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The antimagnetic rotation band νh11/2 in 101Pd is investigated using cranking covariant density functional
theory with a shell-model-like approach to treating the pairing correlations, in which the particle number is
conserved strictly and the blocking effects are taken into account exactly. Four sets of pairing strength are adopted
in the present calculations. The tendencies of the experimental moments of inertia, B(E2) values, and spins
are well reproduced with suitable pairing strengths. The up-bending mechanism of the antimagnetic rotation
(AMR) band νh11/2 in 101Pd is studied in terms of the component of the total angular momentum alignment
and the occupation numbers around the Fermi surface. It can be found that the up-bending is mainly triggered
by the proton 1g9/2 orbital. Moreover, the proton angular momentum alignment, which mainly comes from the
rearrangement of proton occupations in 1g9/2 orbitals and the increasing components of 1g9/2, plays an important
role in the two-shears-like mechanism.
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I. INTRODUCTION

Antimagnetic rotation (AMR) in nuclei, which was pre-
dicted by Frauendorf [1,2], is a novel phenomenon observed
in weakly deformed or near-spherical nuclei [2]. In AMR
bands, the properties of energy spectra and angular momen-
tum are explained by the two-shears-like mechanism, i.e.,
simultaneous closing of the two valence neutrons (protons)
towards the direction of the proton (neutron) angular momen-
tum vector. After AMR was proposed, it attracted a wide range
of interest from both theoretical and experimental nuclear
physicists.

From the theoretical aspect, AMR has been investigated
with simple models with clear geometric pictures, such as
the classical particle rotor model [3]. It has also been studied
by using the tilted axis cranking (TAC) model [4–6]. Based
on the TAC model, many applications have been carried
out within the framework of the microscopic-macroscopic
model [7–9] and pairing plus quadrupole model [2,10]. In
particular, due to the great success of the covariant density
functional theory (CDFT) in describing of ground states as
well as excited states of nuclei throughout the nuclear chart
[11–14], the TAC model has been combined with the CDFT
for the study of AMR [15–18]. Subsequently, the TAC model
with the point-coupling density functional theory [19] (TAC-
CDFT) was developed and applied successfully to describe
many phenomena, such as magnetic and chiral rotation [20],
nuclear rod shape [21], etc. The TAC-CDFT has also been
extended to include pairing correlations in order to study
the rotational nuclei [22]. However, in most of the literature,
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the pairing correlations are either neglected or treated by
the Bogoliubov formalism, where the particle number is not
conserved strictly. The violation of the particle number can
cause serious problems [23,24]. Actually, all cranked Hartree-
Fock-Bogolyubov (HFB) calculations show an unphysical
phase transition for angular momentum greater than a critical
value due to the pairing collapse [25]. The remedy with the
particle-number projection or the Lipkin-Nogami method can
restore this broken symmetry. Previous research showed that,
after the particle-number projection, the calculated rotational
properties can be improved considerably compared with the
cranking HFB calculations [26]. However, the complicated
numerical techniques make it difficult to generalize these
methods to the higher excited states [24].

In order to solve the problem of nonconservation of par-
ticle number and other questions that it caused, Zeng and
his collaborators introduced the particle number conserva-
tion (PNC) method by solving the Hamiltonian directly in a
truncated multiparticle configuration space [23,27]. The par-
ticle number is conserved and the blocking effects are taken
into account exactly in this method. Then, the PNC scheme
was extended into nonrelativistic mean field models [28]
and the total-Routhian-surface method with the Woods-Saxon
potential [29,30]. Recently, the PNC method based on the
cranking Skyrme-Hartree-Fock model was developed [31].
This conserving method with the cranked shell model (PNC-
CSM) has also been employed successfully for describing
various phenomenon concerning the rotating nuclei, e.g., the
odd-even differences in moments of inertia (MOIs) [32], the
identical bands [33,34], the nuclear pairing phase transition
[35], the rotational bands and high-K isomers in the rare-earth
[36–39] and actinide nuclei [40–43], etc. Under the covariant
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framework, the PNC method has been combined with the
relativistic mean field (RMF) approach, which is also known
as the shell-model-like approach in RMF (RMF+SLAP) [44],
to investigate the properties of Sn [45], C [46] isotopes, α-
cluster structure in light nuclei [47,48], quantum fluctuation of
particle number [49,50], and the thermodynamics of pairing
transition in hot nuclei [51]. Very recently, SLAP based on
cranking covariant density functional theory (CDFT-SLAP)
was developed to study the band crossing and shape evolution
in 60Fe [52].

