one
in Ref. [27], that is, compared the (p, t ) and (t, p) transfer
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TABLE I. The p-IBM parameters of the IBM-2 Hamiltonian in Eq. (1) for the nuclei 146−158Sm, determined in this study so as to reproduce
the experimental low-lying spectra. The value of the parameter κ ′ has been taken to be zero for all the Sm nuclei.

146Sm 148Sm 150Sm 152Sm 154Sm 156Sm 158Sm

ε (MeV) 1.100 1.000 0.700 0.520 0.450 0.400 0.400
κ (MeV) − 0.140 − 0.130 − 0.080 − 0.075 − 0.085 − 0.085 − 0.085
χν − 0.800 − 1.000 − 0.800 − 1.000 − 1.200 − 1.200 − 1.200
χπ − 0.800 − 1.000 − 1.300 − 1.300 − 1.200 − 1.200 − 1.200

reaction intensities obtained from the SCMF-to-IBM mapping
procedure with those from the phenomenological IBM calcu-
lation of Ref. [27]. In addition, we also compare our results
with a more recent, extensive IBM study for the (t, p) and
(p, t ) transfer reactions in the same mass region [16]. In this
way, we shall examine the robustness of the IBM framework
on the pair-transfer reactions and shape phase transitions.

In Sec. II we describe the theoretical methods. The calcu-
lated potential energy surfaces, excitation spectra, and (p, t )
and (t, p) transfer reaction intensities for the considered nuclei
are presented in Sec. III, followed by a concise summary and
concluding remarks in Sec. IV.

II. THEORETICAL TOOLS

First, we briefly describe the SCMF-to-IBM mapping pro-
cedure, together with the two other phenomenological IBM
calculations, which have been employed in the present work.
More detailed accounts of the employed theoretical methods
have been already given in Refs. [16,22,27,29], and the reader
is referred to that literature.

A. SCMF-to-IBM mapping

In the present analysis we used the neutron-proton IBM
(IBM-2), which distinguishes both neutron and proton degrees
of freedom [19]. The IBM-2 is composed of the neutron (pro-
ton) monopole sν (sπ ) and quadrupole dν (dπ ) bosons, which
represent, from a microscopic point of view, the collective
pairs of valence neutrons (protons) with spin and parity 0+
and 2+, respectively [19]. The number of neutron (proton)
bosons, denoted by Nν (Nπ ), is equal to that of the neutron
(proton) pairs. In this work the doubly magic nucleus 132Sn
has been taken as an inert core. Hence, 1 � Nν � 7, and
Nπ = 6 (for 146−158Sm), Nπ = 7 (for 148−160Gd), and Nπ = 8
(for 150−162Dy). For the IBM-2 Hamiltonian we employed the
following form:

Ĥ = ε
(
n̂dν

+ n̂dπ

) + κQ̂νQ̂π + κ ′L̂L̂, (1)

where n̂dρ
= d†

ρ d̃ρ (ρ = ν, π ) is the d-boson number operator,
Q̂ρ = d†

ρsρ + s†
ρ d̃ρ + χρ (d†

ρ × d̃ρ )(2) is the quadrupole opera-
tor, and L̂ = L̂ν + L̂π is the angular momentum operator with
L̂ρ = √

10(d†
ρ × d̃ρ )(1). ε, κ , χν , χπ , and κ ′ are the parameters.

As the first step of determining the IBM-2 Hamiltonian, we
carried out for each considered nucleus the constrained SCMF
calculation within the Hartree-Fock+BCS method [30] based
on the Skyrme SkM* EDF [28] to obtain PES with the
quadrupole (β, γ ) shape degrees of freedom. The constraint
is that of the mass quadrupole moment and, for the pairing

correlation, the density-dependent δ-type pairing force has
been used with the strength of 1250 MeV fm3.

