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Assessment of nonlocal nuclear potentials in α decay
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Different models for the nonlocal description of the nuclear interaction are compared through a study of
their effects on the half-lives of radioactive nuclei decaying by the emission of alpha particles. The half-lives
are evaluated by considering a preformed α particle (4He nucleus), which tunnels through the Coulomb barrier
generated by its interaction with the daughter nucleus. An effective potential obtained from a density-dependent
double-folding strong potential between the α and the daughter nucleus within the nonlocal framework is found
to decrease the half-lives as compared to those in the absence of nonlocalities. Whereas the percentage decrease
within the older Perey-Buck and São Paulo models ranges between 20 to 40% for medium to heavy nuclei, a
recently proposed effective potential leads to a decrease of only 2 to 4%. In view of these results, we provide
a closer examination of the approximations used in deriving the local equivalent potentials and propose that,
apart from the scattering data, the α decay half-lives can be used as a complementary tool for constraining the
nonlocality models.
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I. INTRODUCTION

It is not often that reexaming an old and well-studied sub-
ject reveals new findings. However, one does find examples of
experimental as well theoretical investigations, which, either
with more refined tools or alternative theoretical approaches,
attempt to probe into supposedly established methods to bring
new results and solutions. The cosmological lithium problem
is a recent example of such a situation where conventional
methods overestimated the 7Li abundance, but the introduc-
tion of Tsallis statistics within these methods solved the
problem [1]. Another recent example is that of pinning down
the D-state probability in the deuteron (a topic that has been
a classic problem of nuclear physics) using modern precise
measurements of the Lamb shift in the muonic deuterium
atom [2]. In the context of the present work, we note that the
models for the strong nuclear interaction within the nonlocal
framework have been studied for decades with the pioneering
works in Refs. [3–5]. Perey and Buck [6] studied scattering
using the nonlocal framework and introduced a local equiva-
lent potential. These works were followed up by several others
which were able to reproduce the scattering data quite well
[7,8]. However, reexamining the nonlocality within a novel
approach to the same problem, the authors of Refs. [9,10]
revealed some interesting features. To list a few, the frame-
work is flexible to use arbitrary nonlocal potentials, is not
sensitive to the choice of the nonlocal form factor [10], and the
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effective potential has a different behavior in coordinate (r)
space for r → 0 as compared to the local equivalent potentials
in Refs. [6,8].

Another well-established method in nuclear physics is
the treatment of α decay as a tunneling problem for the
calculation of half-lives of nuclei with a density-dependent
double-folding (DF) potential [11–13]. This method is quite
successful in reproducing the half-lives of a range of medium
and heavy nuclei [14,15]. However, the effects of nonlocality
have not been studied within this model. In the present work,
starting from the DF potential between the α (4He nucleus)
and the daughter, which exist as a preformed cluster inside
the decaying parent nucleus, we obtain effective potentials in
three different models and study their effects on the alpha de-
cay half-lives. Though the general finding from all models is
a decrease in the half-lives due to nonlocality, the percentage
decrease using the model proposed in Ref. [9] is significantly
smaller than that proposed in Refs. [6,8].

The article is organized as follows. In Sec. II we present the
density-dependent double-folding model used to evaluate the
potential between the α and the daughter nucleus followed by
the formalism for the evaluation of α decay half-lives within
a semclassical approach to the tunneling problem. In Sec. III,
the concept of nonlocality and the three models used in the
present work are briefly introduced. Two of the models [6,8]
are found to differ significantly from the model of Ref. [9]
at small distances. Section IV explains the reason behind the
discrepancies in the behavior of the local equivalent potentials
for r → 0. Section V briefly describes the iterative scheme
used for the determination of the scattering wave function
and a possible extension to the case of decaying states. In
Sec. VI, we present the results and discuss them. Finally, in
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Sec. VII we summarize our findings. Since the nonlocality
has no particular importance for elastic scattering and is
expected to affect cross sections for reaction processes such
as stripping and inelastic scattering [16], we propose that the
data on the half-lives of radioactive nuclei can be used as a
complementary tool in addition to the scattering data that are
generally used to restrict the nonlocality models.

