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R. Roth,3 R. Skibiński,2 K. Topolnicki,2 J. P. Vary,5 K. Vobig,3 and H. Witała2

(LENPIC Collaboration)
1Ruhr-Universität Bochum, Fakultät für Physik und Astronomie, Institut für Theoretische Physik II, D-44780 Bochum, Germany

2M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30348 Kraków, Poland
3Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany

4Department of Physics, Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan
5Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA

6Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany
7Institut für Kernphysik, Institute for Advanced Simulation and Jülich Center for Hadron Physics,

Forschungszentrum Jülich, D-52425 Jülich, Germany
8JARA - High Performance Computing, Forschungszentrum Jülich, D-52425 Jülich, Germany

(Received 26 July 2018; revised manuscript received 5 January 2019; published 19 February 2019)

We present calculations of nucleon-deuteron scattering as well as ground and low-lying excited states of
light nuclei in the mass range A = 3–16 up through next-to-next-to-leading order in chiral effective field
theory using semilocal coordinate-space regularized two- and three-nucleon forces. It is shown that both of
the low-energy constants entering the three-nucleon force at this order can be determined from the triton binding
energy and the differential cross section minimum in elastic nucleon-deuteron scattering. From all considered
nucleon-deuteron scattering observables, the strongest constraint on these low-energy constants emerges from
the precisely measured cross section minimum at EN = 70 MeV. The inclusion of the three-nucleon force is
found to improve the agreement with the data for most of the considered observables.
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I. INTRODUCTION

Chiral effective field theory (EFT) offers a convenient and
powerful framework to analyze low-energy properties of few-
and many-body nuclear systems in harmony with the sym-
metries (and their breaking pattern) of QCD (see Refs. [1–3]
for review articles). In recent years, the chiral expansion of
the two-nucleon (NN) force, the dominant part of the nuclear
Hamiltonian, has been pushed to fifth order (N4LO) [4–7]
and even beyond [8]. The available versions of the N4LO
potentials differ from each other, among other things, in the
functional form of the regulator function: while the interac-
tions of Ref. [6] are regularized with a nonlocal cutoff, local
regularization in coordinate (momentum) space is employed
for pion-exchange contributions in Ref. [5] (Ref. [7]). As
demonstrated in Refs. [7,9], the employed types of local
regulators do not, per construction, affect the long-range part
of the interaction, thus generating a smaller amount of finite-
cutoff artifacts. For a related discussion of regulator artifacts
in uniform matter see Refs. [10,11]. The resulting N4LO+

potentials of Ref. [7] lead to the description of the 2013
Granada database [12] for neutron-proton and proton-proton
scattering below Elab = 300 MeV, which is comparable to or
even better than that based on the phenomenological high-
precision potentials such as the AV18 [13], CDBonn [14],
Nijm1, and Nijm2 [15] models, featuring at the same time
a much smaller number of adjustable parameters. We also

mention recent efforts towards constructing the NN [16–18]
and three-nucleon [19,20] potentials using the heavy-baryon
formulation of chiral EFT with explicit �(1232) degrees of
freedom.

In Refs. [21–23], we have applied the semilocal
coordinate-space regularized (SCS) chiral NN potentials of
Refs. [5,9] to analyze nucleon-deuteron (Nd) scattering along
with selected properties of light- and medium-mass nuclei.
For similar studies of nuclear matter properties, selected
electroweak processes, and nucleon-deuteron radiative cap-
ture reactions see Refs. [24], [25], and [26], respectively.
All these calculations are based on the NN forces only
and thus can only be regarded as complete at leading order
(LO) and next-to-leading order (NLO) in the chiral expan-
sion. In fact, our main motivation in these studies was to
analyze the convergence pattern of chiral EFT, estimate the
achievable accuracy at various orders, and identify promising
observables to look for three-nucleon force (3NF) effects
and/or meson-exchange-current contributions. To estimate the
truncation error of the chiral expansion, we followed the
algorithm formulated in Ref. [9] and modified appropriately
to account for missing 3NFs and meson-exchange currents.
For the interpretation, validation, and further developments
of this approach to uncertainty quantification in a Bayesian
framework see Refs. [27,28], while the robustness of this
method and possible alternatives are discussed in Ref. [23].
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One important outcome of these studies is the observation that
many Nd scattering observables at intermediate energies as
well as the energies and radii of light and medium-mass nuclei
calculated with NN forces only show significant deviations
from experimental data, whose magnitude matches well with
the expected size of 3NF contributions in the Weinberg power
counting scheme.

In this paper we perform, for the first time, complete
calculations of few- and many-nucleon systems at third order
of the chiral expansion, i.e., at N2LO, utilizing semilocal
coordinate-space regulators [5,9,21,23]. We explore different
ways to fix the low-energy constants (LECs) cD and cE in the
three-nucleon sector and show that they can be determined
from the 3H binding energy and the differential cross section
minimum in elastic Nd scattering at intermediate energies.
This allows us to make parameter-free predictions for A > 3
systems. We provide a comparison of the complete N2LO
results with results at LO and NLO and estimate truncation er-
rors. More details regarding the calculations will be presented
in separate publications [29] for p-shell nuclei and [30] for
Nd scattering.

Our paper is organized as follows. In Sec. II we specify
the regularized expressions of the chiral 3NF at N2LO and
discuss the determination of the LECs cD and cE . Section III
is devoted to Nd elastic scattering, while our predictions for
ground state and excitation energies for p-shell nuclei are
reported in Secs. IV and V, respectively. Finally, the main
results of our study are summarized in Sec. VI.

