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Asymptotic normalization coefficients (ANCs) are fundamental nuclear constants that play an important role
in nuclear reactions, nuclear structure, and nuclear astrophysics. In this paper a connection between ANCs and
resonance widths of the mirror states is established. Using the Pinkston-Satchler equation the ratio for resonance
widths and ANCs of mirror nuclei is obtained in terms of the Wronskians from the radial overlap functions
and regular solutions of the two-body Schrödinger equation with the short-range interaction excluded. This ratio
allows one to use microscopic overlap functions for mirror nuclei in the internal region, where they are the most
accurate, to correctly predict the ratio of the resonance widths and ANCs for mirror nuclei, which determine
the amplitudes of the tails of the overlap functions. If the microscopic overlap functions are not available one
can express the Wronskians for the resonances and mirror bound states in terms of the corresponding mirror
two-body potential-model wave functions. A further simplification of the Wronskian ratio leads to the equation
for the ratio of the resonance widths and mirror ANCs, which is expressed in terms of the ratio of the two-
body Coulomb scattering wave functions at the resonance energy and at the binding energy [N. K. Timofeyuk,
R. C. Johnson, and A. M. Mukhamedzhanov, Phys. Rev. Lett. 91, 232501 (2003)]. Calculations of the ratios
of resonance widths and mirror ANCs for different nuclei are presented. From this ratio one can determine the
resonance width if the mirror ANC is known and vice versa. Comparisons with available experimental ratios are
done.
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I. INTRODUCTION

The asymptotic normalization coefficient (ANC) is a fun-
damental nuclear characteristic of bound states [1,2], playing
an important role in nuclear reaction and structure physics.
The ANCs determine the normalization of the peripheral part
of transfer reaction amplitudes [1,2] and overall normaliza-
tion of the peripheral radiative capture processes [3–6]. In
the R-matrix approach the ANC determines the normaliza-
tion of the external nonresonant radiative capture amplitude
and the channel radiative reduced width amplitude [7–9]. In
Refs. [10,11] relationships between mirror proton and neutron
ANCs were obtained.

Pairs of nuclei B1 and B2 are mirror nuclei if the number of
protons Z1 of nucleus B1 equals the number of neutrons N2 of
B2 and the number of protons of B2, Z2, equals the number of
neutrons N1 of B1, such that the mass number of both nuclei
is the same (A = N1 + Z1 = N2 + Z2). The experimental data
from mirror nuclei show charge symmetry of the nuclear
force. It is assumed that charge symmetry rather than full
charge independence is involved because mirror nuclei have
the same number of p-n pairs.

However, the ANCs are important characteristics not only
of the bound states but also of the resonances (see Ref. [9]).
The width of a narrow resonance can be expressed in terms
of the ANC of the Gamow wave function or of the R-matrix
resonant outgoing wave. That is why the relationship between
the ANCs of mirror bound states [10,11] can be extended to
the relationship between resonance widths and ANCs of the
mirror nuclei. The calculated resonance widths and the ANCs

themselves depend strongly on the choice of the nucleon-
nucleon (NN) force but the ratios of the resonance widths and
the ANCs for mirror pairs should not depend on the choice
of the NN force. This observation is based thus far entirely
on the calculations using detailed models of nuclear structure.
It follows naturally as a consequence of the charge symmetry
of nuclear forces. Mirror nuclei have the same quantum num-
bers of mirror states (for more detailed discussion of mirror
symmetry see Ref. [12]).

Another important feature of the mirror nuclei for the
present paper is a similarity of the internal mirror wave
functions. Let us consider a mirror pair in a two-body potential
model, which is used in the present paper: B1 = (a1A1) in the
resonance state and the loosely bound nucleus B2 = (a2A2).
The mirror resonance state is obtained by the replacement
of one of the neutrons by a proton. The additional Coulomb
interaction pushes the bound-state level into a resonance level.
The resonance and binding energy of the mirror states are
significantly smaller than the depth of the nuclear potential.
The Coulomb interaction is almost a constant in the nuclear
interior. Hence, in the nuclear interior, where all that matters
is to determine the ratio of the resonance width and the ANC
of the mirror state, the radial behavior of the mirror wave
functions is very similar and they differ only by normalization.
In the external region the resonant and bound-state wave
functions differ.

The first attempt to relate the resonance width and the ANC
of the mirror nuclei was done in Ref. [10]. In this paper,
the relationship between the resonance widths and the ANCs
is established based on the Pinkston-Satchler equation used
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in Ref. [11] for the ANCs of the mirror bound states. The
obtained ratio of the resonance width and the ANC of the
mirror bound state is expressed in terms of the ratio of the
Wronskians containing the overlap functions of the mirror
resonance and bound states in the internal region where the
radial behavior of the mirror overlap functions is very similar
and can be calculated quite accurately using an ab initio
approach. If these overlap functions are not available, as an
approximation they can be replaced by the mirror resonance
and bound-state wave functions calculated using the two-body
potential model with the same potentials for the resonance
and bound states. Assuming that the radial behavior of the
mirror resonant and bound-state wave functions is identical in
the nuclear interior one can replace the Wronskian ratio for
the resonance width and the ANC of the mirror bound state
by the equation derived in Ref. [10], which does not require
a knowledge of the internal resonant and bound-state wave
functions.

Connection between the ANC and the resonance width
of the mirror resonance state provides a powerful indirect
method to obtain information which is unavailable directly.
If, for instance, the resonance width is unknown it can be
determined through the known ANC of the mirror state and
vice versa. For example, near the edge of the stability valley,
neutron binding energies become so small that the mirror
proton states are resonances. Using the relationship between
the mirror resonance width and the ANC the resonance width
can be determined. Also loosely bound states α + A become
resonances in the mirror nucleus α + B, where charge ZBe >

ZAe. Using the method developed here one can find one of
the missing quantities, the resonance width of the narrow
resonance state or the mirror ANC. In what follows the system
of units in which h̄ = c = 1 is used throughout the paper.

II. ANC AND RESONANCE WIDTH

A. ANC as residue of S matrix

The ANC enters the theory in two ways [1]. In the scat-
tering theory the residue at the poles of the elastic scattering
S matrix corresponding to bound states can be expressed in
terms of the ANC:

SJB
lB jB;lB jB

kaA→kbs
aA−−−−→ AJB

lB jB

kaA − i κaA
(1)

with the residue

AJB
lB jB

= −i2 lB+1 ei π ηbs
aA

(
CB

aA lB jB JB

)2
. (2)

Here, CB
aA lB jB JB

is the ANC for the virtual decay of the bound
state B(aA) in the channel with the relative orbital angular
momentum lB of a and A, the total angular momentum jB of
a, and total angular momentum JB of the system a + A; kaA is
the relative momentum of particles a and A. Here

ηbs
aA = Za ZA e2 μaA

κaA
(3)

is the Coulomb parameter for the bound state B = (a A),
κaA = √

2 μaA εaA is the bound-state wave number, εB = ma +
mA − mB is the binding energy for the virtual decay B →

a + A, Zi e and mi are the charge and mass of particle i, and
μaA is the reduced mass of a and A. Note that singling out the
factor ei π ηbs

aA in the residue makes the ANC for bound states
real.

Equations (1) and (2), which were proved for the bound
states in Refs. [13–18], can be extended for resonance states.

B. Connection between ANC and resonance width

The proof of the connection between the residue in the res-
onance pole of the elastic scattering S matrix and the ANC of
the resonance state is not trivial. In this section a general proof
is presented of the connection of the residue in the pole of the
SlB (kaA) matrix element with the ANC, which is valid for both
the bound states and resonances. The potential is given by the
sum of the short-range nuclear plus the long-range Coulomb
potentials. Taking into account that the residue of the elastic
scattering S matrix in the resonance pole is expressed in terms
of the resonance width, one can obtain a connection between
the ANC and the resonance width.

One considers two spinless particles a and A with relative
momentum k2

aA = 2 μaA EaA, relative energy EaA, and the re-
duced mass μaA in the partial wave lB at which the system
B = a + A has a resonance or a bound state. The radial wave
function ψkaAlB (r) = ukaAlB (r)

r satisfies the Schrödinger equation
in the partial wave lB:

∂2ukaAlB (r)

∂r2
+

[
k2

aA − 2μaAV (r) − lB(lB + 1)

r2

]
ukaAlB (r) = 0.