Meanwhile, the experimental exploration of AMR has been
performed in 105Cd [53], 106Cd [7], 108Cd [8,54], 110Cd [55],
and 107Cd [56]. In addition, further investigation of AMR by
lifetime measurements has also been done in 109Cd [10], 100Pd
[9], 144Dy [57], and 112In [58]. The high-spin states of 101Pd
have been studied experimentally in Ref. [59]. Subsequently,
lifetime measurements were performed for the ν h11/2 band in
101Pd [60], which confirmed the previous assumption of the
AMR nature of this band [59]. Very recently, the two-shears-
like mechanism for this AMR band was studied in detail with
CSM-PNC method [61]. However, the AMR band in 101Pd has
not been investigated in the CDFT framework, it is interesting
to investigate the two-shears-like mechanism and the effects
of pairing with cranking CDFT-SLAP.

This paper is organized as follows. A brief introduction to
the cranking CDFT-SLAP theoretical framework is presented
in Sec. II. In Sec. III, the numerical details of the calculation
are presented. The results and discussion are given in Sec. IV.
A brief summary is given in Sec. V.

II. THEORETICAL FRAMEWORK

In this section, a brief theoretical framework of CDFT-
SLAP is given. More details about CDFT can be found in
Refs. [11–14,19]. For CDFT-SLAP formalism, the literature
[44,52] has detailed introductions. The starting point of the
point-coupling CDFT is the effective Lagrangian density,

L = Lfree + L4f + Lhot + Lder + Lem

= ψ̄ (iγμ∂μ − m)ψ

− 1

2
αS (ψ̄ψ )(ψ̄ψ ) − 1

2
αV (ψ̄γμψ )(ψ̄γ μψ )

− 1

2
αTV (ψ̄�τγμψ )(ψ̄�τγ μψ )

− 1

3
βS (ψ̄ψ )3 − 1

4
γS (ψ̄ψ )4 − 1

4
γV [(ψ̄γμψ )(ψ̄γ μψ )]2

− 1

2
δS∂ν (ψ̄ψ )∂ν (ψ̄ψ ) − 1

2
δV ∂ν (ψ̄γμψ )∂ν (ψ̄γ μψ )

− 1

2
δTV ∂ν (ψ̄�τγμψ )∂ν (ψ̄�τγ μψ )

− 1

4
FμνFμν − e

1 − τ3

2
ψ̄γ μψAμ, (1)

in which the free nucleon term Lfree, the four-fermion point-
coupling terms L4f , the higher-order terms Lhot corresponding
the medium effects, the gradient terms Lder simulating the

effects of finite range, and the electromagnetic interaction
terms Lem are included.

This effective Lagrangian (1) can be rewritten in a rotating
frame with a constant rotational frequency ωx around the x
axis [62–64] in order to describe the rotational nuclei via the
equation of motion for the nucleons,

ĥ0ψμ = (ĥs.p. + ĥc)ψμ = εμψμ, (2)

with

ĥs.p. = α · (−i∇ − V ) + β(m + S) + V 0, ĥc = −ωx · ĵx,

(3)

which is derived from the rotating Lagrangian.
In the equation of motion, ĵx = l̂x + 1

2�x is the x compo-
nent of the total angular momentum of the nucleon spinors,
and εμ denotes the single-particle Routhians for nucleons.
S(r) and V μ(r), which are composed of local densities and
currents, are the scalar and the vector fields, respectively.

By solving the equation of motion (2) self-consistently, the
total energy of the system in the laboratory is obtained as

Etot = Ekin + Eint + Ecou + Ec.m., (4)

where Ekin, Eint, Ecou, and Ec.m. are the kinetic energy, the
interaction energy, the electromagnetic energy, and the center-
of-mass (c.m.) correction, respectively.

The Dirac equation (2) can be solved by expanding the
nucleon spinors in a complete set of basis. In this work, three-
dimensional harmonic oscillator (3DHO) bases with good
signature quantum number in Cartesian coordinates [5,65–68]
are adopted as follows:

ξ+(r, s) = 〈r, s|ξα = +〉

= φnx φnyφnz

iny

√
2

(−1)nz+1

(
1

(−1)ny+nz

)
, (5)

ξ−(r, s) = 〈r, s|ξα = −〉

= φnx φnyφnz

iny

√
2

(
1

(−1)ny+nz+1

)
, (6)

which correspond to the eigenfunctions of the signature oper-
ation with the positive (α = +1/2) and negative (α = −1/2)
eigenvalues, respectively. The nx, ny, and nz represent the
harmonic oscillator quantum numbers in x, y, and z directions,
and φnx , φny and φnz denote the corresponding eigenstates.