II. DETERMINATION OF cD AND cE

The N2LO three-nucleon force in momentum space is
given by

V 3N = g2
A

8F 4
π

�σ1 · �q1 �σ3 · �q3[
q2

1 + M2
π

] [
q2

3 + M2
π

]
× [

τ1 · τ3
(−4c1M2

π + 2c3�q1 · �q3
)

+ c4τ1 × τ3 · τ2 �q1 × �q3 · �σ2
]

− gA D

8F 2
π

�σ3 · �q3

q2
3 + M2

π

τ1 · τ3 �σ1 · �q3

+ 1

2
E τ1 · τ2 + 5 permutations, (1)

where the subscripts refer to the nucleon labels and�qi = �pi
′ −

�pi, with �pi
′ and �pi being the final and initial momenta of the

nucleon i. Furthermore, qi ≡ |�qi|, σi and τ i are the Pauli spin
and isospin matrices, respectively, and ci, D, and E denote
the corresponding LECs while gA and Fπ refer to the nucleon
axial coupling and pion decay constant. Throughout this work,
we use the same values for the subleading pion-nucleon LECs
ci as employed in the NN forces of Ref. [9], namely, c1 =
−0.81 GeV−1, c3 = −4.69 GeV−1, and c4 = 3.40 GeV−1.
These are compatible with the recent determinations from the
Roy-Steiner analysis [31]. The values of the LECs accom-
panying the NN contact interactions can be provided by the
authors upon request. We also apply the same regularization
procedure to the 3NF as used in the employed NN potentials.

Specifically, regularization of the 2π -exchange 3NF is carried
out by Fourier-transforming the expressions into coordinate
space (see Eq. (2.11) of Ref. [32]) and subsequently multiply-
ing them with the regulator functions used in Ref. [9]:

V 3N
2π (�r12, �r32) −→ V 3N

2π (�r12, �r32)

[
1 − exp

(
− r2

12

R2

)]6

×
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1 − exp

(
− r2

32

R2

)]6

. (2)

Here, �ri j denotes the relative distance between the nucleons
i and j. For the one-pion-exchange-contact 3NF term pro-
portional to the LEC D in Eq. (1), a similar procedure is
employed to regularize the singular behavior with respect to
the momentum transfer �q3. In addition, following Ref. [9],
the contact interaction between nucleons 1 and 2 is regular-
ized by multiplying the momentum-space matrix elements
with a nonlocal Gaussian regulator exp(−(p2

12 + p′
12

2)/�2),
where �p12 = (�p1 − �p2)/2, �p ′

12 = (�p ′
1 − �p ′

2)/2 and � = 2R−1.
Finally, for the purely contact interaction proportional to the
LEC E , we apply a nonlocal regulator in momentum space,

V 3N
cont −→ V 3N

cont exp

(
−4p2

12 + 3k2
3

4�2

)

× exp

(
−4p′

12
2 + 3k′

3
2

4�2

)
, (3)

where �k3 = 2(�p3 − (�p1 + �p2)/2)/3 and �k ′
3 = 2(�p ′

3 − (�p ′
1 +

�p ′
2)/2)/3 are the corresponding Jacobi momenta. The nu-

merical implementation of the regularization in the partial
wave basis will be detailed in a separate publication. We
verified the correctness of the implementation by comparing
two independent calculations of matrix elements of the 3NF.

The three-nucleon force at N2LO involves two LECs which
govern the strength of the one-pion-exchange-contact and
purely contact 3NF contributions and cannot be fixed from
nucleon-nucleon scattering. Here and in what follows, we use
the notation of Ref. [33] and express these LECs in terms of
the dimensionless parameters cD and cE via

D = cD

F 2
π �χ

, E = cE

F 4
π �χ

, (4)

employing the value of �χ = 700 MeV � Mρ for the chiral-
symmetry breaking scale. The determination of cD and cE

requires at least two few- or many-nucleon low-energy ob-
servables. In this analysis we utilize a commonly adopted
practice [33–37] and regard the 3H binding energy as one such
observable. Employing this constraint by solving the Faddeev
equations establishes a relation between the two LECs as
visualized in Fig. 1 for the regulator choices of R = 0.9 fm
and R = 1.0 fm, which leaves us with a single yet undeter-
mined parameter cD. Notice that when calculating the 3H
binding energy to determine cE as a function of cD, we have
taken into account the electromagnetic interaction between
two neutrons as implemented in the AV18 potential [13].
However, the results presented in Secs. IV and V are based on
the point-Coulomb interaction only. This small inconsistency
is irrelevant at the accuracy level of our study.
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FIG. 1. Correlation between the LECs cD and cE induced by
the requirement to reproduce the 3H binding energy for the cutoff
choices of R = 0.9 fm (blue dashed line) and R = 1.0 fm (red solid
line).

A wide range of observables has been considered in the
literature to constrain the remaining LEC. These include the
neutron-deuteron doublet scattering length 2a [33,37], triton
β decay [36], the 4He binding energy [34], the point-proton
radii of 3H and/or 4He, and selected properties of few-nucleon
systems [35,38]. We also mention the approach of Ref. [39]
to perform a global fit of LECs entering the two- and three-
nucleon forces to NN scattering data in combination with
few- and many-nucleon observables. In this paper we explore
several possibilities for fixing cD based solely on the nucleon-
deuteron (Nd) experimental data. Such a procedure has an
advantage of being insensitive to the four-nucleon force and
exchange currents, which may affect observables in heavier
systems and reactions involving electroweak probes, and gives
us the opportunity to make predictions for nuclei with A � 4.
Given that we only consider the leading contribution to the
3NF at N2LO, we do not use Nd polarization observables
to determine the cD/cE values and restrict ourselves to the
differential and total cross sections and 2a. Specifically, the
differential cross section for elastic Nd scattering around its
minimum at energies of EN ∼ 50 MeV and above1 is well
known to be sensitive to the 3NF contributions [40,41].

In Fig. 2 we show the constraints on cD resulting from
the reproduction of the proton-deuteron differential cross sec-
tion data at EN = 70 and 135 MeV of Ref. [42] and EN =
108 MeV of Ref. [43] for θc.m. ∼ 128◦ (using a single ex-
perimental point). Notice that there is a discrepancy between
the data of Ref. [42] and the Kernfysisch Versneller Instituut
(KVI) measurement of the differential cross section at EN =
135 MeV of Ref. [44]. We also show constraints emerging
from the reproduction of the (derived) neutron-deuteron total
cross section data of Ref. [45] at the same energies and the
experimental value of 2a = 0.645 ± 0.008 fm of Ref. [46]. In
all calculations, the LEC cE is set to reproduce the 3H binding

1At low energy, the minimum in the differential cross section
becomes less pronounced due to the s-wave dominance, and the
sensitivity to the 3NF decreases.

energy according to the correlation shown in Fig. 1. Notice
further that we do not include the Coulomb interactions in
our Nd scattering calculations. The effect of the Coulomb
interaction in the cross section for the considered kinematics
is below the statistical and systematic uncertainties of our
analysis [47,48]. We further emphasize that our scattering
calculations are carried out including NN partial waves up to
jmax = 5 and using a standard approximate treatment of the
isospin T = 3/2 channels (see Sec. III for further information
on the partial wave truncation and Ref. [40] for more details).
This is sufficient to obtain converged results for observables
under consideration. We also neglect isospin T = 3/2 compo-
nents of the 3NF when calculating Nd scattering observables,
which are insignificant for the observables we consider [49].