(4)

Here V (r) = V N (r) + V C (r), V N (r) is the short-range nuclear
potential, and V C (r) is the long-range Coulomb one. For
potentials satisfying the condition limr→0 r2 V (r) → 0,

ukaAlB (r) ∼ rlB+1, r → 0. (5)

Now one should take the derivative over kaA from the
left-hand side of Eq. (4), multiply the result by ukaAlB (r),
and subtract from it Eq. (4) multiplied by ∂ukaAlB (r)/∂kaA.
Integrating the obtained expression from r = 0 until r = R
and taking into account Eq. (5) one gets∫ R

0
dr u2

kaAlB (r) = 1

2kaA

[
∂ukaAlB (R)

∂kaA

∂ukaAlB (R)

∂R

− ukaAlB (R)
∂2ukaAlB (R)

∂kaA ∂R

]
. (6)

Taking R so large that ukaAlB (R) can be replaced by its
leading asymptotic term, one gets the elastic scattering wave
function

ukaAlB (R) ≈ C̃lB

[
eiρ − (−1)lB S−1

lB
(kaA)e−iρ

]
, (7)

where ρ = kaAR − ηaA ln 2kaAR, ηaA = Za ZA e2 μaA

kaA
is the

Coulomb parameter of the a + A system,

SlB (kaA) = e2 i [σC
lB

(kaA )+δCN
lB

(kaA )] (8)

is the elastic scattering S-matrix element, σC
lB

(kaA) and
δCN

lB
(kaA) are the Coulomb and Coulomb-modified nuclear

scattering phase shifts in the lBth partial wave, and C̃lB is a
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constant, which is in the pole of the S-matrix and is related
to the corresponding ANC ClB [see Eqs. (14) and (15) below].
Note that the scattering wave function ukaAlB at large R at real
momentum kaA contains ingoing and outgoing waves and is
not normalizable in the entire space.

Assume that the elastic scattering SlB (kaA)-matrix element
has a first order pole at kaA = kp with the residue AlB cor-
responding to the bound state kp = i κaA or to the resonance
kp = kaA(R) = kaA (0) − ImkaA (R), where kaA (0) = RekaA (R):

SlB (kaA) = AlB

kaA − kp
+ glB (kaA), (9)

where glB (kaA) is a regular function at kaA = kp.
Substituting Eqs. (7) and (9) into the right-hand side of

Eq. (6) and performing the differentiation over kaA and R and
taking kaA = kp one gets∫ R

0
dr u2

kplB (r) = i (−1)lB+1C̃2
lB/AlB − i

2 kp
e2 i ρp . (10)

Here ρp = kpR − ηp ln(2kp R). On the left-hand side under
the integral sign one has the function u2

kplB
(r), which is regular

at r = 0 [see Eq. (5)].
Note that at the pole kaA = kp, S−1

lB
(kp) = 0, and one can

see from Eq. (7) that in the external region the wave function
ukplB (R) satisfies the radiation condition

ukplB (r)
r→∞= C̃lB eiρp . (11)

For the bound state kp = i κaA and

ui κaAlB (r)
r>RN= ClB W−ηbs

aA, lB+1/2(2 kp r)

r→∞≈ ClB e−κaA r−ηbs
aA ln(2 κaA r), (12)

where RN is the a − A nuclear interaction radius. For the
resonance state kp = kaA(R) and ukaA(R)lB (r) is the resonance
Gamow wave function with the resonance energy EaA(R):

ukaA(R)lB (r)
r>RN= ClB W−i η(R)

aA , lB+1/2(−2 i kaA(R) r)

r→∞≈ e−π η
(R)
aA /2 ClB ei kaA(R) r−i η(R)

aA ln(2 kaA(R) r)

= C̃lB ei kaA(R) r−i η(R)
aA ln(2 kaA(R) r). (13)

Here, η
(R)
aA = Za ZA e2 μaA

kaA(R)
is the a + A Coulomb parameter of

the resonance.
The constant C̃lB is related to the ANC ClB as C̃lB =

e−π ηp/2 ClB , where ηp = Za ZA e2 μaA

kp
. For the resonances one has

C̃lB = e−π ηR
aA/2 ClB (14)

and for the bound states

C̃lB = ei π ηbs
aA/2 ClB . (15)

Note that ClB , which is real for the bound states, is the standard
definition of the ANC for the bound states and is used in this
paper for the bound states.

For the bound states the asymptotic of the bound-state
wave function is exponentially decaying and the bound-
state wave function can be normalized. The Gamow wave

function of the resonance state asymptotically oscillates and
is exponentially increasing. To normalize the Gamow wave
function one can use the Zel’dovich regularization procedure
[17], which is a particular case of the more general Abel
regularization:

lim
β→+0

∫ ∞

0
dre−β r2

u2
kaA(R)lB (r) = 1. (16)

For the bound state one can take under the integral sign
β = 0 and obtain the usual normalization procedure. For the
resonance state one can take the limit β → 0 only after per-
forming the integration over r. Note that Zel’dovich normal-
ization was introduced for exponentially decaying potentials.
In the Appendix it is shown that the Zel’dovich regularization
procedure works even for the Coulomb potentials.

For any finite R one can rewrite Eq. (16) as∫ R

0
dr u2

kaA(R)lB (r) + lim
β→+0

∫ ∞

R
dre−β r2

u2
kaA(R)lB (r) = 1.

(17)

Assume that R is so large that one can use the asymptotic
expression (11) and Eq. (A6) of the Appendix. It leads to∫ R

0
dr u2

kaA(R)lB (r) = 1 − i

2 kaA(R)
C̃2

lB e2 i ρp . (18)

Comparing Eqs. (10) and (18) one arrives at the final
equation, which expresses the residue in the pole of the elastic
scattering S-matrix in terms of the ANC:

AlB = −i2 lB+1 C̃2
lB . (19)

Equation (19) is universal and valid for bound-state poles and
resonances. In terms of the standard ANC ClB the residue in
the resonance pole is

AlB = −i2 lB+1 e−π η
(R)
aA C2

lB (20)

and for the bound state it is given by Eq. (2).
Now it is shown how to relate the ANC C̃lB to the resonance

width 
aA. Here the following definitions are used:

EaA(R) = k2
aA(R)/(2 μaA) = EaA(0) − i 
aA/2,

EaA(0) = [
k2

aA(0) − (ImkaA(R) )
2]/(2 μaA),


aA = 2 kaA(0) ImkaA(R)/μaA. (21)

One can write

SlB (kaA) = e2 i δpot
lB

(kaA + kp)(kaA − k∗
p)

(kaA − kp)(kaA + k∗
p)

, (22)

where δ
pot
lB

is the nonresonant scattering phase shift. At kp =
kaA(R) and at kaA → kaA(R)

AlB (kaA) = − 2 i kaA(R) γ [(1 + γ 2)1/4 + (1 + γ 2)−1/4]−1

× ei[2 δ
pot
lB

(kaA(R) )−1/2 arctan(γ )]
, (23)

γ = 
aA
2 EaA(0)

. Equation (23) expresses the residue of the S-
matrix elastic scattering element in terms of the resonance
energy and the resonance width for broad resonances.
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Recovering now all the quantum numbers one gets for a
narrow resonance (γ � 1) up to terms of order ∼γ(

C̃B
aA lB jB JB

)2 = i−2 lB ei 2 δ
p
lB jB JB

(kaA(0) ) μaA 
aA lB jB JB

kaA(0)
, (24)

where 
aA lB jB JB is the resonance width and δ
p
lB jB JB

(k0
aA) is the

potential (nonresonance) scattering phase shift at the real res-
onance relative momentum kaA (0). This equation is the desired
equation, which relates the ANC of the narrow resonance to
the resonance width.