The SCMF PES thus obtained has been mapped onto the
expectation value of the IBM-2 Hamiltonian in the boson
coherent state [23], and this procedure completely determined
the parameters ε, κ , χν , and χπ [21,29]. Only the strength
parameter κ ′ for the L̂L̂ term has been determined separately
from the other parameters, by adjusting the cranking moment
of inertia in the boson intrinsic state to the corresponding
cranking moment of inertia computed within the SCMF cal-
culation at the equilibrium mean-field minimum [22]. No phe-
nomenological adjustment of the parameters to experiment
was made in the whole procedure. We used the same values
of the parameters as used in Ref. [29] for the Sm isotopes and
Ref. [27] for the Gd and Dy isotopes.

Energy spectra and electromagnetic transition rates have
been obtained by the m-scheme diagonalization of the mapped
IBM-2 Hamiltonian [31], and the resulting wave functions
have been used to calculate the (t, p) and (p, t ) transfer
reaction intensities. In this work, as in Ref. [16], we only
considered the (t, p) and (p, t ) transfers of the monopole and
quadrupole pairs of neutrons within each isotopic chain. The
corresponding (t, p) and (p, t ) transfer operators, denoted by
P̂(L)

+ and P̂(L)
− (with L = 0 or 2), respectively, can be expressed

as [17,24]

P̂(0)
+ = (P̂(0)

− )(†) = t0s†
νA(�ν, Nν ), (2)

P̂(2)
+ = (P̂(2)

− )(†) = t2d†
ν A(�ν, Nν ). (3)

The factor A(�ν, Nν ) in Eqs. (2) and (3) is given by

A(�ν, Nν ) = √
�ν − Nν − n̂dν

, (4)

with �ν the degeneracy of the neutron pairs in a given major
shell, i.e., �ν = (126 − 82)/2 = 22 in the considered nuclei.
For the sake of simplicity, the operator n̂dν

in Eq. (4) has been
replaced with its expectation value in the ground state of the
initial nucleus, i.e., 〈n̂dν

〉0+
1

[14]. t0 and t2 in the same equation
are overall scale factors. The intensities of the (t, p) and (p, t )

TABLE II. Control parameters of the Hamiltonian ĤCQF in
Eq. (7) determined in this study for the isotopes 150−162Dy.

150Dy 152Dy 154Dy 156Dy 158Dy 160Dy 162Dy

η 0.1 0.35 0.49 0.62 0.71 0.81 0.92
χ − 1.12 − 1.10 − 1.09 − 0.85 − 0.67 − 0.49 − 0.31
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FIG. 1. Potential energy surfaces for the nuclei 148−154Sm plotted within the (β, γ ) deformation space and with up to 5 MeV from the
global minimum. The energy difference between neighboring contours is 250 keV. See the main text for details.

transfer reactions are given, respectively, as

I (tp)(N, Ji → N + 2, Jf ) = 1

2Ji + 1
|〈N + 2, Jf ||P̂(L)

+ ||N, Ji〉|2

(5)

and

I (pt)(N + 2, Ji → N, Jf ) = 1

2Ji + 1
|〈N, Jf ||P̂(L)

− ||N+2, Ji〉|2,

(6)

where the state |N, Ji, f 〉 represents the IBM-2 wave function
for a nucleus with the neutron number N and total angular
momentum Ji for the initial or Jf for the final states. Here we
considered the transfer reactions from the 0+

1 ground state of
the initial nucleus to the lowest three 0+ and 2+ states of the
final nucleus.

In what follows, the mapped IBM-2 framework, described
in this section, is referred to as m-IBM .

B. Phenomenological IBM-2

Along with the m-IBM calculation we have carried out the
purely phenomenological IBM-2 calculations using the same
Hamiltonian as in Eq. (1), but with parameters adjusted to
reproduce low-energy spectra for each considered nucleus.
The fitted parameters for the Sm isotopes are presented in
Table I. The parameters for the nuclei 150Sm and 152Sm have
been taken from Ref. [32]. For the Gd and Dy isotopes,
we employed the same values of the parameters ε, κ , χν ,

and χπ as those used in Ref. [27]. The IBM-2 Hamiltonian
considered in Ref. [27] comprised, in addition to the three
terms in the above Hamiltonian in Eq. (1), those proportional
to (d†

ρ × d†
ρ )(L)(d̃ρ × d̃ρ )(L) with L = 0 and 2, and the so-

called Majorana terms. In the present calculation, these terms
have not been included, as they play only a minor role in
the description of the low-lying states. The (t, p) and (p, t )
transfer operators were already defined in Eqs. (2)–(5).