As shown in Fig. 2, the strongest constraint on cD results
from the cross section minimum at the lowest considered
energy of EN = 70 MeV. While the differential cross sec-
tion data at EN = 135 MeV have the same statistical and
systematic errors, the significantly larger truncation error at
this energy leads to a less precise determination of cD. It is
also interesting to see that the doublet scattering length 2a,
whose experimental value is known to a high accuracy of
∼1%, does not constrain cD at N2LO. This is in line with
the known strong correlation between 2a and the 3H binding
energy (the so-called Phillips line [50]; see also Ref. [36] for
a similar conclusion). Notice, however, that electromagnetic
interactions between the nucleons are known to have a sizable
effect on 2a [51]. Thus, a more complete treatment of the
electromagnetic interaction may affect the position of the
central value of cD extracted from this observable. Performing
a χ2 fit to all considered observables by taking into account
the experimental statistical and systematic as well as the the-
oretical truncation errors added in quadrature, we obtain the
values of cD = 1.7 ± 0.8 for R = 0.9 fm and cD = 7.2 ± 0.7
for R = 1.0 fm. The listed uncertainties for cD are estimates
of the standard deviations. When including the data only up to
108 MeV, the resulting cD values read cD = 2.1 ± 0.9 for R =
0.9 fm and cD = 7.2 ± 0.9 for R = 1.0 fm. The corresponding
cE values are cE = −0.329+0.103

−0.106 (cE = −0.381+0.117
−0.122) for R =

0.9 fm and cE = −0.652 ± 0.067 (cE = −0.652+0.086
−0.087) for

R = 1.0 fm using experimental data up to 135 MeV (up to
108 MeV). We emphasize that the simplistic procedure for
estimating the central values and uncertainties of the LECs
cD and cE adopted in this study does not take into account
the statistical and systematic errors of the nuclear potentials.
In future calculations at higher chiral orders, a more sophisti-
cated approach to error analysis along the lines of Refs. [7,52]
should be employed.

It is important to address the question of robustness of our
approach to determine the constants cD and cE with respect to
the choice of data used in the fits. To this end, we performed
fits to the Nd differential cross section data in a wider range of
center-of-mass (c.m.) angles. In Fig. 3 we show the resulting
description of the data along with the corresponding χ2 as
a function of cD for the already mentioned pd data at E =
70 MeV [42] (30 data points), 108 MeV [43] (16 data points),
and 135 MeV [42] (21 data points). The actual calculations
were performed for R = 0.9 fm using five different cD values,
namely, cD = −2.0, 0.0, 2.0, 4.0, and 6.0. In all cases, the cE

024313-3



E. EPELBAUM et al. PHYSICAL REVIEW C 99, 024313 (2019)

nd scattering length 2a

nd tot at 70 MeV

pd minimum of d /d  at 70 MeV

nd tot at 108 MeV

nd tot at 135 MeV

pd minimum of d /d  at 135 MeV

pd minimum of d /d  at 108 MeV

R = 0.9 fm R = 1.0 fm

FIG. 2. Determination of the LEC cD from the differential cross section in elastic pd scattering, total nd cross section, and the nd doublet
scattering length 2a for the cutoff choices of R = 0.9 fm and R = 1.0 fm. The smaller (blue) error bars correspond to the experimental statistical
and systematic uncertainties added in quadrature. The larger (orange) error bars also take into account the truncation error estimated as
described in Ref. [21] and added in quadrature. The green (violet) bands show standard error intervals of cD resulting from a combined least
squares single-parameter fit to all observables (to observables up to EN = 108 MeV) using the orange error bars.

values are taken from the correlation line shown in Fig. 1. The
shown χ2 does not take into account the estimated theoretical
uncertainty of our calculations. Notice further that in all cases,
we have taken into account the systematic errors in addition
to the statistical ones as given in Refs. [42,44]. While the
resulting cD values at 70 and 108 MeV are close to each other
and also to the central value of cD ∼ 2.1 from the global fit
up to 108 MeV quoted above, the fit to the E = 135 MeV data
prefers a value of cD ∼ −0.7. However, taking into account
the relatively large truncation uncertainty at E = 135 MeV,
the extracted values of cD at all three energies are still com-
patible with each other (see the left-hand graphs of Fig. 2 and
left-hand panels of Fig. 3).

III. Nd SCATTERING

We are now in the position to discuss our predictions
for nucleon-deuteron (Nd) scattering observables. To this
aim, we calculate a 3N scattering operator T by solving the
Faddeev-type integral equation [40,53–55] in a partial wave
momentum-space basis. Throughout this section, we restrict
ourselves to the harder regulator value of R = 0.9 fm in order
to cover a broader kinematical range up to Elab = 250 MeV
and focus on a very restricted set of observables.2 A more
detailed discussion of Nd elastic and breakup scattering at
N2LO will be published elsewhere. Since we are going to
compare our 3N scattering predictions with pd data, we
have replaced the neutron-neutron (nn) components of the
NN potential with the corresponding proton-proton (pp) ones
(with the Coulomb force being subtracted). Furthermore, in
order to provide converged results, we have solved the 3N

2The results for low-energy scattering observables using R = 1.0
fm are comparable to the ones using R = 0.9 fm (see also Ref. [23]
for a similar conclusion for calculations based on NN forces only).
More details are given in a separate publication [30].

Faddeev equations by taking into account all partial wave
states with the 2N total angular momenta up to jmax = 5 and
3N total angular momenta up to Jmax = 25/2. The 3NF was
included up to Jmax = 7/2.