The residue in the resonance pole with all the quantum
numbers recovered is

AJB
lB jB

= −i2 lB+1
(
C̃B

aA lB jB JB

)2
. (25)

For the Breit-Wigner resonance (ImkaA (R) � RekaA (R) =
kaA (0)), Eq. (25) takes the form

AJB
lB jB

= −i2 lB+1 e− π ηaA(0)
(
CB

aA lB jB JB

)2 = −i2 lB+1 (C̃B
aA lB jB JB

)2,

(26)

where ηaA(0) = Za ZA e2 μaA/kaA (0). In terms of the resonance
width the residue of the elastic scattering S-matrix element in
the resonance pole is

AJB
lB jB

= − ie2 i δp
lB jB JB

(k0
aA ) μaA

kaA (0)

aA lB jBJB . (27)

III. ANCs AND OVERLAP FUNCTIONS

Equations obtained in the previous section, which express
the residues of the S-matrix elastic element in terms of the
ANCs of the bound states and resonances, provide the most
general and model-independent definition of the ANCs. From
other side, in the Schrödinger formalism of the wave functions
the ANC is defined as the amplitude of the tail of the overlap
function of the bound-state wave functions of B, A, and a. The
overlap function is given by

IaA(raA) = 〈ψc|ϕB(ξA, ξa, raA)〉
=

∑
lBmlB jBmjB

〈JAMA jBmjB |JBMB〉〈JaMa lBmlB | jBmjB〉

×YlBmlB
(̂raA) IaA lB jB JB (raA). (28)

Here

ψc =
∑

mjB mlB MAMa

〈JAMA jBmjB |JBMB〉〈JaMa lBmlB | jBmjB〉

× ÂaA{ϕA(ξA) ϕa(ξa)YlB mlB
(̂raA)} (29)

is the two-body a + A channel wave function in the j j
coupling scheme, 〈 j1 m1 j2 m2| j m〉 is the Clebsch-Gordan
coefficient, ÂaA is the antisymmetrization operator between
the nucleons of nuclei a and A, ϕi(ξi) represents the fully
antisymmetrized bound-state wave function of nucleus i with
ξi being a set of the internal coordinates including spin-isospin
variables, and Ji and Mi are the spin and its projection of
nucleus i. Also raA is the radius vector connecting the centers
of mass of nuclei a and A, r̂aA = raA/raA, YlB mlB

(r̂Aa) is the
spherical harmonics, and IaA lB jBJB (rAa) is the radial overlap
function. Notations of the spins and angular momenta are

given in Sec. II A. The summation over lB and jB is carried
out over the values allowed by the angular momentum and
parity conservation in the virtual process B → A + a.

The radial overlap function is given by

IaA lB jB JB (raA)

= 〈
ÂaA

{
ϕA(ξA) ϕa(ξa)YlB mlB

(̂raA)
}∣∣ϕB(ξA, ξa; raA)

〉
=

(
A
a

) 1
2 〈

ϕA(ξA) ϕa(ξa)YlB mlB
(̂raA)

∣∣ϕB(ξA, ξa; raA)
〉
.

(30)

Equation (30) follows from a trivial observation that, because
ϕB is fully antisymmetrized, the antisymmetrization operator
ÂaA can be replaced by the factor (A

a)
1
2 . In what follows, in

contrast to Blokhintsev et al. [1], I absorb this factor into the
radial overlap function.

The tail of the radial overlap function (raA > RaA) in the
case of the normal asymptotic behavior is given by

IaA lB jB JB (raA) = CB
aA lB jB JB

W−ηbs
aA, lB+1/2(2 κaAraA)

raA

raA→∞−−−−→ CB
aA lB jBJB

e−κaAraA−ηbs
aA ln(2 κaAraA )

raA
. (31)

Formally the radial resonance overlap function for the
Breit-Wigner resonance in the external region (raA > RaA) can
be obtained from Eq. (31) by the substitution κaA = −i kaA (R):

IaA lB jB JB (kaA(R), raA)

= CB
aA lB jB JB

W−i η(R)
aA , lB+1/2(−2 i kaA (R)raA)

raA
(32)

raA→∞−−−−→ CB
aA lB jBJB

ei kaA (R) raA− i η(R)
aA ln(−2 i kaA (R) raA )

raA

= C̃B
aA lB jBJB

ei kaA (R) raA− i η(R)
aA ln(2 kaA (R) raA )

raA
. (33)

This asymptotic behavior agrees with the asymptotic behavior
of the resonant Gamow wave function given by Eq. (13).

IV. R-MATRIX WAVE FUNCTIONS

Because the microscopic overlap functions for mirror res-
onances and bound states are not available, in this paper I use
internal resonance and bound-state wave functions calculated
in the the potential model. If the mirror symmetry holds,
the bound-state and resonance wave functions of the mirror
states should be very similar in the internal region where the
resonance wave functions are real. However, both wave func-
tions differ in the external region where the bound-state wave
functions exponentially decrease while the resonance wave
functions at the resonance energies exponentially increase
(see Sec. III). In the Wronskian method, which is developed
in this paper, one needs the wave functions in the internal
region in which it is very convenient to use the R-matrix
method. In the R-matrix method the resonant wave functions
are normalized to unity in the internal region. The border
of this region is determined by the point at which the radial
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derivative of the internal resonant wave function is equal to
zero. If the resonant wave function has a few nodes, the border
of the internal region is determined by the last point at which
the radial derivative of the resonant wave function vanishes.
To make the bound-state wave functions close to the resonant
wave functions the former are also renormalized to unity in
the internal region.

In the R-matrix approach the resonant wave function is
considered at the real part of the resonance energy EaA (0). In
this approach the internal wave function at real energies is real
and behaves similarly to the bound-state wave function of the
mirror state. At the R-matrix channel radius Rch and EaA =
EaA(0) the internal wave function coincides with the external
one and is proportional to the outgoing wave OlB (kaA(0), Rch ).
Below I present the internal and external R-matrix wave
functions considering the single-level, single-channel case.
Again, for simplicity, the particles are assumed to be spinless.

I start from the external R-matrix wave function at the
partial wave lB, which is given by [11,19]

X (ext)(+)
lB

(kaA, raA) = ilB+1 2 π

kaA raA
Y ∗

lB mlB
(k̂aA)YlB mlB

(r̂aA)

× [
IlB − SlB OlB (kaA, raA)

]
, (34)

where

SlB = e−2 i [δhs
lB

−σC
lB

]

(
1 + i 
lB

EaA(0) − EaA − i 
lB
2

)
(35)

is the elastic scattering S matrix at EaA near the real resonance
energy EaA(0). σC

lB
is the Coulomb scattering phase shift and

δhs
lB

is the R-matrix hard-sphere scattering phase shift:

e−2i δhs
lB = GlB (kaA, Rch ) − i FlB (kaA, Rch )

GlB (kaA, Rch ) + i FlB (kaA, Rch )
, (36)

FlB (kaA, raA) and GlB (kaA, raA) are the regular and singular
Coulomb solutions, and Rch is the R-matrix channel radius.

The outgoing wave is given by

OlB (kaA, raA) = (
GlB (kaA, raA) + i FlB (kaA, raA)

)
e−i σC

lB . (37)

At ra = Rch

OlB (kaA, Rch ) = ei [δhs
lB

−σC
lB

]
√

F 2
lB

(kaA, Rch ) + G2
lB

(kaA, Rch ).

(38)

OlB (kaA, raA) can be expressed it terms of the Whittaker
function:

OlB (kaA, raA) = i−lB eπ ηaA/2 W−iηaA,lB+1/2(−2 i kaA raA). (39)

At raA = Rch and EaA = EaA(0)

X (ext)(+)
lB

(kaA(0), Rch )

= ilB+1 4 π

kaA(0) Rch
e−2 i [δhs

lB
−σC

lB
] Y ∗

lB mlB
(k̂aA(0) )

×YlB mlB
(R̂ch ) OlB (kaA(0), Rch ). (40)

The R-matrix internal resonant wave function in the partial
wave lB, in which the resonant is present, at energy EaA near
the resonance is given by

X (int)(+)
lB

(kaA, raA) = ilB
2 π

kaA raA

√
kaA

μaA
e−i [δhs

lB
−σC

lB
] Y ∗

lB mlB
(k̂aA)

×YlB mlB
(r̂aA)



1/2
lB

EaA(0) − EaA − i

lB
2

×φ
(int)
lB

(kaA, raA). (41)

The R-matrix internal resonant wave function
φ

(int)
lB

(kaA, raA) can be found as a solution of the Schrödinger
equation with the two-body Woods-Saxon VaA potential.
The R-matrix method is used below for mirror resonance
and bound states. I consider the loosely bound states which
become the mirror resonances by replacing one of the
neutrons by a proton. The considered binding energies
and real energies of the mirror resonances are significantly
smaller than the depth of the potential. That is why both
mirror solutions of the Schrödinger equation should be very
similar in the internal region where both solutions are real.

At raA = Rch and EaA = EaA(0) [see Eq. A(10) from
Ref. [11] in which the reduced width amplitude should be
expressed in terms of the resonance width] it follows that

φ
(int)
lB

(kaA(0), Rch ) =
√

μaA 
lB

kaA(0)
e−i [δhs

lB
−σC

lB
] OlB (kaA(0), Rch ).