We denote, hereafter, the purely phenomenological IBM-
2 calculation thus far mentioned as p-IBM, unless otherwise
specified.

C. IBM-1 in the consistent-Q formalism

We have also performed a similar phenomenological cal-
culation within the IBM-1, where no distinction is made
between neutron and protons bosons. We adapted the same
Hamiltonian in the so-called consistent-Q formalism (CQF)
[33] as the one used in Ref. [16]. The CQF Hamiltonian
reads

ĤCQF = ε0

[
(1 − η)n̂d − η

4N
Q̂χ · Q̂χ

]
. (7)

η and χ (which appears in the quadrupole operator Q̂) are the
control parameters, and ε0 is the scale factor fitted to repro-
duce the 2+

1 excitation energy for each nucleus. The (t, p) and
(t, p) transfer operators in the IBM-1 framework are similar to
the IBM-2 counterparts in Eqs. (2)–(5), except for the factor
A(�ν, Nν ). For all the details of the CQF calculation, the
reader is referred to Ref. [16]. For the calculations on the Sm
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FIG. 2. Same as described in the caption of Fig. 1, but for the nuclei 150−156Gd.

and Gd isotopes, the same parameters as in Ref. [16] have
been used. Only for the Dy isotopes, the calculation has been
newly made, and the values of the control parameters η and

χ for the Hamiltonian ĤCQF have been taken from the earlier
IBM-1 study on the rare-earth nuclei in Ref. [34] and are listed
in Table II.

FIG. 3. Same as described in the caption of Fig. 1, but for the nuclei 152−158Dy.
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III. RESULTS AND DISCUSSIONS

A. Potential energy surface

In Figs. 1, 2, and 3 plotted are the PESs within the
(β, γ )-deformation space for the studied nuclei 148−154Sm,
150−156Gd, and 152−158Dy, respectively. In these figures, the
m-IBM, p-IBM, and CQF PESs are compared with each other.
Note that the PESs for the N = 84 and 96 nuclei in each
isotopic chain have not been plotted in the figures, since
they turned out to be strikingly similar to those for their
neighboring isotopes with N = 86 and 94, respectively. Here
we mainly discuss the PESs for the Sm isotopes, whereas we
confirmed that the main conclusions were basically the same
for the Gd and Dy isotopes.

There is an anzats that the deformation parameter β in the
IBM can be related to the one in the geometrical collective
model, denoted as β̄, in such a way that they are proportional
to each other, i.e., β = Cββ̄ [23], where Cβ is the scaling
factor and typically takes values Cβ ≈ 3–5 in the rare-earth
region [21]. In the m-IBM framework, the coefficient Cβ has
been explicitly determined by the mapping. In Figs. 1–3, how-
ever, the m-IBM PESs are drawn in terms of the β deformation
in the IBM, in order that one can directly compare them with
the p-IBM and CQF PESs.

In general, from Figs. 1–3, the PESs in the m-IBM turned
out to be more strongly deformed and suggested less striking
change in topology as functions of N than those obtained from
the p-IBM and CQF Hamiltonians. In Fig. 1 the m-IBM PES
for the nucleus 148Sm exhibits a nearly spherical mean-field
minimum around β = 0.5. In the same figure, one sees that the
location of the minimum, denoted as βmin, in the m-IBM PES
jumps from 148Sm (βmin ≈ 0.5) to 150Sm (βmin ≈ 1.0). The
latter nucleus is suggested to be already well deformed in the
m-IBM calculation. For the 152,154Sm nuclei, one sees even
more pronounced prolate minimum at β ≈ 1.0, i.e., deeper in
energy in both β and γ directions, in the corresponding m-
IBM PESs. However, the p-IBM PESs, depicted in the middle
row of Fig. 1, exhibit a more dramatic change in its topology
as a function of N : spherical minimum at β = 0 at 148Sm,
weakly prolate deformed minimum at 150Sm, softer minimum
in both β and γ directions at 152Sm characteristic of the
critical-point nucleus, and well-developed prolate minimum
at 154Sm. There is no noticeable difference between the PESs
obtained from the p-IBM and CQF Hamiltonians.