At low energies, the most interesting observable is the
analyzing power Ay for nd elastic scattering with polarized
neutrons. Theoretical predictions of the phenomenological
high-precision NN potentials such as the AV18 [13], CDBonn
[14], Nijm1, and Nijm2 [15] fail to explain the experimental
data for Ay as visualized in Fig. 4. The data are underesti-
mated by ≈30% in the region of the Ay maximum which
corresponds to the c.m. angles of 
c.m. ≈ 125◦. Combining
these NN potentials with the 2π -exchange TM99 3NF model
[57] removes approximately only half of the discrepancy to
the data (see Fig. 4). That effect is, however, model dependent:
if the Urbana IX 3NF model [58] is used instead of the
TM99 3NF, one observes practically no effects on Ay (see the
left-hand panel of Fig. 4). The predictions for the Ay based
on the chiral NN potentials appear to be similar to those
of phenomenological models (see Ref. [23] and references
therein). Combining the N2LO SCS chiral potential with the
N2LO 3NF only slightly improves the description of Ay.
The behavior is qualitatively similar to the one observed for
the TM99 3NF, but the effect is approximately two times
smaller in magnitude. As expected, the theoretical predictions
appear to be quite insensitive to the actual value of cD as
visualized by a rather narrow magenta band in the right-
hand panel of Fig. 4, which corresponds to the variation of
cD = −2.0, . . . , 6.0. In fact, this observable is well known
to be very sensitive only to 3Pj NN force components [59],
while both 3NF contact interactions act predominantly in the
s waves. However, the truncation error at N2LO is rather
large and, in fact, comparable in magnitude with the observed
deviation between the predictions and experimental data. It
would be interesting to see whether the Ay puzzle would
persist upon inclusion of higher-order corrections to the 3NF
(see Refs. [60,61] for recent work along this line and Ref. [62]
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FIG. 3. The nd elastic scattering cross section at the incoming
neutron laboratory energies E = 70, 108, and 135 MeV. Left: Solid
(red) lines are predictions of the N2LO SCS NN potential with
the regulator R = 0.9 fm. Combining this NN potential with the
N2LO 3NF using five different (cD, cE ) combinations leads to results
shown by the (brown) double-dash-dotted, (magenta) dash-dotted,
(maroon) dotted, (cyan) solid, and (red) double-dot-dashed lines for
cD = −2.0, 0.0, 2.0, 4.0, and 6.0, respectively. The (green) bands
show the estimated truncation error of predictions at N2LO with
cD = 2.0. The corresponding cE values are in all cases taken from
the correlation line shown in Fig. 1. The (black) dots depict pd data
from Ref. [42] at E = 70 and E = 135 MeV and from Ref. [43] at
E = 108 MeV. Right: The χ 2 fits to the experimental data in the
indicated angular regions based on these five pairs of (cD, cE ) values
are shown by dashed (green) lines. The legends in the right-hand
panel provide the best fit cD values to the data at each laboratory
energy over the indicated angular range.

for a related discussion in the framework of pionless EFT).
As for other Nd elastic scattering observables at low energy,
we found the effects of the chiral 3NF at N2LO to be rather
small, and the good description of the data, already reported in
Ref. [21] for the calculations based on the NN forces, remains
intact after inclusion of the 3NF.

At intermediate energies, the effects of the 3NF start to
become more pronounced. In particular, as already discussed
in Sec. II, the differential cross section is significantly under-
estimated in the minimum region when calculated based on
NN forces only. The same pattern is observed in calculations
based on the high-precision phenomenological potentials as

FIG. 4. The neutron analyzing power Ay in nd elastic scattering
at En = 14.1 MeV. Left: The predictions based on the phenomeno-
logical NN potentials AV18, CD Bonn, Nijm1, and Nijm2 alone
(blue band) or in combination with the TM99 3NFs (cyan band). The
dashed (yellow) line is the result based on the AV18 NN potential in
combination with the Urbana IX 3NF. Right: The dashed (red) line
is the prediction of the N2LO SCS NN potential with the regulator
R = 0.9 fm. The (magenta) band covers the predictions obtained
with this N2LO NN potential combined with the N2LO 3NF using
cD = −2.0, . . . , 6.0 (and the corresponding cE values fixed from the
correlation line). The (green) band gives the estimated truncation
error at N2LO for the value of cD = 2.0. The (black) dots depict pd
data from Ref. [56].

well. The improved description of Nd elastic scattering cross
section data up to about 130 MeV upon inclusion of the
N2LO 3NF resembles the situation found in calculations
based on phenomenological 3NFs [41,63] such as the TM99
[57] and Urbana IX [58] models. However, the inclusion of
the available 3NFs has so far not provided an explanation of
the growing discrepancies between the cross section data and
theoretical predictions at larger energies and backward angles
as exemplified in Fig. 5 for EN = 250 MeV. The astonishing
similarity of the predictions based on phenomenological mod-
els and chiral interactions can presumably be traced back to
the fact that the basic mechanism underlying these 3NFs is the
2π exchange. It is also interesting to observe that the N2LO
theoretical predictions are rather insensitive to the variation of
cD and cE . Clearly, the convergence of the chiral expansion at

FIG. 5. The nd elastic scattering cross section at En = 250 MeV.
The lines and bands in the left-hand (right-hand) panel are the same
as in the left-hand (left-hand) panel of Fig. 4 (Fig. 3). (Black) dots
depict the pd data from Ref. [64] while (blue) squares are nd data
from Ref. [65].
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FIG. 6. The nd elastic scattering neutron (Ay) and deuteron (iT11)
vector analyzing powers as well as deuteron tensor analyzing powers
T20, T21, and T22 at the incoming neutron laboratory energy E =
70 MeV. The solid red lines are predictions of the N2LO SCS NN
potential with the regulator R = 0.9 fm. Combining that NN poten-
tial with N2LO 3NF with strengths of the contact terms (cD = 2.0,
cE = −0.3446) leads to results shown by the dotted maroon lines
with their estimated truncation error depicted by the green bands.
The black dots depict pd data for Ay at E = 65 MeV from Ref. [66]
and for other analyzing powers at E = 70 MeV from Ref. [42].

such high energies is expected to be rather slow as reflected by
the broad error band in the right-hand panel of this figure. In
fact, given the truncation uncertainty of our N2LO results, the
description of the experimental data appears to be adequate at
this chiral order.