The shell-model-like approach starts from a cranking
many-body Hamiltonian including pairing correlations

Ĥ = Ĥ0 + Ĥpair, (7)

where Ĥ0 = ∑
ĥ0 is the one-body Hamiltonian with the def-

inition of ĥ0 in Eq. (2). The monopole pairing Hamiltonian
Ĥpair is expressed as

Ĥpair = −G
ξ �=η∑

ξ,η>0

β̂
†
ξ β̂

†
ξ̄
β̂η̄β̂η, (8)

where the constant number G is the pairing strength, ξ̄ (η̄)
labels the time-reversal states of ξ (η), and ξ �= η indicates
that the self-scattering for the nucleon pairs is forbidden [44].
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The main idea of SLAP is to diagonalize the many-body
Hamiltonian (7) in an MPC space with a conserved particle
number [23]. One can diagonalize the cranking many-body
Hamiltonian (7) in the MPC space constructed from the
single-particle states either in the CDFT or in the cranking
CDFT.

The single-particle Routhian εμα ,

Ĥ0 =
∑
μα

εμα b̂†
μα b̂μα, (9)

and the corresponding eigenstate |μα〉,
|μα〉 =

∑
ξ

Cμξ (α)|ξα〉. (10)

for each level μ with the signature α can be obtained by
diagonalizing the one-body Hamiltonian Ĥ0 in the basis |ξα〉,
Eqs. (5) and (6).

Based on the single-particle Routhian εμα and the corre-
sponding eigenstate |μα〉 (briefly denoted by |μ〉), the MPC
|i〉 for an n-particle system can be constructed as [69]

|i〉 = |μ1μ2 · · · μn〉 = b̂†
μ1

b̂†
μ2

· · · b̂†
μn

|0〉. (11)

The parity π , signature α, and the corresponding configura-
tion energy for each MPC are determined by the occupied
single-particle states.

The eigenstates for the cranking many-body Hamiltonian
are obtained by diagonalization in the MPC space,

|�〉 =
∑

i

Ci|i〉, (12)

where Ci is the expansion coefficient.
The occupation probability nμ for state μ is defined as

nμ =
∑

i

|Ci|2Piμ, Piμ =
{

1, |i〉 contains |μ〉,
0, otherwise. (13)

The occupation probabilities will be iterated back into the
densities and currents to ensure self-consistency [44].

It is noted that, for the total energy in CDFT (4), the pairing
energy due to the pairing correlations should be taken into
account, Epair = 〈�|Ĥpair|�〉.

For each rotational frequency ω, the expectation values of
the angular momentum Jx in the intrinsic frame are given by

Jx = 〈�|Ĵx|�〉 =
∑

i

C2
i 〈i|Ĵx|i〉 +

∑
i, j

CiCj〈i|Ĵx| j〉. (14)

By means of the semiclassical cranking condition

Jx = 〈�|Ĵx|�〉 =
√

I (I + 1), (15)

one can obtain the angular momentum quantum number I . The
kinetic �(1) and dynamic �(2) moments of inertia then can be
calculated by

�(1) = Jx

ω
, (16)

�(2) = dJx

dω
. (17)

The quadrupole moments Q20 and Q22 are calculated by

Q20 =
√

5

16π
〈3z2 − r2〉, (18)

Q22 =
√

15

32π
〈x2 − y2〉. (19)

From the quadrupole moments, the B(E2) transition prob-
abilities can be evaluated by the semiclassical approximation
as

B(E2) = 3

8

[
Qp

20 cos2 θJ +
√

2

3
Qp

22(1 + sin2 θJ )

]2

, (20)

where Qp
20 and Qp

22 correspond to the quadrupole moments of
protons. θJ is the angle between the angular momentum vector
and the x axis. In this work, only Jx is considered, thus θJ is
zero.