B. Excitation energies

As a reminder of the results in Refs. [16,27,29], we
plotted in Figs. 4–6 the excitation energies of the low-lying
states in the 146−158Sm, 148−160Gd, and 150−162Dy isotopes,
respectively, that are relevant to the (t, p) and (p, t ) transfer
reactions studied in this work.

1. Sm isotopes

In Fig. 4 we display the calculated excitation energies of
Sm isotopes. The shape phase transition can be identified by
the sharp parabolic systematics of both the 0+

2 and 0+
3 energy

levels centered around N = 90, corresponding to the X(5)
critical-point nucleus 152Sm [36]. But in the m-IBM results,

FIG. 4. Excitation energies of the low-lying states 0+
2 (a), 0+

3 (b),
2+

1 (c), 2+
2 (d), 2+

3 (e), and 4+
1 (f) for the 150−158Sm isotopes are plotted

against the neutron number N . The results of the three versions of the
IBM calculations, i.e., m-IBM, p-IBM, and CQF, are compared with
each other and with the experimental data [35].

the 0+
2 and 0+

3 energy levels become lowest rather at N =
88. Both phenomenological (p-IBM and CQF) calculations
reproduced the experimental 0+

2 and 0+
3 energy levels very

well, while the IBM-2 description looks slightly better than
the IBM-1 one. In the m-IBM, evolution of the energy levels
generally looks more moderate than in the other two calcula-
tions. Moreover, both the non-yrast 0+

2 and 0+
3 energies were

overestimated by the m-IBM calculation. This most likely
traces back to the fact that the underlying SCMF PESs sug-
gested a too deformed mean-field minimum [29] and that the
corresponding mapped IBM-2 produced a rather rotational en-
ergy spectrum. Almost the same conclusion as for the results
of the non-yrast 0+ states can be reached in the comparisons
of the 2+

2 [Fig. 4(d)] and 2+
3 [Figs. 4(e)] energy levels.

In Fig. 4(c), the 2+
1 energy level has been reproduced

very well by the three calculations. But for the transitional
nuclei, i.e., 150Sm (N = 88) and 152Sm (N = 90), it has been
predicted to be too low in energy in the m-IBM, suggesting
rather deformed energy spectra.

As seen from Fig. 4(f), the three IBM calculations repro-
duced very nicely the experimental 4+

1 energy level. However,
for the nucleus 146Sm in particular, the calculations could not
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FIG. 5. Same as described in the caption of Fig. 4, but for the
148−160Gd isotopes.

account for the low-lying 4+
1 state, resulting in the predicted

energy ratio R ≡ E (4+
1 )/E (2+

1 ) that is below the vibrational
limit, i.e., R < 2. This is mainly because of the limited con-
figuration space used in the present version of the IBM, that is
built only on the collective s and d bosons.

2. Gd isotopes

In the Gd isotopic chain, the experimental 0+
2 energy

level, shown in Fig. 5(a), exhibits parabolic behavior, being
lowest in energy at N = 88. The m-IBM result followed this
systematics nicely, but systematically overestimated the data,
due to the same reasons as we discussed in the previous sec-
tion. The p-IBM and CQF calculations provided an excellent
description of the data but, at variance with the m-IBM result
and the experiment, suggested that the 0+

2 level was lowest at
N = 90.