Finally, as a representative example, we show in Fig. 6
our predictions for the complete set of analyzing powers at
E = 70 MeV together with the estimated truncation errors.
Except for the tensor analyzing power T21 at backward angles,
we observe a reasonably good description of the data given
the uncertainty of our results. Clearly, one will have to go
to higher chiral orders in order to improve the accuracy of
the calculations and to perform more quantitative tests of the
theory. Work along these lines is in progress.

IV. GROUND STATE ENERGIES FOR p-SHELL NUCLEI

For p-shell nuclei, we use no-core configuration interac-
tion (NCCI) methods to solve the many-body Schrödinger

equation. These methods have advanced rapidly in recent
years and one can now accurately solve fundamental prob-
lems in nuclear structure and reaction physics using realis-
tic interactions (see, e.g., Ref. [67] and references therein).
Here we follow Refs. [68,69] where, for a given interac-
tion, we diagonalize the resulting many-body Hamiltonian
in a sequence of truncated harmonic-oscillator (HO) basis
spaces. The goal is to achieve convergence as indicated by
independence of the basis parameters, but in practice we use
extrapolations to estimate the binding energy in the complete
(infinite-dimensional) space [68,70–73]. Specifically, we em-
ploy the same extrapolation method as in Refs. [23,69] with
extrapolation uncertainty estimates following Ref. [69]. These
NCCI calculations were performed on the Cray XC30 Edison
and Cray XC40 Cori at NERSC and the IBM BG/Q Mira at
Argonne National Laboratory, using the code MFDN [74–76].

To improve the convergence behavior of the bound state
calculations we employ the similarity renormalization group
(SRG) [77–80] approach that provides a straightforward and
flexible framework for consistently evolving (softening) the
Hamiltonian and other operators, including three-nucleon in-
teractions [81–84]. In the presence of explicit 3NFs, this
additional softening of the chiral interaction is necessary
in order to obtain sufficiently converged results on current
supercomputers for p-shell nuclei. The flow equation for the
three-body system is solved using a HO Jacobi-coordinate
basis [84]. The SRG evolution and subsequent transformation
to single-particle coordinates were performed on a single node
using an efficient OPENMP parallelized code.

As a consequence of the softening of the interaction, our
results may depend on the SRG parameter α, because we
do not incorporate any induced interactions beyond 3NFs.
Without explicit 3NFs, this dependence appears to be neg-
ligible (see Fig. 7): for 4He the results with and without
SRG evolution are within about 10 keV of each other, and for
12C the difference between the ground state energies at α =
0.04 and α = 0.08 fm4 is significantly less than the estimated
extrapolation uncertainty. Once we add explicit 3NFs to the
NN potential we find that the results for 4He do depend
on the SRG parameter, and that this dependence increases
as we evolve the interaction further (α = 0 corresponds to
the interaction without SRG). However, for A � 6 this de-
pendence becomes of the same order as (or smaller than)
our extrapolation uncertainty estimate. We can combine the
extrapolation uncertainty and the SRG dependence (estimated
by taking the difference between the binding energies at α =
0.04 and α = 0.08 fm4) into a single numerical uncertainty
estimate, treating them as independent.

In Fig. 7 we also see that the binding energies depend in a
nontrivial way on the values of cD and cE . In particular, as we
increase cD (and change the corresponding cE accordingly)
the ground state energy of 4He increases, whereas that of
12C decreases with increasing cD. It turns out that for A = 6
and 7 the binding energy is nearly independent (within our
numerical uncertainty estimates) of the actual value of cD,
whereas starting from A = 8 we do see a systematic decrease
of the ground state energy with increasing cD, at least for R =
1.0 fm and values of cD between 2 and 8 [29]. Furthermore,
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this dependence on cD seems to be stronger as one moves
away from N = Z .

We have visualized our results for the ground state energies
of A = 4–12 nuclei in Fig. 8, for the regulator of R = 1.0 fm.
The results at N2LO are all obtained with the preferred values
of cD = 7.2 and cE = −0.671 for the LECs, and an SRG
parameter of α = 0.08 fm4. The open blue symbols corre-
spond to incomplete calculations at N2LO using NN-only

interactions (with induced 3NFs), whereas the complete
N2LO calculations including 3NFs are shown by solid sym-
bols. For comparison, we have also included the results at LO
and NLO with R = 1.0 fm. For A = 4–9 these calculations at
LO and NLO were performed without SRG evolution [23]; the
results for A = 10, 11, 12, and 16O in Fig. 8 are for an SRG
parameter of α = 0.08 fm4, and include induced 3NFs. (Note
that at LO and NLO there are no 3NFs.)
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TABLE I. Extrapolated binding energies of A = 6–12 nuclei in MeV, as well as 4He and 16O, with the chiral interactions at N2LO using
semilocal coordinate-space regulators, as well as SRG evolution to improve numerical convergence of the many-body calculations. For the LEC
cD, we use the values of cD = 2.1 for R = 0.9 fm and cD = 7.2 for R = 1.0 fm. The uncertainty estimate is only the extrapolation uncertainty
in the many-body calculation, and does not include any SRG uncertainty, the chiral truncation error, or any uncertainty due to uncertainties in
the LECs.

Nucleus JP Nmax α (fm4) R = 0.9 fm R = 1.0 fm Expt.

NN + 3NFinduced NN + 3NF NN + 3NFinduced NN + 3NF

4He 0+ 14 0.04 27.231 ± 0.006 28.425 ± 0.004 28.113 ± 0.006 28.202 ± 0.005 28.296
0.08 27.233 ± 0.002 28.502 ± 0.002 27.119 ± 0.001 28.298 ± 0.002

6He 0+ 12 0.04 27.00 ± 0.16 28.73 ± 0.15 27.88 ± 0.15 28.55 ± 0.15 29.27
0.08 27.10 ± 0.10 28.94 ± 0.08 27.99 ± 0.14 28.79 ± 0.08

6Li 1+ 12 0.04 30.15 ± 0.15 31.79 ± 0.18 31.02 ± 0.13 31.49 ± 0.16 31.99
0.08 30.24 ± 0.07 32.00 ± 0.07 31.12 ± 0.08 31.72 ± 0.06