III. NUMERICAL DETAILS

As mentioned in the above section, the equation of motion
(2) for the nucleons is solved by expanding the Dirac spinor in
the 3DHO bases expressed as Eqs. (5) and (6) with 12 major
shells. The convergence of the CDFT-SLAP calculation re-
sults with the major shell has been checked by expanding from
8 to 16 major shells. The total energy changes only 0.002%
(from −862.3143 MeV to −862.3346 MeV), and the root-
mean-square radius of matter changes 0.02% (from 4.4379 to
4.4389 fm) by increasing the major shell from 12 to 14. The
multiparticle configuration truncation energies Ec are fixed as
10 MeV for neutrons and 15 MeV for protons, respectively.
The corresponding dimensions of MPCs with this cutoff are
1500–2000 for neutrons and around 5000 for protons. In this
work, the following pairing strengths sets are adopted: (a)
Gn = Gp = 0 MeV, (b) Gn = 0.70 MeV, Gp = 0.65 MeV,
(c) Gn = 1.05 MeV, Gp = 0.98 MeV [50% greater than set
(b)], and (d) Gn = 1.40 MeV, Gp = 1.30 [100% greater than
set (b)]. Among them, the CDFT-SLAP calculation with
pairing strength set (b) Gn = 0.70 MeV, Gp = 0.65 MeV can
reproduce the experimental even-odd mass differences [44].
In the CDFT-SLAP framework, the parity is a good quantum
number. One should specify the parity in the calculation.
The protons and neutrons are treated separately in this work.
According to the experimental suggestion [59,60], the AMR
band is based on the νh11/2 band. That means, in the present
calculations, the parity of neutrons is negative. The even
protons have a positive parity. The signature α equals −1/2
(0) for neutrons (protons).

IV. RESULTS AND DISCUSSION

The CDFT-SLAP calculation results show that there are
four proton holes below Z = 50 in 1g9/2,±1/2 and 1g9/2,±5/2

with increasing frequency. The expression 1g9/2,±1/2 denotes
the quantum number nl j,mz for the single-particle state. In
the present calculation results for h̄ ω = 0.0 MeV, the lowest
occupied negative parity single-particle state is 1h11/2,−11/2

with the signature α = −1/2. With increasing rotational fre-
quency, the lowest occupied negative parity single-particle
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FIG. 1. The experimental (full circle) and calculated kinematic
MOIs �(1) as a function of rotational frequency h̄ ω with differ-
ent pairing strengths: (a) Gn = Gp = 0 MeV (blue dashed line),
(b) Gn = 0.70 MeV, Gp = 0.65 MeV (red dash-dot-dot line), (c)
Gn = 1.05 MeV, Gp = 0.98 MeV (green solid line), and (d) Gn =
1.40 MeV, Gp = 1.30 MeV (purple dash-dot line) for 101Pd. The
experimental data are taken from Ref. [60].

state is 1h11/2,−5/2 instead of 1h11/2,−11/2 when the rotational
frequency h̄ ω is higher than 0.1 MeV. In Refs. [59,60], a
semiclassical particle-rotor model described the AMR band
in 101Pd with fixed configurations (πg−4

9/2) ⊗ (νh11/2) and

(πg−4
9/2) ⊗ (νh11/2 g2

7/2) for low rotational frequency and high
rotational frequency, respectively. However, in the CDFT-
SLAP calculation, without any arbitrarily fixed configura-
tions, the full self-consistent CDFT-SLAP model can provide
similar configurations for 101Pd.

Figure 1 shows the experimental (full circle) and calculated
kinematic MOIs �(1) as a function of rotational frequency h̄ ω

with different pairing strengths: (a) Gn = Gp = 0 MeV (blue
dashed line), (b) Gn = 0.70 MeV, Gp = 0.65 MeV (red dash-
dot-dot line), (c) Gn = 1.05 MeV, Gp = 0.98 MeV (green
solid line), and (d) Gn = 1.40 MeV, Gp = 1.30 MeV (purple
dash-dot line) for 101Pd. The experimental data are taken from
Ref. [60]. In this work, the experimental rotational frequency
is extracted as in Ref. [16],

h̄ ωexp. = 1
2 Eγ (I → I − 2), (21)

where I is the quantum number of the angular momentum. It
can be found that the calculated MOI �(1) without pairing,
i.e. with pairing strength (a) Gn = Gp = 0 MeV, decreases
very slowly before h̄ ω = 0.6 MeV, and increases linearly with
frequency h̄ ω from 0.6 to 0.7 MeV. With the frequency h̄ ω

between 0.7 and 0.8 MeV, the MOI �(1) drops linearly again.
Similar behavior can be seen for the calculated MOI �(1)

with pairing strengths (b) Gn = 0.70 MeV, Gp = 0.65 MeV
and (c) Gn = 1.05 MeV, Gp = 0.98 MeV. The stronger pair-
ing force with (d) Gn = 1.40 MeV, Gp = 1.30 MeV leads to
rapid decrease of �(1) before h̄ ω = 0.5 MeV and advanced
staggering. The experimental up-bending with the rotational
frequency h̄ ω between 0.4 and 0.5 MeV, which is interpreted
as alignments of two g7/2 quasineutrons in Refs [59,60], is
reproduced at different frequency regions in this work. The
calculated MOI �(1) increases rapidly with h̄ ω from 0.6 to