(42)

Thus at the real part of the resonance energy EaA = EaA(0)

and raA = Rch the internal radial wave function φ
(int)
lB

(Rch ) is
proportional to the outgoing wave OlB (kaA(0), Rch ). Equation
(42) also follows from the matching of the internal and
external wave radial wave function (see below).

Taking into account Eq. (24) and that in the R-matrix
approach the potential scattering phase shift is δlB = −(δhs

lB
−

δC
lB

) one gets

φ
(int)
lB

(kaA(0), Rch ) = ClB W−iηaA(0),lB+1/2(−2 i kaA(0) Rch ), (43)

ηaA(0) = Za ZA e2 μaA

kaA(0)
.

At raA = Rch and EaA = EaA(0) one gets

X (int)(+)
lB

(kaA(0), Rch ) = ilB+1 4 π

kaA raA
e−2 i [δhs

lB
−σC

lB
]

× Y ∗
lB mlB

(k̂aA)YlB mlB
(R̂ch )

× OlB (kaA(0), Rch ). (44)
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Thus at raA = Rch and EaA = EaA(0) one gets matching of
the internal and external R-matrix wave functions,

X (ext)(+)
lB

kaA(0), Rch ) = X (int)(+)(kaA(0), Rch ), (45)

and both wave functions are proportional to the outgoing wave
OlB (kaA(0), Rch ).

One can write the radial overlap function
IaA lB jB JB (kaA(0), Rch ) in terms of the outgoing wave
OlB (kaA(0), Rch ) and the Whittaker function:

IaA lB jB JB (kaA(0), Rch )

= C̃B
aA lB jB JB

ilB
OlB (kaA(0), Rch )

Rch

=
√

μaA

kaA(0)

aA lB jBJB e− i [δhs

lB
−σC

lB
] OlB (kaA(0), Rch )

Rch

= CB
aA lB jB JB

W−iηaA(0),lB+1/2(kaA(0), Rch )

Rch

= i−lB e− i [δhs
lB

−σC
lB

] eπ ηaA(0)/2
√

μaA

kaA(0)

aA lB jBJB

× W−iηaA(0),lB+1/2(kaA(0)Rch )

Rch
. (46)

As one can see, the resonant radial overlap function calcu-
lated in the R-matrix at the channel radius raA = Rch and
EaA = EaA(0) is proportional to the the square root of the
resonance width. It is convenient to use the R-matrix method
to determine the ratio of the resonance width and the bound-
state ANC of the mirror states using the Wronskian method
developed below.

V. CONNECTION BETWEEN BREIT-WIGNER
RESONANCE WIDTH AND ANC OF MIRROR

RESONANCE AND BOUND STATES FROM
PINKSTON-SATCHLER EQUATION

A. ANC and Pinkston-Satchler equation

In Ref. [11] the relationship between the mirror proton
and neutron ANCs was derived using the Pinkston-Satchler
equation [20,21]. Here I extend this derivation to obtain the

ratio for the resonance width and the ANC of the mirror bound
state in terms of the Wronskians, which follows from the
Pinkston-Satchler equation.

First, using Pinkston-Satchler equation I derive the equa-
tion for the ANC of the narrow resonance state, which con-
tains the source term [6,22]. This derivation is valid for both
bound and resonance states. That is why following [11] I start
from the Schrödinger equation for the resonance scattering
wave function at the real part EaA(0) of the resonance energy:

(E(0) − T̂A − T̂a − T̂aA − Va − VA − VaA)�(ξA, ξa; raA) = 0.

(47)

Here, T̂i is the internal motion kinetic energy operator of
nucleus i, T̂aA is the kinetic energy operator of the relative
motion of nuclei a and A, Vi is the internal potential of nucleus
i and VaA is the interaction potential between a and A, and
E(0) = EaA(0) − εa − εA is the total energy of the system a + A
in the continuum. The operator E(0) − T̂A − T̂a − T̂aA − Va −
VA − VaA in Eq. (47) is symmetric over the interchange of
nucleons of a and A, while �(ξa, ξA; raA) is antisymmetric,
and εi is the total binding energy of nucleus i. Hence, by
multiplying the Schrödinger equation (47) from the left by(

A
a

)1/2 ∑
mjB mlB MAMa

〈
JAMA jBmjB

∣∣JBMB
〉

× 〈
JaMa lBmlB

∣∣ jBmjB

〉
Y ∗

lBmlB
(̂raA) ϕA(ξA) ϕa(ξa), (48)

where the antisymmetrization operator ÂaA in Eq. (48) is
replaced by (A

a)1/2, one gets the equation for the radial overlap
function with the source term QlB jBJaJAJB (raA) [22]:(

EaA(0) − T̂raA − V centr
lB − UC

aA

)
IB
aA lB jB JB

(raA)

= QlB jBJaJAJB (raA). (49)

Here T̂raA is the radial relative kinetic energy operator of the
particles a and A, and V centr

lB
is the centrifugal barrier for the

relative motion of a and A with the orbital momentum lB. For
charged particles it is convenient to single out the channel
Coulomb interaction UC

aA(raA) between the centers of mass of
nuclei a and A.

The source term is given by

QlB jBJaJAJB (raA) =
∑

mjB mlB MAMa

〈
JAMA jBmjB

∣∣JBMB
〉〈

JaMa lBmlB

∣∣ jBmjB

〉
×

(
A
a

)1/2 ∫
d�raA

〈
ϕa(ξa) ϕA(ξA)

∣∣VaA − UC
aA

∣∣Y ∗
lBmlB

(̂raA)�(ξa, ξA; raA)
〉
. (50)

The integration in the matrix element 〈ϕa(ξa) ϕA(ξA)|VaA − UC
aA|Y ∗

lBmlB
(̂raA)�(ξa, ξA; raA)〉 in Eq. (50) is carried out over all the

internal coordinates of nuclei a and A.
Owing to the presence of the short-range potential operator VaA − UC

aA (potential VaA is the sum of the nuclear V N
aA and the

Coulomb V C
aA potentials and subtraction of UC

aA removes the long-range Coulomb term from VaA) the source term is also a
short-range function. Then Eq. (49) for the radial overlap function can be rewritten as

IaA lB jB JB (kaA(0), raA) = 1

RaA

∫ RaA

0
dr′

aA r′
aA GC

lB (raA, r′
aA; EaA(0) ) QlB jBJaJAJB (r′

aA), (51)
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where RaA is the a − A nuclear interaction radius. In the R-matrix approach RaA can be replaced by the channel radius Rch, which
can be varied.

Equation (51) is of fundamental importance because it allows one to express the radial overlap function in terms of the internal
wave function of the nucleus B.

The partial Coulomb two-body Green function is given by [23]

GC
lB (raA, r′

aA; EaA) = −2 μaA

ϕC
lB

(kaA, raA <) f C(+)
lB

(kaA, raA >)

LC(+)
lB

(kaA)
, (52)

where raA < = min {raA, r′
aA} and raA > = max {raA, r′

aA}. The Coulomb regular solution ϕC
lB

(kaA, raA) of the partial Schrödinger
equation at real momentum kaA is

ϕC
lB (kaA, raA) = 1

2 i kaA

[
LC(−)

lB
(kaA) f C(+)

lB
(kaA, raA) − LC(+)

lB
(kaA) f C(−)

lB
(kaA, raA)

]
= rlB+1

aA ei kaA raA
1F1(lB + 1 + iηaA, 2 lB + 2; −2 i kaA raA)

= e−i π lB/2 LC(+)
lB

(kaA)
ei σC

lB FlB (kaA, raA)

kaA
, (53)

where

ei σC
lB FlB (kaA, raA) = e−π ηaA/2 
(lB + 1 + i ηaA)

2 
(2 lB + 2)
(2 kaA raA)lB+1 ei kaA raA

1F1(lB + 1 + i ηaA, 2 lB + 2; −i 2 kaA raA), (54)

σC
lB

is the Coulomb scattering phase shift. Also

f C(±)
lB

(kaA, raA) = eπ ηaA/2 W∓i ηaA, lB+1/2(∓2 ikaA raA) (55)

are the Jost solutions (singular at the origin raA = 0),

LC(±)
lB

(kaA) = 1

(2 kaA)lB
eπ ηaA/2 e±i π lB/2 
(2 lB + 2)


(lB + 1 ± i ηaA)
(56)

are the Jost functions.
It is convenient to introduce the modified Coulomb wave function

ϕ̃C
lB (kaA, raA) = ϕC

lB
(kaA, raA)

LC(+)
lB

(kaA)
, (57)

which will be used from now on instead of ϕC
lB

(kaA, raA).
Let me use now the R-matrix method in which I replace RaA by Rch. Then assuming in Eq. (51) raA = Rch + i0 and taking

into account Eqs. (46) and (55) one gets

C̃lB = i−lB e− i [δhs
lB

−σC
lB

]
√

μaA

kaA(0)

aA lB jBJB = 2 μaA

∫ Rch

0
dr′

aA r′
aA ϕ̃C

lB (kaA(0), r′
aA) QlB jBJaJAJB (r′

aA). (58)

Using Eqs. (53) and (57) one gets

e− i δhs
lB

√
μaA

kaA(0)

aA lB jBJB = 2

μaA

kaA(0)

∫ Rch

0
dr′

aA r′
aA FlB (kaA(0), r′

aA) QlB jBJaJAJB (r′
aA). (59)

This equation provides the ANC or resonance width of the narrow resonance, which may depend on the channel radius Rch.
Here I am interested in the ratio of the resonance width and the square of the ANC of the mirror resonant and bound state. The
sensitivity of this ratio to the variation of the channel radius is checked below.