II. FORMALISM FOR α DECAY

The objective of the present work is to examine the dif-
ferences between the existing models to evaluate effective
potentials in the nonlocal framework through their effects on
the half-lives of radioactive nuclei that decay by α particle
emission. To evaluate these effective potentials, we shall use
the density-dependent double-folding alpha-nucleus potential
[11], which is often used in calculations of α decay [14].
We assume the existence of a preformed α inside the parent
and consider the α decay to be a tunneling problem of the α

through the Coulomb barrier created by its interaction with
the daughter nucleus. Typically, one considers the tunneling
of the α through an r-space potential of the form

V (r) = Vn(r) + VC (r) + h̄2 (l + 1/2)2

μ r2
, (1)

where Vn(r) and VC (r) are the nuclear and Coulomb parts of
the α-nucleus (daughter) potential, r the distance between the
centers of mass of the daughter nucleus and α, and μ their re-
duced mass. The last term represents the Langer modified cen-
trifugal barrier [17]. The width of the radioactive nucleus or its
half-life which is related to it, is evaluated with a semiclassical
Jeffreys-Wentzel-Kramers-Brillouin (JWKB) approach [18].
With the JWKB being valid for one-dimensional problems,
the above modification of the centrifugal barrier from l (l +
1) → (l + 1/2)2 is essential to ensure the correct behaviour
of the JWKB radial wave function near the origin as well as
the validity of the connection formulas used [19].

Since the aim of the present work is to compare the
nonlocal effects in different models, we shall restrict here to
the simpler situations of alpha decay of spherical nuclei in the
s-wave.

A. α nucleus double-folding potential

The input to the double-folding model is a realistic
nucleon-nucleon interaction as given in Ref. [20]. The folded
nuclear potential is written as

Vn(r) = λ

∫
dr1 dr2 ρα (r1) ρd (r2) v(r12 = r + r2 − r1, E ),

(2)

where ρα and ρd are the densities of the α and the daughter
nucleus in a decay, |r12| is the distance between a nucleon in
the α and a nucleon in the daughter nucleus, and v(r12, E ) is

the M3Y nucleon-nucleon (NN) interaction [20] given as

v(r12, E ) = 7999
exp(−4 |r12|)

4 |r12| − 2134
exp(−2.5 |r12|)

2.5 |r12|
+ J00 δ(r12), (3)

with

J00 = −276 (1 − 0.005 Eα/Aα ),

where the last term is the so-called “knock-on exchange” term
and is usually not included in the calculation of nonlocal
nuclear potentials [8,9].

The α particle density is given using a standard Gaussian
form [20], namely,

ρα (r) = 0.4229 exp(−0.7024 r2), (4)

and the daughter nucleus density is taken to be

ρd (r) = ρ0

1 + exp
(

r−c
a

) , (5)

where ρ0 is obtained by normalizing ρd (r) to the num-
ber of nucleons Ad and the constants are given as c =
1.07 A1/3

d fm and a = 0.54 fm [21]. Equation (2) involves a
six-dimensional integral. However, the numerical evaluation
becomes simpler if one works in momentum space as shown
in Ref. [20]. The constant λ appearing in Eq. (2) for the nu-
clear potential Vn(r) (which is a part of the total potential V (r)
in Eq. (1)), is determined by imposing the Bohr-Sommerfeld
quantization condition∫ r2

r1

k(r) dr = (n + 1/2) π, (6)

where k(r) =
√

2μ

h̄2 [|V (r) − E |], n is the number of nodes
of the quasibound wave function of α-nucleus relative motion
and r1 and r2 which are solutions of V (r) = E , are the
classical turning points. This condition is a requisite for the
correct use of the JWKB approximation [11]. The number
of nodes are re-expressed as n = (G − l ) /2, where G is a
global quantum number obtained from fits to data [22] and l
is the orbital angular momentum quantum number. We choose
the values of G as 18 for N < 82, 20 for 82 < N � 126 and
22 for N > 126 as recommended in Ref. [22].

The Coulomb potential VC (r) is obtained by using a similar
double folding procedure with the matter densities of the α

and the daughter replaced by their respective charge density
distributions ρC

α and ρC
d . Thus,

VC (r) =
∫

dr1 dr2 ρC
α (r1) ρC

d (r2)
e2

|r12| . (7)

The charge distributions are taken to have a similar form
as the matter distributions, except for the fact that they are
normalized to the number of protons in the α and the daughter.