0.7 MeV for pairing strengths (a) Gn = Gp = 0 MeV, (b)
Gn = 0.70 MeV, Gp = 0.65 MeV, and (c) Gn = 1.05 MeV,
Gp = 0.98 MeV. It rises up from 0.5 to 0.6 MeV for (d)
Gn = 1.40 MeV, Gp = 1.30 MeV. Meanwhile, the calculated
back-bending occurs after h̄ ω = 0.8 MeV for pairing strength
sets (a), (b), and (c), and beyond 0.7 MeV for pairing
strength set (d). Generally speaking, the up-bending and back-
bending have been postponed compared to the experiment.
The stronger pairing force can accelerate their occurrence.

In addition, it can be seen that the pairing effects on the
moment of inertia are small at the lowest rotational frequency.
This can be understood by the single-particle Routhians. The
calculated single-particle Routhians for both neutrons and
protons as functions of the rotational frequency show that the
(1g9/2,1/2) and (1g9/2,−1/2) orbitals of the protons degenerate
at low frequency, as well as (1g9/2,5/2) and (1g9/2,−5/2) of the
protons. The most distinguished feature is that there are large
energy gaps (∼2 MeV) among (1g9/2,±1/2), (1g9/2,±5/2), and
(1g9/2,±7/2) for the 101Pd proton at low frequency. Since the
AMR in 101Pd is explained by the alignment of four proton
holes in the 1g9/2 orbital, the pairing effects are very small
at low frequency due to these large gaps. In other words,
the four proton holes appear at lowest frequency and do not
change very much with the pairing due to these large gaps.
This is shown in Fig. 5, in which the occupation number of
proton 1g9/2 do not change very much with different pairing
strengths. The small pairing effects can also be understood by
Fig. 4, where the total angular momentum does not change
very much with a different pairing. Since the MOI �(1) is
calculated with the Jx divided by the rotational frequency,
the moment of inertia does not change much with the pairing
correlation.

For the same reason, the four proton holes start to appear
and contribute to the total angular momentum at the lowest
frequency. As a result, the total angular momentum Jx of
the proton at the lower frequency is not small. Thus the
calculated moments of inertia (except with the largest pairing
strength) are much larger than the experimental values when
the rotational frequency is less than 0.5 MeV. By increasing
the pairing strength, e.g., using the largest pairing strength
set, there are significant possibilities of scattering particles in
other orbitals to 1g9/2. This is not conducive to the formation
of four proton holes. The total angular momentum Jx of the
proton at the lower frequency is small, and the MOI �(1) is
small.

The experimental (full circles) and calculated B(E2) val-
ues for 101Pd as a function of the rotational frequency with
different pairing strengths are shown in Fig. 2, for (a) Gn =
Gp = 0 MeV (blue dashed line), (b) Gn = 0.70 MeV, Gp =
0.65 MeV (red dash-dot-dot line), (c) Gn = 1.05 MeV, Gp =
0.98 MeV (green solid line), and (d) Gn = 1.40 MeV, Gp =
1.30 MeV (purple dash-dot line). The inset shows the exper-
imental and calculated B(E2) with pairing strengths above
as a function of total angular momentum quantum number I .
The data are taken from Ref. [60]. All the calculation results
except that with pairing strength (d) Gn = 1.40 MeV, Gp =
1.30 MeV can reproduce the experimental tendency of B(E2)
for 101Pd very well. By enhancing the pairing correlation, the
B(E2) values decrease systematically. The calculated B(E2)
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FIG. 2. The experimental (full circles) and calculated B(E2)
values as a function of the rotational frequency with differ-
ent pairing strengths: (a) Gn = Gp = 0 MeV (blue dashed line),
(b) Gn = 0.70 MeV, Gp = 0.65 MeV (red dash-dot-dot line), (c)
Gn = 1.05 MeV, Gp = 0.98 MeV (green solid line), and (d) Gn =
1.40 MeV, Gp = 1.30 MeV (purple dash-dot line) for 101Pd. The in-
set shows the B(E2) values as a function of total angular momentum
quantum number I . The data are taken from Ref. [60].