B. ANC in terms of Wronskian

The advantage of Eq. (59) is that to calculate the ANC one needs to know the microscopic resonant wave functions only
in the nuclear interior where the ab initio methods like the no-core shell model [24–26] and the coupled-cluster method [27]
are more accurate than in the external region. That is why Eq. (59) is so important if microscopic resonant wave functions are
available. Now I show that the radial integral in Eq. (59) can be transformed into the Wronskian at raA = Rch. The philosophy of
this transformation is the same as in the surface integral formalism [5,11].
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First, let us rewrite

VaA − UC
aA = V + V centr

lB − Va − VA − V centr
lB − UC

aA (60)

and take into account the equations

(EaA(0) − T̂a − T̂A − T̂raA ) ϕ̃C
lB (kaA(0), raA) ϕa(ξa) ϕA(ξA) = (

UC
aA + V centr

lB + Va + VA
)
ϕ̃C

lB (kaA(0), raA) ϕa(ξa) ϕA(ξA) (61)

and

(EaA(0) − T̂a − T̂A − T̂raA )
〈
YlBmlB

(̂raA)
∣∣�(ξa, ξA; raA〉 = (

VaA + Va + VA + V centr
lB

) 〈
YlBmlB

(̂raA)
∣∣�(ξa, ξA; raA

〉
, (62)

where T̂raA is the radial kinetic energy operator.
Then we get

C̃B
aA lB jB JB

≈ − 2 μaA

∫ Rch

0
draA raA ϕ̃C

lB (kaA(0), raA) QlB jBJaJAJB (raA)

= − 2 μaA

∑
mjB mlB MAMa

〈
JAMA jBmjB

∣∣JBMB
〉〈

JaMa lBmlB

∣∣ jBmjB

〉 (A
a

)1/2 ∫ Rch

0
draA raA ϕ̃C

lB (kaA(0), raA)

×
∫

d �rraA

〈
ϕa(ξa) ϕA(ξA)

∣∣←−̂T raA + ←−̂
T a + ←−̂

T A − −→̂
T a − −→̂

T A − −→̂
T raA

∣∣Y ∗
lBmlB

(̂raA) �(ξa, ξA; raA)
〉

= − 2 μaA

∑
mjB mlB MAMa

〈
JAMA jBmjB

∣∣JBMB
〉〈

JaMa lBmlB

∣∣ jBmjB

〉
×

(
A
a

)1/2 ∫ Rch

0
draA raA ϕ̃C

lB (kaA(0), raA)
∫

d �raA

〈
ϕa(ξa) ϕA(ξA)

∣∣←−̂T raA − −→̂
T raA

∣∣Y ∗
lBmlB

(̂raA)�(ξa, ξA; raA)
〉

= − 2 μaA

∫ Rch

0
draA raA ϕ̃C

lB (kaA(0), raA)
(←−̂

T raA − −→̂
T raA

)
IaA lB jB JB (kaA(0), raA). (63)

Taking into account that

f (x)

⎛⎝←−
d

2

dx2
−

−→
d

2

dx2

⎞⎠ g(x = d

dx

(
g(x)

df (x)

dx
− f (x)

dg(x)

dx

)
(64)

we arrive at the final expression for the ANC of the resonance state in terms of the Wronskian:

C̃B
aA lB jB JB

= W[
IaA lB jB JB (kaA(0), raA), ϕ̃C

lB (kaA(0), raA)
]∣∣

raA=Rch
, (65)

where the Wronskian

W[
IaA lB jB JB (raA), ϕ̃C

lB (kaA(0), raA)
]

= IaA lB jB JB (kaA(0), raA)
dϕ̃C

lB
(kaA(0), raA)

draA
− ϕ̃C

lB (kaA(0), raA)
dIaA lB jB JB (kaA(0), raA)

draA
. (66)

I would like to underscore that Eq. (65) was derived by transforming the internal integral into the Wronskian at the channel radius
Rch. Note that at too small radii Rch the Wronskian W[ IaA lB jB JB (raA), ϕ̃C

lB
(kaA(0), raA)] depends on the radius but the sensitivity

to the radius decreases as Rch increases.
There is another more direct derivation of Eq. (65). We know that the Wronskian calculated for two independent solutions of

the Schrödinger equation is a constant [23]. In the R-matrix approach the internal radial overlap function IaA lB jB JB (kaA(0), raA) at
raA → Rch behaves like the Whittaker function [see Eq. (46)] and is given by

IaA lB jB JB (kaA(0), raA) = C̃B
aA lB jB JB

f C(+)
lB

(kaA(0), raA)

raA
. (67)
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This Whittaker function is a singular solution of the
radial Schrödinger equation. ϕ̃C

lB
(kaA(0), raA) is an inde-

pendent regular solution of the same equation. Taking
into account that W[ f C(+)

lB
(kaA(0), raA), f C(−)

lB
(kaA(0), raA)] =

−2 i kaA(0) and Eq. (53) one gets at raA = Rch

W[
IaA lB jB JB (kaA(0), raA), ϕ̃C

lB (kaA(0), raA)
]∣∣

raA=Rch
= C̃B

aA lB jB JB
.

(68)

Note that the constancy of the Wronskian only applies to local
potentials. But here one needs this only at large distances,
where zero potentials are local anyway.

I demonstrate that the Wronskian W[IaA lB jB JB

(kaA(0), raA), ϕ̃C
lB

(kaA(0), raA)]|
raA=RaA

depends on Rch and

reaches a constant value, which is equal to the ANC of the
resonance state, when Rch increases.

My idea is to use Eq. (65) to calculate the Wronskian
W[IaA lB jB JB (kaA(0), raA), ϕ̃C

lB
(kaA(0), raA)]|

raA=RaA
at the chan-

nel radii which are smaller than the radius of nucleus B =
(aA), and gradually increase Rch until the Wronskian reaches
its constant value. In the nuclear interior the contemporary

microscopic models can provide quite accurate overlap func-
tions. The sensitivity to the variation of the channel radius
of the ratio of the ANCs of the resonance and mirror bound
state is significantly weaker than that of the individual ANCs
(or, equivalently, of the resonance width and the bound-state
ANC) of the mirror states.

VI. RATIO OF RESONANCE WIDTH AND ANC
OF MIRROR BOUND STATE

A. Three different equations

In this part three different equations for the ratio of the
resonance width and the ANC of the mirror bound state
are presented. Let B1 = (a1 A1) and B2 = (a2 A2) be mirror
nuclei. Then the quantum numbers in both nuclei are the
same. We also assume that the channel radius Rch is the same
for both mirror nuclei. The ratio of the ANCs of the mirror
resonance and bound states is given by the ratio of the corre-
sponding Wronskians. Taking into account Eq. (65) one gets
for the ratio of the resonance width and the bound state ANC
for mirror states


a1A1 lB jB JB(
CB2

a2 A2 lB jB JB

)2 =
√

2 Ea1A1(0)

μa1A1

∣∣W[
Ia1A1 lB jB JB

(
ka1A1(0), ra1A1

)
, ϕ̃C

lB

(
ka1A1(0), ra1A1

)]∣∣2 ∣∣
ra1A1 =Rch(W[

Ia2A2 lB jB JB

(
κa2A2 , ra2A2

)
, ϕ̃C

lB

(
iκa2A2 , ra2A2

)])2 ∣∣
ra2A2 =Rch

, (69)

where Ea1A1(0) and μaA are expressed in MeV. Equation (69) allows one to determine the resonance width if the ANC of the
mirror bound state is known and vice versa.