B. Semiclassical approach for half-lives

Considering the α decay to be a tunneling problem, the
semiclassical expression for the decay width as obtained from
different approaches agrees and is given by [11]

�(E ) = Pα

h̄2

2 μ

[ ∫ r2

r1

dr

k(r)

]−1

e−2
∫ r3

r2
k(r) dr

, (8)
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TABLE I. Comparison of the α decay half-lives evaluated using
the double-folding model with experiment [23]. The last column lists
the cluster preformation probability Pα , given by Eq. (10).

Q-Value τ
exp
1/2 τ

theory
1/2 Pα

[MeV] [s] [s]

254Fm 7.307 1.2 × 104 0.9 × 104 0.75
212Po 8.954 2.99 × 10−7 6.48 × 10−8 0.22
210Po 5.407 1.2 × 107 4.2 × 105 0.035a

180W 2.515 5.7 × 1025 1.2 × 1025 0.21
168Pt 6.989 2 × 10−3 0.68 × 10−3 0.34
144Nd 1.903 7.1 × 1022 5.1 × 1022 0.72
106Te 4.290 7 × 10−5 2.4 × 10−5 0.34

aThe small value of Pα can be attributed to the magic number of
neutrons, N = 126, in 210Po (see Fig. 2(c) in Ref. [13] and the
corresponding text for a detailed discussion).

where k(r) =
√

2μ

h̄2 [|V (r) − E |] and r1, r2 and r3 are the
three classical turning points. The energy E is taken to be
the same as the Q value for a given α decay. The factor in
front of the exponential arises from the normalization of
the bound-state wave function in the region between the
turning points r1 and r2. The α decay half-life of a nucleus is
evaluated as

τ
theory
1/2 = h̄ ln 2

�
. (9)

The factor Pα in Eq. (8) takes into account the probability
for the existence of a preformed cluster of the α and the
nucleus. This factor, in principle, can be expressed as an over-
lap between the wave function of the parent nucleus and the
decaying-state wave function describing an α cluster coupled
to the residual daughter nucleus. However, such a microscopic
undertaking is still considered to be a difficult task [14] and
the general approach is to determine Pα simply as a ratio

Pα = τ
theory
1/2 /τ

exp
1/2 . (10)

We refer the reader to the review article by Ni and Ren [14]
(see Sec. 2.5) for a detailed discussion on this subject. In
Table I we list the half-lives calculated in the present work
(for the cases which will be studied later in the nonlocal
framework) within the double-folding model described above.
The experimental half-lives [23] and the corresponding values
of Pα calculated using Eq. (10) are also listed in Table I. These
values are close to some others found in literature (we refer the
reader once again to Ref. [14] for the several references listing
these values using different models for α decay). As an exam-
ple, we mention here a microscopic calculation of the α cluster
preformation probability and the decay width, presented for
212Po, within a quartetting function approach [24,25]. Consid-
ering the interaction of the quartet with the core nucleus 208Pb
within the local density approximation, the authors obtained
Pα = 0.367 and 0.142 [24] using two different models for the
core nucleus. In Ref. [25], the calculations were extended to
evaluate Pα for several isotopes of Po. It is gratifying to note
that the values in Table I for 210Po and 212Po are close to those
found by the microscopic calculations in Refs. [24,25].

Finally, we must mention that the objective of the present
work is not to evaluate the exact half-lives, but rather compare
the effects of nonlocalities in different models. Hence, we
shall set Pα = 1 when we compare the half-lives calculated
within the different models for nonlocality.

III. NONLOCAL NUCLEAR POTENTIALS AND THEIR
LOCAL EQUIVALENT FORMS

The general form of the Schrödinger equation in the pres-
ence of nonlocality can be written as

− h̄2

2μ
∇2	(r) + [VL(r) − E ]	(r)

= −
∫

dr′ VNL(r, r′)	(r′), (11)

where VL can be some isolated local potential and VNL the
nonlocal one. The sources of nonlocalities in literature are
globally classified into two types: the Feshbach and the Pauli
nonlocality [7]. The Feshbach nonlocality is attributed to
inelastic intermediate transitions in scattering processes. In
other words, the description of an excitation at a point r in
space followed by an intermediate state which propagates and
deexcites at some point r′ to get back to the elastic channel is
contained in the right-hand side of Eq. (11). Such a coupling
gives rise to a coupled channels Schrödinger equation, which
can, in principle, be quite difficult to handle.