7Li 3
2

−
10 0.04 36.89 ± 0.25 39.04 ± 0.30 37.91 ± 0.20 38.66 ± 0.28 39.24

0.08 36.92 ± 0.12 39.19 ± 0.14 37.99 ± 0.11 38.94 ± 0.14
8He 0+ 10 0.04 26.9 ± 1.0 29.6 ± 0.5 27.5 ± 0.4 29.3 ± 0.4 31.41

0.08 26.87 ± 0.4 29.88 ± 0.4 27.75 ± 0.5 29.66 ± 0.4
8Li 2+ 10 0.04 37.87 ± 0.3 40.85 ± 0.4 38.92 ± 0.3 40.38 ± 0.4 41.28

0.08 37.90 ± 0.15 41.07 ± 0.25 39.02 ± 0.2 40.70 ± 0.2
8Be 0+ 10 0.04 53.7 ± 0.3 56.2 ± 0.5 55.4 ± 0.4 55.6 ± 0.5 56.50

0.08 53.8 ± 0.2 56.6 ± 0.3 55.6 ± 0.3 56.1 ± 0.3
9Li 3

2

−
10 0.04 40.5 ± 0.4 44.1 ± 0.4 41.6 ± 0.4 43.9 ± 0.4 45.34

0.08 40.44 ± 0.2 44.50 ± 0.2 41.63 ± 0.3 44.04 ± 0.2
9Be 3

2

−
10 0.04 54.8 ± 0.4 57.8 ± 0.5 56.5 ± 0.4 57.5 ± 0.5 58.16

0.08 54.81 ± 0.2 58.42 ± 0.25 56.57 ± 0.2 58.04 ± 0.25 58.16
10Be 0+ 8 0.08 60.4 ± 0.5 65.6 ± 0.5 62.4 ± 0.5 64.9 ± 0.5 64.98
10B 3+ 8 0.08 60.0 ± 0.5 66.0 ± 0.5 61.9 ± 0.5 64.9 ± 0.5 64.75
11B 3

2

−
8 0.08 71.7 ± 0.5 78.8 ± 0.5 73.9 ± 0.5 77.7 ± 0.5 76.21

12B 1+ 8 0.08 76.2 ± 0.5 83.7 ± 0.6 78.5 ± 0.6 82.5 ± 0.5 79.58
12C 0+ 8 0.08 89.7 ± 0.4 96.9 ± 0.5 92.5 ± 0.5 95.5 ± 0.5 92.16
16O 0+ 8 0.08 139.8 ± 0.6 146.9 ± 0.8 144.8 ± 0.6 145.2 ± 0.8 127.62

For all A = 4–12 nuclei the ground state energies decrease
when we add the 3NFs with the preferred LECs to the NN
interaction at N2LO (see Fig. 8). For 4He this decrease is
very small, but for A = 6 and larger this decrease is at least
half an MeV, growing to a decrease of about 3 MeV in
the ground state energy of 12C. Up to A = 10 the ground
state energies with the 3NFs are significantly closer to their
experimental values than without; however, for A = 12 the
decrease of the ground state energies moves them further
away from the experimental value. In contrast, for 16O (see
the inset in Fig. 8) the binding energy at N2LO is, within the
numerical uncertainties, the same with or without 3NFs, and
significantly below the experimental value.

We also show the chiral truncation error estimate for
these ground state energies following Refs. [5,9,21,23]. To
be specific, following this method implies that the chiral
error estimate at LO is, in practice, determined by δE (0) =
max(|E (2) − E (0)|, |E (3) − E (0)|), and at NLO and N2LO by
QδE (0) and Q2δE (0), respectively, where Q is the chiral expan-
sion parameter. Up to A = 9 we use Q = Mπ/�b ≈ 0.23, but
for A = 10 and above the average relative momentum scale of
the nucleons inside the nucleus increases, to about 185 MeV
for 16O, corresponding to Q ≈ 0.3 [23]. (It turns out that the
chiral error estimate with 3NFs included at N2LO is up to
about 10% smaller than those without 3NFs for A = 6–12.)

For most of the 15 nuclei in Fig. 8, our complete results
at N2LO agree, to within the chiral error estimate, with the
experimental values; the exceptions are 8He, 9Li, 12B, 12C, and
16O. Both 8He and 9Li are slightly underbound in our calcula-
tions; they are also both weakly bound and neutron rich. Small
changes in either the two-neutron force or the three-neutron
force (neither of which are very well constrained experi-
mentally) could potentially have significant effects on these
neutron-rich nuclei. In this respect it is also interesting to note
that the effect of the 3NFs is noticeably larger for 8He and 9Li
than for 8Be and 9Be. However, 16O is noticeably overbound
at N2LO, with or without 3NFs (see also Ref. [85] for a related
discussion in the context of nuclear lattice simulations). This
overbinding starts at A = 12, where, with 3NFs, both 12B and
12C are overbound, with the experimental value only slightly
outside the chiral truncation error estimate, and seems to be
systematic for the heavier nuclei.

Table I gives our calculated results at N2LO for both
R = 0.9 fm and R = 1.0 fm. Although the qualitative be-
havior is similar for the two regulator values, that is, the
explicit 3NFs at N2LO decrease the ground state energy for
all A = 6–12 nuclei, the additional binding from these 3NFs
is significantly larger at R = 0.9 fm than at R = 1.0 fm.
For both regulator values the additional binding from the
3NFs leads to a better agreement with the data up to about
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A = 10 or 11. Furthermore, the regulator dependence is no-
ticeably smaller with the 3NFs included than without these
contributions.

However, inclusion of the 3NFs leads to a noticeable
overbinding for both 12B and 12C, whereas the effect of the
3NFs is surprisingly small for 16O, and does not move the 16O
binding energy any closer to experiment. Note that a smaller
value of cD would give better agreement with the experimental
binding energy for 12C: with values of cD = 2.0 and cE =
−0.193 for the LECs using R = 1.0 fm, the ground state
energy of 12C is in perfect agreement with its experimental
value (see Fig 7).