Compared to the results for the Sm isotopes, as seen from
Fig. 5(b) the experimental 0+

3 energy level in Gd does not
show a significant, but rather irregular, N dependence for
88 � N � 96. Specially the p-IBM calculation reproduced
this trend fairly well. However, the agreement with the ex-
perimental data in the 0+

3 excitation energies appears to be
not as good as in the 0+

2 ones [Fig. 5(a)], even in the phe-
nomenological p-IBM and CQF calculations. Let us recall that
the low-lying 0+ excited states in Gd and Dy isotopes have

FIG. 6. Same as described in the caption of Fig. 4, but for the
150−162Dy isotopes.

often been attributed to additional degrees of freedom, such
as intruder excitations, which are beyond the configuration
spaces considered in the present IBM framework.

Both the 2+
1 [Fig. 5(c)] and 4+

1 [Fig. 5(f)] excitation en-
ergies have been nicely described by the three calculations.
As seen from Figs. 5(d) and 5(e), the phenomenological IBM
calculations reproduced the non-yrast 2+ levels, but the m-
IBM overestimated them.

3. Dy isotopes

The main conclusion from the comparisons between the
theoretical and experimental excitation spectra for the Dy
isotopes in Fig. 6 turned out be basically the same as for the
Gd nuclei, discussed in the previous section. Namely: The
m-IBM overestimated the experimental data for the non-yrast
states, and differed in the predicted energy-level systemat-
ics from the p-IBM and CQF ones; the experimental 0+

3
energy level exhibits rather irregular systematics against N ,
and this experimental trend was not accounted for by the
present version of the IBM comprising only collective s and d
bosons.

C. (t, p) and (p, t ) transfer reactions

Let us now turn to the discussions about the (t, p) and
(p, t ) transfer reactions. As in the earlier IBM calculations
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FIG. 7. The (t, p) transfer reaction intensities for the 146−156Sm isotopes. The results of the m-IBM, p-IBM, and CQF calculations are
compared with each other and with the experimental data [6]. The scale factors t0 and t2 in the (t, p) transfer operators have been fitted to the
experimental data for the 0+

1 (152Sm) → 0+
1 (154Sm) and 0+

1 (152Sm) → 2+
1 (154Sm) transfer reactions, respectively.

for the two-nucleon transfer reactions [16,24,32], we compare
the calculated (t, p) and (p, t ) transfer intensities with the
experimental cross sections measured at particular laboratory

angles. To facilitate the comparisons, we have determined
the overall scale factors t0 and t2 in the transfer operators
[see Eqs. (2) and (3)] so as to reproduce the experimental

FIG. 8. Similar to the description in the cation of Fig. 7, but for the (p, t ) transfer reaction intensities for the 146−156Sm isotopes. The
experimental data have been taken from Ref. [37]. The scale factors t0 and t2 in the (p, t ) transfer operators have been fitted to the experimental
data for the 0+

1 (150Sm) → 0+
1 (148Sm) and 0+

1 (152Sm) → 2+
1 (150Sm) transfer reactions, respectively.
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FIG. 9. Same as described in the caption of Fig. 7, but for the 158−158Gd isotopes. The experimental data have been taken from Refs. [10–12].
The scale factors t0 and t2 have been fitted to the experimental data for the 0+

1 (154Gd) → 0+
1 (156Gd) and 0+

1 (156Gd) → 2+
1 (158Gd) transfer

reactions, respectively.

0+
1,i → 0+

1, f and 0+
1,i → 2+

1, f transfer reaction cross sections at
given angles for particular nuclei. More details are mentioned
in the captions to Figs. 7–12.

1. Sm isotopes

We show in Figs. 7 and 8 the calculated (t, p) and (p, t )
transfer reaction intensities for the Sm isotopes as functions
of N . The experimental data, available in Refs. [6,37], are also
included in the plot.