To calculate the ratio



B1
a1A1 lB jB JB

(C
B2
a2 A2 lB jB JB

)2
one needs the microscopic radial overlap functions. If these radial overlap functions are not

available then one can use a standard approximation for the overlap functions:

Ia1A1 lB jB JB

(
ka1A1(0), raA

) ≈ S1/2
a1A1

ϕa1A1 lB jB JB

(
ka1A1(0), ra1A1

)
, (70)

Ia2A2 lB jB JB

(
κa2A2 , raA

) ≈ S1/2
a2A2

ϕa2A2 lB jB JB

(
κa2A2 , ra2A2

)
, (71)

where Sa1A1 and Sa2A2 are the spectroscopic factors of the mirror resonance and bound states (a1A1) and (a2A2), respectively.
ϕa1A1 lB jB JB (ka1A1(0), ra1A1 ) is a real internal resonant wave function calculated in the two-body model (a1 A1) using some
phenomenological potential, for example, a Woods-Saxon one, which supports the resonance state under consideration.
ϕa2A2 lB jB JB (κa2A2 , ra2A2 ) is the two-body bound-state wave function of the bound state (a2 A2), which is also calculated using
the same nuclear potential as the mirror resonance state. If the mirror symmetry holds then Sa1A1 ≈ Sa2A2 and one gets an

approximated

a1A1 lB jB JB

(C
B2
a2 A2 lB jB JB

)2
ratio in terms of the Wronskians, which does not contain the overlap functions:


a1A1 lB jB JB(
CB2

a2 A2 lB jB JB

)2 ≈
√

2 Ea1A1(0)

μa1A1

∣∣W[
ϕa1A1 lB jB JB

(
ka1A1(0), ra1A1

)
, ϕ̃C

lB

(
ka1A1(0), ra1A1

)]∣∣2 ∣∣
ra1A1 =Rch(W[

ϕa2A2 lB jB JB

(
κa2A2 , ra2A2

)
, ϕ̃C

lB

(
i κa2A2 , ra2A2

)])2 ∣∣
ra2A2 =Rch

. (72)

Meanwhile in Ref. [10] another expression for the mirror nucleon ANCs ratio was obtained which provides the easiest way
to determine


a1A1 lB jB JB

(C
B2
a2 A2 lB jB JB

)2
. I show here a simple way of the derivation of the ratio


a1A1 lB jB JB

(C
B2
a2 A2 lB jB JB

)2
from Ref. [10]. First, as it was

pointed out in Ref. [10], in the nuclear interior the Coulomb interaction varies very little in the nuclear interior and its effect
leads only to shifting of the energy of the bound state to the continuum. Hence, it can be assumed that ϕ̃C

lB
(ka1A1(0), ra1A1 ) and

ϕ̃C
lB

(i κa2A2 ra2A2 ) behave similarly in the nuclear interior except for the overall normalization; that is,

ϕ̃C
lB

(
ka1A1(0), raA

) = ϕ̃C
lB

(
ka1A1(0), Rch

)
ϕ̃C

lB

(
i κa2A2 , Rch

) ϕ̃C
lB

(
i κa2A2 , ra2A2

)
. (73)
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Then


a1A1 lB jB JB(
CB2

a2 A2 lB jB JB

)2 ≈
√

2 Ea1A1(0)

μa1A1

(
ϕ̃C

lB

(
ka1A1(0), Rch

ϕ̃C
lB

(
i κa2A2 , Rch

))2
∣∣W[

ϕa1A1 lB jB JB

(
ka1A1(0), ra1A1

)
, ϕ̃C

lB

(
i κa2A2 , ra2A2

)
]
∣∣2 ∣∣

ra1A1 , ra2A2 =Rch(W[
ϕa2A2 lB jB JB

(
κa2A2 , ra2A2

)
, ϕ̃C

lB

(
i κa2A2 , ra2A2

)])2 ∣∣
ra2A2 =Rch

. (74)

Neglecting further the difference between the mirror wave functions ϕa1A1 lB jB JB (ka1A1(0), ra1A1 ) and ϕa2A2 lB jB JB (κa2A2 , ra2A2 ) in

the nuclear interior we obtain the approximate expression for

a1A1 lB jB JB

(C
B2
a2 A2 lB jB JB

)2
from Ref. [10] (in the notations of the current paper):


a1A1 lB jB JB(
CB2

a2 A2 lB jB JB

)2 ≈
√

2 Ea1A1(0)

μa1A1

(
ϕ̃C

lB

(
ka1A1(0), Rch

)
ϕ̃C

lB

(
i κa2A2 , Rch

) )2

. (75)

In descending accuracy, Eq. (69) is ranked as the most
accurate. Taking into account that the microscopic overlap
functions (calculated in the no-core shell model [24–26]
or oscillator shell model [28]) are accurate in the nu-
clear interior, using Eq. (69) one can determine the ratio


a1A1 lB jB JB

(C
B2
a2 A2 lB jB JB

)2
quite accurately. Then follows Eq. (72) and fi-

nally Eq. (75). Note that Eq. (75) is valid only in the re-
gion where the mirror resonant and bound-state wave func-
tions do coincide or are very close. The advantage of this
equation is that it allows one to calculate the ratio without
using the mirror wave functions and it is extremely simple
to use.

Because for the cases under consideration the internal
microscopic resonance wave functions are not available, in
this paper the


a1A1 lB jB JB

(C
B2
a2 A2 lB jB JB

)2
ratio is calculated using Eqs. (72)

and (75). It allows one to determine the accuracy of both
equations.

Note that the dimension of the ratio

a1A1 lB jB JB

(C
B2
a2 A2 lB jB JB

)2
is deter-

mined by the ratio
2 Ea1A1 (0)

μa1A1
. To make it dimensionless I assume

that the reduced mass μa1A1 and the real part of the resonance
energy Ea1A1(0) are expressed in MeV.

B. R-matrix wave function

Because the microscopic overlap functions for mirror reso-
nances are not available, in this paper I use internal resonance
and bound-state wave functions calculated in the potential
model at real energies. In the developed Wronskian method
one needs the wave functions in the internal region in which it
is very convenient to use the R-matrix method. In the R-matrix
approach the resonant wave function is considered at the real
part of the resonance energy EaA (0) and is real in the internal
region. If the mirror symmetry holds, the bound-state and
resonance wave functions of the mirror states should be very
similar in the internal region. The R-matrix resonant wave
function is normalized to unity in the internal region. The
border of this region is determined by the point at which
the radial derivative of the internal resonant wave function is
equal to zero. If the resonant wave function has a few nodes,
the border of the internal region is determined by the last point
at which the radial derivative of the resonant wave function
vanishes. The bound-state wave function is normalized to

unity in the whole coordinate space. To make the bound-
state wave function close to the resonant wave function the
former is also renormalized to unity in the internal region.
The advantage of the Wronskian method is that to calculate
the ratio of the resonance width and the ANC of the mirror
states one can use the internal real resonant and bound-state
wave functions.

VII. COMPARISON OF RESONANCE WIDTHS
AND ANCS OF MIRROR STATES

In this section a few examples of the application of
Eqs. (72) and (75) are presented. To simplify the notations
from now on the quantum numbers in the notations for the res-
onance width and the ANC are dropped and just use simplified
notations, 
a1A1 and Ca2 A2 . Equation (72) gives 
a1A1/(Ca2 A2 )2

in terms of the ratio of the Wronskians and provides an exact
value for given two-body mirror resonant and bound-state
wave functions. Equation (75) gives the 
a1A1/(Ca2 A2 )2 ratio
in terms of the Coulomb scattering wave functions at the real
resonance momentum ka1A1(0) and the imaginary momentum
of the bound state i κa2A2 at the channel radius Rch. Hence,
to determine the ratio 
a1A1/(Ca2 A2 )2 using Eq. (75) one does
not need to know the mirror resonant and bound-state wave
functions. However, to use this equation one should check
whether the mirror wave functions are close. In calculations
I deliberately increase the channel radius Rch to demonstrate
the convergence of the calculated ratio 
a1A1/(Ca2 A2 )2 as Rch

increases.