It is interesting to compare our results to similar calcula-
tions using different versions of the chiral interactions. Our
N2LO results for the ground state energies of p-shell nuclei
are in a qualitative agreement with the Green’s function Monte
Carlo calculations reported in Ref. [37] and based on the local
NN potentials with explicit � contributions to the two-pion
exchange, accompanied with the locally regularized 3NF at
N2LO. In particular, the ground state energy of 12C, the heav-
iest nucleus considered in that work, appears to be slightly
overbound at N2LO. It is, however, difficult to make a more
quantitative comparison since the authors of that paper do not
show results at lower chiral orders and at N2LO using NN
interactions only. Also no estimation of the truncation errors is
provided. Another local version of the chiral NN interaction,
constructed in Refs. [86,87] and accompanied with the locally
regularized 3NF at N2LO, was employed in Refs. [88,89] to
calculate properties of nuclei up to A = 16 using the auxiliary
field diffusion Monte Carlo methods. This interaction leads to
similar results at LO, showing typically a strong overbinding
for all nuclei. The NLO local forces used in Refs. [88,89],
however, turn out to be considerably more repulsive than the
semilocal interactions employed in our analysis, which results
in underbinding for most of the considered nuclei. Still, their
NLO results are consistent with ours and with experimental
data within errors. At N2LO, the authors of Refs. [88,89] do
not provide results based on the NN interactions only, leaving
no possibility to quantify 3NF effects in their scheme. It is
furthermore found in Ref. [88] that, while being equivalent
modulo higher-order terms, different operator choices of the
contact 3NF at N2LO may induce large differences for the
16O binding energy for (very) soft cutoff values. This indicates
that subleading short-range 3NF contributions may play an
important role, especially for soft choices of the regulator.
The description of the ground state energies of nuclei up
to A = 16 reported in Ref. [89] at N2LO is comparable to
ours, but the results for 12C and 16O show the opposite trend
of being underbound. We further emphasize that the short-
range part of the 3NF was constrained in that paper in the
A = 5 system using experimental data on n-α scattering, while
all results of our calculations for A � 4 are parameter-free
predictions. Finally, it is interesting to compare our results
for 4He, 8He, and 16O with those reported in Ref. [18]
using chiral EFT with explicit �(1232) degrees of freedom.
For a momentum cutoff � = 450 MeV, the corresponding
ground state energies at �NNLO are found in Ref. [18] to be

E (4He) = −28.29(0.78) MeV,3 E (8He) = −27.0 MeV, and
E (16O) = −117.0(1.8) MeV with the estimated truncation
errors given in parentheses. The truncation error for 8He is
not quoted in Ref. [18]. These numbers are to be compared
with our predictions for R = 1.0 fm and α = 0.8 at the same
chiral order, namely, E (4He) = −28.3(0.9) MeV, E (8He) =
−29.7(0.5) MeV, and E (16O) = −145.2(7.1) MeV, where
we only quote the estimated truncation errors, and the cor-
responding experimental values of −28.296, −31.41, and
−127.62 MeV, respectively. The most pronounced difference
is observed for the ground state energy of 16O, for which
the �-full approach yields almost 30 MeV less binding. Still,
given the different employed regularization schemes and fit-
ting protocols, it is difficult to draw unambiguous conclusions
on the role of the � isobar based on such a comparison.

We also calculated the point-proton radius of 4He by solv-
ing the Faddeev-Yakubovsky equations. The obtained values
are rLO

p = 1.008 fm, rNLO
p = 1.420 fm, and rN2LO

p = 1.434 fm
for R = 0.9 fm while rLO

p = 1.064 fm, rNLO
p = 1.390 fm, and

rN2LO
p = 1.443 fm for the softer cutoff choice of R = 1.0 fm.

Using the algorithm of Ref. [23] for estimating the trunca-
tion error, our final results at N2LO are rN2LO

p = 1.434 ±
0.022 fm for R = 0.9 fm and rN2LO

p = 1.443 ± 0.018 fm for
R = 1.0 fm. Our predictions are thus barely consistent (within
errors) with the empirical value of rp = 1.462(6) fm [90]
while in somewhat better agreement with the empirical value
1.457(10) fm deduced in Ref. [91]. In future studies, we plan
to extend these calculations to heavier nuclei and higher chiral
orders.

V. EXCITATION ENERGIES FOR p-SHELL NUCLEI

In Fig. 9 we present our results for the excitation energies
for selected states of A = 6–12 nuclei, at N2LO with R =
1.0 fm, first without explicit 3NFs (open blue symbols), then
with explicit 3NFs using the preferred values of cD = 7.2 and
cE = −0.671 for the LECs (solid blue symbols), and followed
by the experimental values. All of the shown results were ob-
tained in the largest achievable basis space in the Nmax trunca-
tion, and for a fixed SRG parameter of α = 0.08 fm4 and fixed
HO basis parameter of h̄ω = 20 MeV. We include the maxi-
mum of the difference between our results at h̄ω = 20 MeV
and those at h̄ω = 16 MeV or h̄ω = 24 MeV as a rough
estimate of the numerical uncertainty of our calculations.

The results clearly show that including the 3NFs moves
the excitation energies for most of these states closer to
the experimental values. There are only two significant ex-
ceptions, both for A = 12: the lowest 2+ state of 12B and
the lowest 1+ state of 12C. Both of these two states are in
better agreement with experiment without 3NFs than with the
3NFs, and for both, including the 3NFs lowers the excitation
energies significantly.

In 12B we actually find that the lowest 2+ state becomes the
ground state when the 3NFs are included, at almost 1 MeV

3The α-particle binding energy was used as input in the determina-
tion of the LECs entering the 3NF in Ref. [18].
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FIG. 9. Calculated excitation energies in MeV using chiral N2LO at R = 1.0 fm with and without explicit 3NFs for a fixed SRG parameter
of α = 0.08 fm4 and fixed HO basis parameter of h̄ω = 20 MeV. Results are presented as open blue circles for calculations without explicit
3NFs, solid blue dots for calculations including 3NFs using cD = 7.2, and red squares for experimental values. The yellow bars are the
experimental width of broad resonances. We define an “uncertainty range” for our calculations by the maximum of the difference between
calculations at h̄ω = 20 MeV and those at h̄ω = 16 MeV or h̄ω = 24 MeV.

below the actual 1+ ground state. From Fig. 8 we can see that
also the 1+ ground state becomes more deeply bound when
the 3NFs are included, but the additional binding from the
3NFs is apparently stronger for the lowest 2+ state than for the
lowest 1+ state. In contrast, the excitation energies of the other
excited states of 12B increase when the 3NFs are included, and
move considerably closer to their experimental values.