with the strongest pairing strength drops very rapidly and
reaches zero at h̄ ω = 0.4 MeV. It can be also found that the
calculated B(E2) values with pairing strength sets (a), (b), and
(c) decrease obviously from h̄ ω = 0.6 MeV to 0.7 MeV. This
corresponds to the abrupt change of MOI �(1) at the same
frequency range. According to above discussion, the cranking
CDFT-SLAP calculations could provide a reasonable descrip-
tion of the experimental B(E2) values for 101Pd, which is one
of the most characteristic features of AMR, i.e., decreasing
B(E2) values with rotation.

In the calculation in the inset figure, the quantal corrections
have been taken into account [70]. It can be also seen that all
CDFT-SLAP calculations with three sets of pairing strengths
can describe the property of B(E2) very well with respect to
total spin. More precisely, the calculations with weak pairing
forces (a) G = 0 and (b) Gn = 0.7 MeV, Gp = 0.65 MeV
provide better description of B(E2) for the rotation with the
low total spin, and a stronger pairing strength set (c) Gn =
1.05 MeV, Gp = 0.98 reproduces the high spin rotation well.
This could be explained by the fact that (1) the pairing effects
reduce the deformation of 101Pd at low frequency and (2) the
effects of pairing force on high frequencies are small.

Figure 3 shows the experimental (full circles) and calcu-
lated total angular momentum quantum numbers as a function
of the rotational frequency with different pairing strengths: (a)
Gn = Gp = 0 MeV (blue dashed line), (b) Gn = 0.70 MeV,
Gp = 0.65 MeV (red dash-dot-dot line), (c) Gn = 1.05 MeV,
Gp = 0.98 MeV (green solid line), and (d) Gn = 1.40 MeV,
Gp = 1.30 MeV (purple dash-dot line) for 101Pd. The data are
taken from Ref. [60]. All the calculations can provide a good
description of the increasing tendency for the experimental
total spin. The total spins with pairing strengths (a) Gn =
Gp = 0 MeV, (b) Gn = 0.70 MeV, Gp = 0.65 MeV, and (c)
Gn = 1.05 MeV, Gp = 0.98 MeV demonstrate similar behav-
ior before h̄ ω = 0.8 MeV. Two turning points can also be
observed at h̄ ω = 0.6 and 0.7 MeV. However, in analogy
to the calculated MOI �(1) shown in Fig. 1, the calculated
total spin with a stronger pairing correlation shows a step-like
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0.0 0.2 0.4 0.6 0.8 1.0
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Sp
in

 (h−
)

h− ω (MeV)

FIG. 3. The experimental (full circles) and calculated total angu-
lar momentum quantum number as a function of the rotational fre-
quency with different pairing strengths: (a) Gn = Gp = 0 MeV (blue
dashed line), (b) Gn = 0.70 MeV, Gp = 0.65 MeV (red dash-dot-dot
line), (c) Gn = 1.05 MeV, Gp = 0.98 MeV (green solid line), and (d)
Gn = 1.40 MeV, Gp = 1.30 MeV (purple dash-dot line) for 101Pd.
The data are taken from Ref. [60]

growth, which is closer to the experimental alignment starting
from h̄ ω = 0.4 MeV and the back-bending at h̄ ω = 0.7 MeV.