A. Comparison of resonance width for
13N(2s1/2 ) → 12C(0.0 MeV) + p and mirror ANC
for virtual decay 13C(2s1/2 ) → 12C(0.0 MeV) + n

I begin from the analysis of the isobaric analog states
2s1/2 in the mirror nuclei 13N and 13C. The resonance en-
ergy of 13N(2s1/2) is Ep12C(0) = 0.421 MeV with the res-
onance width of 
p12C = 0.0317 ± 0.0008 MeV [29]. The
neutron binding energy of the mirror state 13C(2s1/2) is
εn12C = 1.8574 MeV with the experimental ANC C2

n12C
=

3.65 fm−1 [30,31]. The experimental ratio 
p12C/(Cn12C)2 =
(4.40 ± 0.57) × 10−5 allows us to check the accuracy of both
used equations. Because the dimension of the bound-state
ANC is fm−1/2 to get the dimensionless ratio I calculated

p12C/[h̄ c(Cn12C)2].
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FIG. 1. Solid red line, the radial wave function of the (p12C)2s+1/2

resonance state; dashed blue line, the radial wave function of the
mirror (n12C)2s+1/2

bound state. r is the distance between N , where

N = p, n, and the c.m. of 12C.

In Fig. 1 are shown the radial wave functions of the mirror
states. Following the R-matrix procedure, both wave functions
are normalized to unity over the internal volume with the
radius Rch = 4.0 fm. We see that the mirror wave functions
are very close at distances �4.0 fm, which confirms the mirror
symmetry of (p12C)2s+

1/2
and (n12C)2s+

1/2
systems.

In Fig. 2 are shown the

p 12C

(Cn 12C )2 ratios, which are calculated

using Eqs. (72) and (75). These calculated ratios are compared
with the experimental one. We see that the calculations exceed

the experimental value. The

p 12C

(Cn 12C )2 ratio calculated using the

simplified Eq. (75) shows the Rch dependence and is equal to
10.13 × 10−5 at the peak at Rch = 5.22 fm.

Equation (72) provides the

p 12C

(Cn 12C )2 ratio in terms of the

ratio of the Wronskians. Each Wronskian contains the two-
body wave function and its radial derivative of the system
(N 12C)2s+

1/2
, N = p, n. Each two-body wave function has one

node at r ≈ 2.13 fm and a minimum at r ≈ 4.0 fm. Hence, at
some point r the Wronskian in the denominator of Eq. (72)

vanishes causing a discontinuity in the ratio

p 12C

(Cn 12C )2 . I assume

that in the nuclear interior the mirror two-body wave functions
are correct (as it should be for the mirror microscopic overlap
functions) and calculate the ratio at Ech � 4 fm. At r = 4 fm


p 12C

(Cn 12C )2 = 8.1 × 10−5 while the correct value of this ratio

obtained at large Rch is 9.8 × 10−5, which is close to the peak
value of the ratio obtained using Eq. (75).

Both used equations provide the values of the

p 12C

(Cn 12C )2

ratio, which exceed the experimental one. It means that more
accurate internal overlap functions are required and the two-
body wave functions used here demonstrate the accuracy of
the Wronskian method. However, there is another important

FIG. 2. The grey band is the experimental



p 12C

(C
n 12C

)2 ratio of the

resonance width of the resonance state 13N(2s+
1/2) and the ANC of

the mirror bound state 13C(2s+
1/2); the red dash-dot-dotted line and the

red dash-dotted lines are the low and upper limits of this experimental

ratio; the solid red line is the



p 12C

(C
n 12C

)2 ratio as a function of Rch

calculated using Eq. (72); the blue dotted line is the



p 12C

(C
n 12C

)2 ratio

calculated as a function of Rch using Eq. (75).

conclusion: the simple Eq. (75) in the peak gives the same
result as the asymptotic ratio given by Eq. (72).

B. Comparison of resonance width for
13N(1d5/2 ) → 12C(0.0 MeV) + p and mirror ANC
for virtual decay 13C(1d5/2 ) → 12C(0.0 MeV) + n

As the second example I consider the isobaric analog
states 1d5/2 in the mirror nuclei 13N and 13C. The reso-
nance energy of 13N(1d5/2) is Ep12C(0) = 1.6065 MeV with
the resonance width of 
p 12C = 0.047 ± 0.0008 MeV [29].
The neutron binding energy of the mirror state 13C(1d5/2)
is εn12C = 1.09635 MeV with the experimental ANC C2

n12C
=

0.0225 fm−1 [30]. The experimental ratio is 
p 12C/C2
n 12C

=
(1.1 ± 0.2) × 10−2.

In Fig. 3 are shown the radial wave functions of the mirror
states. Following the R-matrix procedure, both wave functions
are normalized to unity over the internal volume with the
radius Rch = 3 fm. We see that the mirror wave functions are
very close at distances r � 4 fm, which confirms the mirror
symmetry of (p12C)1d+

5/2
and (n12C)1d+

5/2
systems. In Fig. 4 are

shown the

p 12C

(Cn 12C )2 ratios calculated using Eqs. (72) and (75),

which are compared with the experimental ratio. We see that
the calculated ratios are closer to the experimental ratio than
in the previous case and both equations give quite reason-

able results. The

p 12C

(Cn 12C )2 ratio calculated using the simplified

Eq. (75) shows the Rch dependence and is equal to 0.0141 at
the peak at Rch = 3.95 fm. In the case under consideration the

024311-11



A. M. MUKHAMEDZHANOV PHYSICAL REVIEW C 99, 024311 (2019)

FIG. 3. Solid red line, the radial wave function of the (p12C)1d+
5/2

resonance state; dashed blue line, the radial wave function of the
mirror (n12C)1d+

5/2
bound state. r is the distance between N , where

N = p, n, and the c.m. of 12C.

bound-state wave function does not have nodes at r > 0. That
is why the


p 12C

(Cn 12C )2 ratio calculated using Eq. (72) is a smooth

function of Rch. This equation gives

p 12C

(Cn 12C )2 = 0.0135 at

FIG. 4. The grey band is the experimental



p 12C

(C
n 12C

)2 ratio of the

resonance width of the resonance state 13N(1d+
5/2) and the ANC of the

mirror bound state 13C(1d+
5/2); the red dash-dot-dotted line and the

red dash-dotted lines are the low and upper limits of this experimental
ratio; the green dotted line is the adopted experimental value of the

ratio



p 12C

(C
n 12C

)2 = (1.1 ± 0.2) × 10−2; the solid red line is the



p 12C

(C
n 12C

)2

ratio as a function of Rch calculated using Eq. (72); and the blue

dotted line is the



p 12C

(C
n 12C

)2 ratio calculated as a function of Rch using

Eq. (75).

FIG. 5. Solid red line, the radial wave function of the (p14O)1d5/2

resonance state; dashed blue line, the radial wave function of the
mirror (n14C)1d5/2 bound state. r is the distance between the nucleon
and the c.m. of the nucleus.

Rch = 4 fm, which differs very little from its correct asymp-
totic value of 0.0143. Again, as in the previous case, our
calculations show that the simple Eq. (75) can give the results
close to the Wronskian method.

C. Comparison of resonance width for
15F(1d5/2 ) → 14O(0.0 MeV) + p and mirror ANC
for virtual decay 15C(1d5/2 ) → 14C(0.0 MeV) + n

In this section I determine the ratio 
p 14O/C2
n 14C

for the
mirror states 15F(1d5/2) and 15C(1d5/2). The resonance en-
ergy and the resonance width of 15F(1d5/2) are Ep14O(0) =
2.77 MeV and 
p 14O = 0.24 ± 0.03 MeV [32]. The binding
energy and the ANC of the bound state 15C(1d5/2) are εn14C =
0.478 MeV and C2

n14C
= (3.6 ± 0.8) × 10−3 fm−1. The exper-

imental ratio 
p 14O/C2
n 14C

= 0.338 ± 0.001.
This is the most difficult case because the resonance state

is not potential. It is clear from Fig. 5.
The mirror wave functions are normalized in the internal

region r � 3.2 fm. They begin to deviate at r > 3.0 fm. Be-
cause the resonance width in the case under consideration
is much wider than in the previous cases, the resonant wave
function calculated in the potential model in the external
region differs significantly from the tail of the bound-state
wave function. That is why the Wronskian ratio does not
have an asymptote at large r. But the idea of the Wronskian
method is to determine the 
p 14C/C2

n 14C
ratio using the mirror

wave functions in the internal region where they practically
coincide.

In Fig. 6 is shown the 
p 14O/C2
n 14C

ratio calculated using
the Wronskian method and the simplified Eq. (75). The Wron-
skian ratio at 4.0 fm is 0.32 while Eq. (75) gives 0.31. Both
values are very close to the experimental ratio.