In Fig. 7, for many of the (t, p) transfer reactions the
m-IBM results exhibit a certain discontinuity around partic-
ular nucleus in the transitional region. In general, the (t, p)
reaction rates resulting from the m-IBM did not exhibit change
with N as rapid as those from the p-IBM and CQF and,
in some reactions, show completely different N dependence
from the latter. A typical example is the I (tp)(N, 0+

1 → N +
2, 0+

2 ) reaction rate [see Fig. 7(b)]. The difference between
the microscopic and phenomenological IBM calculations in
the nature of the structural evolution is consistent with what
we observed in the PESs (see Fig. 1) and excitation ener-
gies (Fig. 4). The two phenomenological calculations, i.e.,
p-IBM and CQF, have provided similar results to each other
both qualitatively and quantitatively. We note that both the
theoretical I (tp)(N, 0+

1 → N + 2, 0+
1 ) and I (tp)(N, 0+

1 → N +
2, 2+

1 ) intensities from the p-IBM and CQF calculations are in
a very good agreement with the corresponding experimental
data.

Also for the (p, t ) transfer reactions in Fig. 8, the m-
IBM calculation indicated that the phase transition occurred

more moderately than in the p-IBM and CQF results and
was, in some reactions, observed at somewhat different neu-
tron number than the p-IBM and CQF results [see, e.g.,
Fig. 8(b)].

2. Gd isotopes

In Fig. 9 we plotted the theoretical (t, p) transfer reac-
tion intensities for the Gd isotopes, in comparison with the
experimental data available at Refs. [10–12]. In most of the
considered (t, p) reactions, the m-IBM calculation indicates
an irregular behavior with N , suggesting the rapid shape tran-
sition. However, the location at which such an irregularity ap-
pears in the m-IBM results is at variance with the p-IBM and
CQF results in the (t, p) transfer intensities I (tp)(N, 0+

1 →
N + 2, 0+

2 ) [Fig. 9(b)], I (tp)(N, 0+
1 → N + 2, 0+

3 ) [Fig. 9(c)],
and I (tp)(N, 0+

1 → N + 2, 2+
3 ) [Fig. 9(f)]. All three IBM cal-

culations commonly failed to reproduce the experimental data
for the 0+

1 → 0+
3 (t, p) transfer reactions. This confirms that

the 0+
3 state could be well beyond the model space of the

sd-IBM, which corroborates with the comparisons of the
excitation energies for the same state. Those correlations that
are out of the IBM space could be effectively taken into
account by the inclusion of higher-order terms in the transfer
operators in Eqs. (2) and (3), but such an extension would
involve additional parameters to be determined and is beyond
the scope of the present study.

One sees in Fig. 9(e) an anomalously large difference
in the I (tp)(N, 0+

1 → N + 2, 2+
2 ) values calculated within the

p-IBM between 148Gd (N = 84) and 150Gd (N = 86). This
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FIG. 10. Same as described in the caption of Fig. 8, but for the 158−158Gd isotopes. The experimental data have been taken from Ref. [9].
The scale factors t0 and t2 have been fitted to the experimental data for the 0+

1 (156Gd) → 0+
1 (154Gd) and 0+

1 (154Gd) → 2+
1 (152Gd) transfer

reactions, respectively.

could be a consequence of the fact that the present p-IBM
calculation, perhaps due to a poor fit to the experimental

spectra or some missing correlations, did not describe well
the 2+

2 excitation energy at the nucleus 148Gd [see Fig. 5(d)].

FIG. 11. Same as described in the caption of Fig. 7, but for the 150−160Dy isotopes. The experimental data have been taken from Ref. [38].
The scale factors t0 and t2 have been fitted to the experimental data for the 0+

1 (156Dy) → 0+
1 (158Dy) and 0+

1 (156Dy) → 2+
1 (158Dy) transfer

reactions, respectively.
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FIG. 12. Same as described in the caption of Fig. 8, but for the 150−160Dy isotopes. The experimental data have been taken from Ref. [39]
for 158Dy(p, t )156Dy and Ref. [40] for 162Dy(p, t )160Dy and 160Dy(p, t )158Dy reactions. The scale factors t0 and t2 have been fitted to the
experimental data for the 0+

1 (158Dy) → 0+
1 (156Dy) and 0+

1 (160Dy) → 2+
1 (158Dy) transfer reactions, respectively.