The excitation energy of the lowest 1+ state of 12C (with
T = 0; the analog state of the ground state of 12B is around
15 MeV, in agreement with experiment) drops by about
4 MeV when the 3NFs are included, from about 14 MeV to be-
low 10 MeV, whereas the experimental value is at 12.7 MeV.
We find a similar dependence of this state on the 3NFs using
the regulator R = 0.9 fm, and also with the Entem-Machleidt
chiral N3LO NN potential plus N2LO 3NFs [92,93]. Of
course, our calculations are not converged, and in particular
for 12C it is known that the first excited 0+ state (the Hoyle
state) cannot be represented in the finite HO bases that we
are employing in our calculations, and is indeed absent from
the low-lying spectrum in our calculations in basis spaces up
to Nmax = 10. It is possible that this 1+ state is also sensitive
to configurations that are beyond Nmax = 10, whereas the 2+
and 4+ excited states are rotational excitations of the ground
state and having a similar structure as the ground state and,
therefore, converge at similar rates as the ground state.

In the case of 10B we find the now-accepted result of
obtaining a 1+ ground state without 3NFs [94] instead of the
observed 3+ ground state. When we include consistent 3NFs,

we do obtain a 3+ ground state in concert with experiment,
as may be expected [35]. The excitation energies of the two
additional 10B states shown in Fig. 9, the second 1+ state
and a 2+ state, move closer to experiment with the addition
of the 3NFs as well. However, the two low-lying 1+ states
exhibit a strong mixing [83], which results in a large basis
space dependence for these two states, as well as sensitivity
to the SRG parameter, preventing us from reliably extracting
their excitation energies.

Although these three states are sensitive to the LECs cD

and cE , we do find a qualitatively similar effect if we change
cD over a range from 2 to 8 [29]. However, a lower value
of cD would improve the agreement with experiment for
the 1+ state of 12C and the 2+ state of 12B: with cD = 2.0
and cE = −0.193 the 2+ state of 12B becomes essentially
degenerate with the 1+ ground state, and the excitation energy
of the 1+ state of 12C becomes about 11.2 MeV, that is,
significantly closer to the experimental value. For 10B the
situation is much more complicated, due to the strong mixing
between the lowest two 1+ states as a function of the basis
truncation parameters Nmax and h̄ω [83]. Note, however, that
none of these excitation energies is very well converged. The
excitation energies of most of the other states shown here are
significantly less sensitive to the LECs.

Another interesting observation is that for A = 6, 7, and
8 the inclusion of the 3NFs tends to reduce the excitation
energies, whereas for A = 10, 11, and 12 the inclusion of
the 3NFs tends to increase the excitation energies (with the
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exception of the aforementioned three states). Furthermore,
both tendencies move the excitation energies closer to their
experimental values. Nevertheless, even with the 3NFs in-
cluded, the calculated excitation energies tend to be too large
for A = 6, 7, and 8 (i.e., the spectrum is too spread out),
whereas for A = 11 and 12 they tend to be too small (i.e., the
spectrum is too compressed).

VI. SUMMARY AND OUTLOOK

In this paper we applied the SCS N2LO chiral NN potential
combined with the N2LO 3NF, regularized in the same way,
to selected properties of few- and many-nucleon systems up
to A = 16. The main findings of our study can be summarized
as follows:

(i) We explored the possibility to determine the LECs cD

and cE from a range of observables in the 3N system.
To this aim we first computed numerically the LECs
cE as a function of cD from the requirement that the
3H binding energy is correctly reproduced. To fix the
value of cD we calculated the Nd doublet scattering
length as well as the differential and total cross sec-
tions in Nd scattering at various energies. By taking
into account the estimated truncation error at N2LO,
we found the Nd doublet scattering length to yield
only very weak constraints on the allowed cD values.
These findings support the conclusions of Ref. [36]
and can be traced back to the strong correlation
between this observable and the 3H binding energy
known as the Phillips line [50]. From the considered
3N observables, the strongest constraint on the cD val-
ues is found to emerge from the precise experimental
data of Ref. [42] for the differential cross section at
EN = 70 MeV in its minimum region. The constraints
on the LEC cD placed by all considered observables
appear to be mutually consistent within errors with
the only exception of the total cross section at EN =
135 MeV for the softer cutoff of R = 1.0 fm. A global
analysis of all considered scattering observables is
shown to allow for a precise determination of the LEC
cD for both considered cutoff values.

(ii) The resulting nuclear Hamiltonian at N2LO was ap-
plied to a selected range of other observables in elastic
Nd scattering. For the low-energy nucleon analyz-
ing power Ay, the application of consistent chiral
interactions supports earlier findings based on the
phenomenological NN potentials accompanied by the
TM99 3NF; however, the resulting effects are smaller
in magnitude by a factor of ∼2. We also looked
at various spin observables at EN = 70 MeV, which
turn out to be reasonably well described given the
estimated truncation errors at this order. At higher
energies the discrepancies between the calculated ob-
servables and experimental data increase, but it is
difficult to draw definite conclusions due to rather
large truncation errors at this chiral order.

(iii) Using NCCI methods, we studied the ground state and
low-lying excitation energies of p-shell nuclei. For

almost all considered cases with very few exceptions
such as, e.g., the A = 12 nuclei, adding the consistent
3NF to the NN interaction is found to significantly
improve the description of experimental data. The
predicted ground state energies of p-shell nuclei show
a good agreement with the data except for 16O, which
appears to be overbound.

To summarize, we obtain very promising results for a broad
range of few- and many-nucleon observables at N2LO of the
chiral expansion. In the future, we plan to extend these studies
beyond this chiral order [32,95–102] (see Refs. [61,103] for
first steps along these lines, which will allow us to improve
the accuracy of our predictions and perform more stringent
tests of the theoretical framework). Notice, however, that the
coordinate-space regularization of the 3NF and its subsequent
partial wave decomposition represent highly nontrivial tasks
starting from N3LO. Fortunately, this major obstacle can now
be overcome thanks to the newest momentum-space version
of the local regulator employed in the currently most precise
version of the chiral NN potentials of Ref. [7]. Work along
these lines is in progress.
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