The experimental (full circles) and calculated expectation
values of angular momentum along the x axis, Jx, are shown in
Fig. 4 as functions of the rotational frequency h̄ ω with differ-
ent pairing strengths: (a) Gn = Gp = 0 MeV (top left panel),
(b) Gn = 0.70 MeV, Gp = 0.65 MeV (top right panel), (c)
Gn = 1.05 MeV, Gp = 0.98 MeV (bottom left panel), and (d)
Gn = 1.40 MeV, Gp = 1.30 MeV (bottom right) for neutrons
(blue dash-dot lines), protons (red dashed lines), and total
contribution (green solid lines). Without pairing, the expec-
tation value of angular momentum Jx of the neutron increases
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FIG. 4. The experimental (full circles) and calculated expecta-
tion values of angular momentum along the x axis, Jx , as functions of
h̄ ω with different pairing strengths: (a) Gn = Gp = 0 MeV, (b) Gn =
0.70 MeV, Gp = 0.65 MeV, (c) Gn = 1.05 MeV, Gp = 0.98 MeV,
and (d) Gn = 1.40 MeV, Gp = 1.30 MeV for neutrons (blue dash-
dot lines), protons (red dashed lines), and total contribution (green
solid lines) for 101Pd. The data are taken from Ref. [60].
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FIG. 5. Angular momentum alignment jx of neutrons (left col-
umn) and protons (right column) for 101Pd as functions of rota-
tional frequency h̄ ω with different pairing strengths: (a) Gn = Gp =
0 MeV, (b) Gn = 0.70 MeV, Gp = 0.65 MeV, (c) Gn = 1.05 MeV,
Gp = 0.98 MeV, and (d) Gn = 1.40 MeV, Gp = 1.30 MeV. The
angular momentum alignment composition of 1h11/2, 1g7/2, N = 50
core (h̄ ω = 0 MeV), and other orbits of neutrons is illustrated by
different colors, as is the composition of 1g9/2 and other orbits of
protons.

almost linearly up to h̄ ω = 0.7 MeV, and stays constant after
that. The angular momentum Jx of the proton increases with
different rates from h̄ ω = 0.6 to 0.7 MeV and h̄ ω >

0.9 MeV. Between 0.7 and 0.9 MeV, the Jx of the proton is
almost a constant number. The properties of calculated angu-
lar momentum expectation value Jx with pairing strengths (b)
and (c) are very similar for neutrons, as well as for protons.
The significant growth of Jx for the neutron happens at high
rotational frequency h̄ ω > 0.8 MeV. However, the remark-
able change for proton angular momentum appears between
h̄ ω = 0.6 and 0.7 MeV, which is closer to the experimental
alignment of angular momentum at h̄ ω = 0.45–0.6 MeV.
The conclusion that the experimental alignment of angular
momentum mainly comes from the contribution of the proton

can be seen clearly in Fig. 4(d), which is obtained by
the calculation with a stronger pairing force. The Jx of the
neutron stays constant from h̄ ω = 0.4 to 0.7 MeV and beyond
0.8 MeV. It increases linearly between h̄ ω = 0.7 and 0.8
MeV. The present results are different from those obtained in
Refs. [59,60], where the increase of the angular momentum
alignment is assumed to be obtained from the alignment of
one g7/2 neutron pair. In this work, the contributions from
neutrons are equally as important as those from protons to the
total angular momentum. However, the alignment of angular
momentum corresponding to the experimental up-bending at
h̄ ω = 0.45 MeV comes mainly from the proton, which is sup-
ported by the PNC-CSM calculation in Ref. [61]. Moreover,
the weaker pairing force leads to the continuous and smooth
change of the angular momentum, compared with the step-like
and abrupt change caused by the stronger pairing correlation.

It is necessary to investigate the contribution to the angular
momentum in terms of single-particle orbitals. In Fig. 5,

the angular momentum alignment jx of neutrons (left col-
umn) and protons (right column) for 101Pd is shown as
functions of rotational frequency h̄ ω with different pair-
ing strengths: (a) Gn = Gp = 0 MeV, (b) Gn = 0.70 MeV,
Gp = 0.65 MeV, (c) Gn = 1.05 MeV, Gp = 0.98 MeV, and
(d) Gn = 1.40 MeV, Gp = 1.30 MeV. The angular momen-
tum alignment composition of single-particle orbitals 1h11/2,
1g7/2, N = 50 core (h̄ ω = 0 MeV), and other orbitals of the
neutron is illustrated by different colors, as is the composition
of 1g9/2 and other orbits of the proton. It should be noted that
these orbitals are labeled by their main component. It can be
seen that the 1h11/2 and 1g7/2 orbitals make almost the same
contribution and are dominant to the angular momentum of
the neutron. With weak pairing force, like strength sets (a)
and (b), the orbits below N = 50 contribute nearly zero to the
neutron angular momentum. The remaining contribution of
the angular momentum comes from 2d5/2, 3/2 and 3s1/2 orbits,
which are labeled as others (ν) in this figure. With increasing
pairing strength, as shown in the third and fourth panels, the
orbits below N = 50 become important at a high rotational
frequency. In the case of the proton, the 1g9/2 orbit plays an
absolutely dominant role to Jx. Obviously, this orbit makes
the alignment at the rotational frequency from 0.6 to 0.7 MeV
in the first, second, and third panels, and the alignment from
h̄ ω = 0.5 to 0.6 MeV and from 0.8 to 0.9 MeV in the fourth
panel. However, the alignment of proton angular momentum
beyond 0.9 MeV comes from other orbits instead of 1g9/2