As we show Fig. 11(e), the same problem was observed in the
(t, p) reactions in the Dy nuclei.

As seen from the results for the (p, t ) transfer reaction
intensities shown in Fig. 10, the three IBM calculations con-
sistently point to an abrupt change around the transitional
nucleus 152Gd (N = 88) or 154Gd (N = 90). However, no-
table discrepancy is found between the theoretical I (pt)(N +
2, 0+

1 → N, 0+
3 ) [Fig. 10(c)] and I (pt)(N + 2, 0+

1 → N, 2+
3 )

[Fig. 10(f)] intensities and the corresponding experimental
data. As we have already observed, the m-IBM result appears
to suggest a more moderate nuclear structural evolution with
N than the p-IBM and CQF ones.

3. Dy isotopes

The calculated (t, p) transfer reaction intensities for the
Dy isotopes are plotted in Fig. 11. In the present IBM-2
(both m-IBM and p-IBM ) calculations, however, the heaviest
nucleus 162Dy turned out be beyond the limit of the current
version of the computer program, and were not plotted in the
figure, as well as in the following Fig. 12. In all three IBM
calculations, a discontinuity of the (t, p) transfer intensities
has been suggested in the transitional nuclei with N ≈ 90,
which is a clear signature of the shape phase transition.
It is remarkable that, compared to the Sm and Gd results
(Figs. 7–10), the three different IBM calculations for the Dy
isotopes provided results very much similar to each other
both at qualitative and quantitative levels, except perhaps for
the I (tp)(N, 0+

1 → N + 2, 2+
3 ) intensity [Fig. 11(f)]. The above

observation holds, to a greater extent, for the (p, t ) transfer
reactions in Fig. 12.

IV. SUMMARY

The interacting boson model, which is based on the micro-
scopic framework of the self-consistent mean-field method,
has been applied to study the two-nucleon transfer reactions as
a signature of the shape phase transition. Constrained SCMF
calculations have been performed within the Hartree-Fock
plus BCS method based on the Skyrme energy density func-
tional to provide a microscopic input to completely determine
the Hamiltonian of the IBM-2. The (t, p) and (p, t ) trans-
fer reaction intensities for the rare-earth nuclei 146−158Sm,
148−160Gd, and 150−162Dy, which are an excellent example
of the spherical-to-axially deformed shape phase transition,
have been computed by using the wave functions of the
mapped IBM-2 Hamiltonian. Apart from the overall scaling
factors for the transfer operators constant for each isotopic
chain, no phenomenological adjustment has been made. The
(t, p) and (p, t ) transfer reaction intensities calculated by the
microscopically formulated IBM-2 have been compared with
the results from the purely phenomenological IBM-2 and
IBM-1 with parameters determined by the fits to experimental
excitation spectra in each nucleus.

The overall systematic behaviors of the calculated (t, p)
and (p, t ) transfer reaction intensities against the neutron
number showed that the shape transition occurred more
moderately in the microscopic IBM than was suggested by
the phenomenological IBM. This finding corroborates with
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the quantitative, as well as the qualitative, differences in the
predictions of the low-lying energy levels between the micro-
scopic and phenomenological calculations. Such differences
seem to have originated from the SCMF calculation of the
PESs with a specific choice of the energy density functional,
which suggested that the nuclear structure evolution took
place more moderately than was expected in phenomenologi-
cal models.

However, all three IBM calculations consistently pointed to
an irregular behavior of the (t, p) and (p, t ) transfer reaction
intensities at specific neutron numbers, and indicated that the
two-neutron transfer reactions can be used as a signature of
the shape phase transitions. The results presented in this paper
also confirmed that the SCMF-to-IBM mapping procedure

was a sound approach to the simultaneous description of
the decay spectroscopy in a single nucleus and the transfer
reactions between different nuclei.
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[26] S. Pascu, G. Căta-Danil, D. Bucurescu, N. Mărginean,
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