024311-12



CONNECTION BETWEEN ASYMPTOTIC NORMALIZATION … PHYSICAL REVIEW C 99, 024311 (2019)

FIG. 6. The grey band is the experimental



p 14O

(C
n 14C

)2 ratio for the

resonance state 15F(1d+
5/2) and the mirror bound state 15C(1d+

5/2); the

solid red line is the



p 14O

(C
n 14C

)2 ratio as a function of Rch calculated using

Eq. (72); and the blue dashed line is the



p 14O

(C
n 14C

)2 ratio calculated as a

function of Rch using Eq. (75).

D. Comparison of resonance width for
18Ne(1−) → 14O(0.0 MeV) + α and mirror ANC
for virtual decay 18O(1−) → 14C(0.0 MeV) + α

In this section I determine the ratio 
α 14O/C2
α 14C

for the
mirror states 18Ne(1−) and 18O(1−). The resonance energy is
Eα14O(0) = 1.038 MeV. The binding energy of the bound state
18O(1−) is εα14C = 0.027 MeV. The resonance width and the
ANC of the mirror states are unknown.

The purpose of this section is to show that the ratio

α 14O/C2

α 14C
does not depend on the number of the nodes of

the mirror wave functions. The potential model search showed
that for the given resonance energy and binding energy for
l = 1 the mirror wave functions have at r > 0 the number
of nodes N = 4 or 6. The normalization region of the mirror
wave functions is r � 7.2 fm for N = 6 and r � 6.73 fm for
N = 4. In Figs. 7 and 8 are shown the radial wave functions
and the ratio 
α 14O/C2

α 14C
for the number of nodes N = 4

and 6.
One can see that the mirror wave functions practically

coincide up to r = 15 fm. It means that the simplified Eq. (75)
can be used up to 15 fm. The ratio 
α 14O/C2

α 14C
calculated

using Eq. (72) is the same for N = 4 and 6. Because the
mirror wave functions are practically identical in the external
region the ratio 
α 14O/C2

α 14C
calculated using the Wronskian

method [Eq. (72)] has an asymptote. The calculated ratio for
N = 4, 6 reaches its asymptotic value at Rch = 7.5 fm which
is 
α 14O/C2

α 14C
= 3.48 × 1052. The maximum of 
α 14O/C2

α 14C
calculated using Eq. (75) at Rch = 9 fm is 3.42 × 1052. This
comparison demonstrates again that in the absence of the
microscopic internal overlap functions both the Wronskian

FIG. 7. (a) The mirror radial wave functions for N = 6: the solid
red line is the (α14O)1− resonance wave function, and the dashed blue
line is the radial wave function of the mirror (α14C)1− bound state. r
is the distance between the α particle and the c.m. of the nucleus. (b)
Notations are the same as in (a) but for N = 4.

and the simplified method given by Eq. (75) can be used and
give very close results.

E. Comparison of resonance width for
17F(s1/2 ) → 13N(0.0 MeV) + α and mirror ANC
for virtual decay 17O(s1/2 ) → 13C(0.0 MeV) + α

The last case that I consider is the determination of the ratio



α 13N

(C
α 13C )2 of the resonance state 17F(1/2+) and the mirror bound

FIG. 8. (a) The



α 14O
(C

α 14C
)2 ratio for the resonance state 18Ne(1−) and

the mirror bound state 18O(1−) for N = 6: the solid red line is the



α 14O
(C

α 14C
)2 ratio as a function of Rch calculated using Eq. (72), and the

blue dashed line is the



α 14O
(C

α 14C
)2 ratio calculated as a function of Rch

using Eq. (75). (b) Notations are the same as in (a) but for N = 4.
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FIG. 9. The solid red line is the (α13N)1/2+ resonance wave
function, and the dashed blue line is the radial wave function of the
mirror (α13C)1/2+ bound state. r is the distance between the α particle
and the c.m. of the nucleus.

state 17O(1/2+). The orbital momentum of the mirror states
is l = 1 and the resonance energy is Eα 13N(0) = 0.7371 MeV
[32]. The location of the state 17O(1/2+) is questionable. The
excitation energy Ex of the state 17O(1/2+) is 6356 ± 8 keV
[32]. Taking into account that the α-13C threshold is located
at 6359.2 keV one finds that this 1/2+ level is the located at
Eα 13C = −3 ± 8 keV; that is, it can be a subthreshold bound
state or a resonance [32]. This location of the level 17O(1/2+)
was adopted in the previous analyses of the direct measure-
ments including the latest one in Ref. [33]. If this level is the
subthreshold bound state, then its reduced width is related to
the ANC of this level. However, in a recent paper [34] it was
determined that this level is actually a resonance located at
Eα13C = 4.7 ± 3 keV. Because the possible subthreshold state
and near threshold resonance are located very close to each
other the reduced widths corresponding to these two levels are
very close. Here in the analysis I still assume that 17O(1/2+)
is the bound state with the binding energy of −3 keV. I adopt
the ANC of this subthreshold state C2

α13C
= 4.4 × 10169 fm−1

[35].
The calculated mirror resonance and bound-state wave

functions are shown in Fig. 9. They are normalized in the in-
ternal region r � 5.2 fm. Both wave functions are practically
identical up to Rch � 15 fm.

In Fig. 10 the



α 13N

(C
α 13C )2 ratio is calculated using the Wron-

skian Eq. (72) and the simple Eq. (75). The asymptotic value
of the ratio is



α 13N

(C
α 13C )2 = 4.48 × 10−178. The value of the



α 13N

(C
α 13C )2 at the border of the internal region Rch = 5.2 fm is very

close to its asymptotic value. Equation (75) gives



α 13N

(C
α 13C )2 =

4.55 × 10−178. Taking into account the adopted value of
the ANC Cα 13C and the experimental ratio



α 13N

(C
α 13C )2 = 4.48 ×

FIG. 10. The



α 13N
(C

α 13C
)2 ratio for the resonance state 17F(1/2+) and

the mirror bound state 17O(1/2+): the solid red line is the



α 13N
(C

α 13C
)2

ratio as a function of Rch calculated using Eq. (72), and the blue

dashed line is the



α 13N
(C

α 13C
)2 ratio calculated as a function of Rch using

Eq. (75).

10−178 one obtains from the Wronskian ratio the resonance
width 
α 13N = 4.48 × 10−178 × 4.4 × 10169 × h̄ c = 3.9 eV.
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APPENDIX

In this Appendix it is shown that the Zel’dovich regulariza-
tion procedure can be used for normalization of the resonance
wave function ukplB (r) both for exponentially decaying poten-
tials and potentials with the Coulomb tail. The normalization
of the resonance wave function depends on its tail. Taking into
account Eq. (13) it is enough to consider the integral

I (β, ν, z) =
∫ ∞

0
dr e−β r2

ez r rν . (A1)

Here, z = 2 i kaA(R) r = 2 i kaA(0) r + 2 ImkaA(R) r. It is as-
sumed that kaA(0) > ImkaA(R), as it should be for physical
resonances. Then Rez2 < 0. Also

ν = − 2 i η(R)
aA = −2i

γ

kaA(0) − i Im kaA(R)

= − 2 i
γ kaA(0)

k2
aA(0) + (ImkaA(R) )2

+ 2
γ ImkaA(R)

k2
aA(0) + (ImkaA(R) )2

,

(A2)

γ = Za ZA μaA/137. Thus, one can see that for the repul-
sive Coulomb potential Reν > 0. Using Eq. (3.462.1) from
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Ref. [36] one gets

I (β, ν, z)=
(ν+1) (2 β )−(ν+1)/2 ez2/(8 β ) D−ν−1(−z/
√

2 β ).

(A3)

Here Dσ (x) is the parabolic cylinder function. For Rez2 < 0
using Eq. (9.246.1) from Ref. [36] one gets

I (0, ν, z) = lim
β→+0

I (β, ν, z) = 
(ν + 1) (−z)−ν−1. (A4)

Thus, the regularization procedure used by Zel’dovich is
applicable and for the physical resonances kaA(0) > ImkaA(R)

the integral in Eq. (A1) does exist and converges in
lim β → +0.

Let me consider now the integral

IR(β, ν, z) =
∫ ∞

R
dr e−β r2

ez r rν . (A5)

Integrating it by parts one gets

lim
β→+0

IR(β, ν, z) = −Rν

z
ez R

[
1 − ν

z R
+ O

(
1

z2 R2

)]
. (A6)
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