orbit.
In order to understand the contribution to the angular mo-

mentum from different single-particle orbits, it is interesting
to analyze the occupation property for these orbits. The occu-
pation numbers of single-particle orbits (a) ν1h11/2, (b) ν1g7/2

for neutrons, and (c) π1g9/2 for protons of 101Pd as functions
of rotational frequency h̄ ω are shown in Fig. 6 with dif-
ferent pairing strengths: (a) Gn = Gp = 0 MeV (blue dashed
lines), (b) Gn = 0.70 MeV, Gp = 0.65 MeV (red dash-dot-
dot lines), (c) Gn = 1.05 MeV, Gp = 0.98 MeV (green solid
lines), and (d) Gn = 1.40 MeV, Gp = 1.30 MeV (purple
dash-dot lines). It can be found that the occupation number
of 1h11/2 decreases with the rotation and reaches 1. Moreover,
the stronger pairing leads to bigger occupation number since
the pairing could scatter the paired particles from other orbits
to 1h11/2. Although the occupation number is decreasing, the
component of 1h11/2 in this orbit is increasing and become a
pure 1h11/2 orbit at high frequency. The occupation numbers
of π1g7/2 oscillate around 2 as a function of h̄ ω. This can
be understood by the strong mixture among 1g7/2 and orbits
nearby. This accords with the fluctuation of the contribution
to the angular momentum of this orbit in Fig. 5. In the case
of the proton 1g9/2, decreasing of the occupation number
with the rotation means the formation of four proton holes.
Meanwhile, the purity of 1g9/2 is increasing. For example, the
average component of 1g9/2 in this orbit increases from 60%,
93%, to 98% at h̄ ω = 0.1, 0.5, and 0.9 MeV, respectively,
with pairing strength (d) Gn = 1.40 MeV, Gp = 1.30 MeV.
This can explain why the contribution to angular momentum
increases while the occupation number for single-particle
orbitals decreases. It is due to the situation that four proton
holes in 1g9/2 have evolved with the increase of frequency
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FIG. 6. Occupation numbers of single-particle orbits (a) ν1h11/2,
(b) ν1g7/2 for neutrons, and (c) π1g9/2 for protons of 101Pd as
functions of rotational frequency h̄ ω with different pairing strengths:
(a) Gn = Gp = 0 MeV (blue dashed lines), (b) Gn = 0.70 MeV,
Gp = 0.65 MeV (red dash-dot-dot lines), (c) Gn = 1.05 MeV, Gp =
0.98 MeV (green solid lines), and (d) Gn = 1.40 MeV, Gp =
1.30 MeV (purple dash-dot lines).

and contribute to the total angular momentum. This pattern is
defined as the two-shears-like mechanism in AMR.

V. SUMMARY

In this work, the antimagnetic rotation band νh11/2 in 101Pd
is investigated by the cranking covariant density functional

theory with a shell-model-like approach to treat the pairing
correlations, in which the particle number is conserved strictly
and the blocking effects are taken into account exactly. Four
sets of pairing strength are adopted in the present calculation
in order to investigate the effect of pairing to the AMR.
The tendencies of experimental moments of inertia, reduced
B(E2) transition probabilities, and the spin are well repro-
duced by the cranking CDFT-SLAP calculations with suitable
pairing strengths. The discrepancy is also discussed in terms
of the single-particle Routhians, the occupation numbers, and
the component of angular momentum. In the competition of
pairing correlations and rotations, the stronger pairing force
will lead to drastic and step-like changes of these quantities
while the weak pairing only gives rise to mild and gradual
modifications. By investigating the h̄ ω dependence for the
contributions of orbitals to the total angular momentum align-
ment and the occupation numbers around the Fermi surface,
the up-bending mechanism of AMR band νh11/2 in 101Pd is
understood clearly. This up-bending with h̄ ω = 0.45 MeV
mainly triggered by the proton 1g9/2 orbital—more precisely,
by four proton holes in this orbital—while the neutron 1h11/2

and 1g7/2 orbitals only contribute to the homogeneous in-
crease of total angular momentum. Moreover, it is found
that the proton angular momentum alignment, which mainly
comes from the rearrangement of proton occupations in 1g9/2

orbitals and the increasing components of 1g9/2, plays an
important role in the two-shears-like mechanism.
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