The Pauli nonlocality is attributed to the exchange effects
that require antisymmetrization of the wave function between
the projectile and the target. This kind of nonlocality is usually
described in literature [6,8,9] in terms of a factorized form of
the potential

VNL(r, r′) = UN

(
1

2
|r + r′|

) exp
[ − ( r−r′

β

)2]
π3/2β3

, (12)

involving a nonlocality range parameter β, which, in the limit
β → 0 brings us back to the local potential.

In what follows, we shall consider three different ap-
proaches to construct the effective potential (UL) in literature
that are based on this kind of description and eventually study
the manifestation of the nonlocality in the α decay of some
heavy nuclei within these models. Without getting into the
complete details of the formalisms, we shall describe the
three models briefly along with the behavior of the obtained
effective potentials in the subsections below.

A. Perey and Buck model

An energy-independent nonlocal potential UN for the elas-
tic scattering of neutrons from nuclei was suggested in Ref. [6]
to study how far the energy dependence of the phenomeno-
logical local potentials that had been used earlier could be
accounted for by the nonlocality. The point of view taken was
that though part of the energy dependence of the potentials
was intrinsic, part of it came from nonlocality. To facilitate
the numerical calculation (which involved solving the wave
equation in its integrodifferential form to reproduce the ex-
perimental data on neutron scattering up to 24 MeV), it was
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assumed that VNL(r, r′) can be factorized as in Eq. (12). Apart
from performing numerical calculations and fitting parameters
to scattering data that were very well reproduced, the authors
provided a method to evaluate the local equivalent (LE)
potentials.

Let us review the method and the approximations used
to later examine the differences in the effective potentials
of Refs. [6,8,9]. Using the factorized form of Eq. (12) the
nonlocal Schrödinger equation is given as

[
h̄2

2μ
∇2 + E

]
	N (r)

=
∫

UN

(
1

2
|r + r′|

) exp
[ − ( r−r′

β

)2]
π3/2β3

	N (r′) dr′. (13)

With a change of variables, r′ − r = βs, and using the opera-
tor form of the Taylor expansion, the integral on the right-hand
side of Eq. (13) can be written as

I =
{∫

exp

[
βs ·

(
1

2
∇1 + ∇2

)]
exp [−s2]

π3/2
ds

}

×UN (r) 	N (r), (14)

where ∇1 operates only on UN (r) and ∇2 on 	N (r). Treating
the expression [(1/2) ∇1 + ∇2] as an algebraic quantity, the
authors evaluated the integral and further neglecting the effect
of the operator ∇1 [i.e., assuming the potential UN (r) to be
approximately constant], the authors obtained the following
equation:

[
h̄2

2μ
∇2 + E

]
	N (r) = UN exp [(1/4)β2∇2]	N (r)

= UN [	N (r) + (1/4)β2∇2	N (r)

+ · · · ]. (15)

Considering now the local equation
[

h̄2

2μ
∇2 + E

]
	L(r) = U PB

L 	L(r) (16)

and further assuming, 	N (r) ≈ 	L(r), the authors obtained

∇2	N (r) = −2μ

h̄2

(
E − U PB

L

)
	N (r), (17)

which, when substituted in Eq. (15) [and truncating the series
in Eq. (15) up to the second term], gives
[

h̄2

2μ
∇2 + E

]
	N (r) = UN	N (r)

[
1 − 1

4
β2 2μ

h̄2

(
E − U PB

L

)]

� UN exp

(
−μβ2

2h̄2

(
E − U PB

L

))
	N (r).

(18)

Comparing the right-hand sides of Eqs. (16) and (18) [with
the assumption 	N (r) ≈ 	L(r)], the authors finally obtained

U PB
L (r) exp

{
μβ2

2h̄2

[
E − U PB

L (r)
]} = UN (r). (19)

The above equation was, in principle, derived with the as-
sumption that the potential inside the nucleus is constant and
the r-dependent form above was justified a posteriori from
the results obtained in the paper. Finally, the transcenden-
tal equation [Eq. (19)] is solved to obtain U PB

L (r). Taking
initially the potentials UN and U PB

L to be constant to derive

the transcendental equation, U PB
L exp [μβ2

2h̄2 (E − U PB
L )] = UN ,

and then introducing the r dependence to get Eq. (19) intro-
duces an inconsistency at small r which will be discussed in
Sec. IV.

B. São Paulo potential

Based on conceptually similar considerations as of the
Perey and Buck model, a slightly different form of a local
equivalent potential was derived in Ref. [8] and applied
successfully to reproduce several different scattering data
[26–28]. The authors defined the local equivalent potential
as

U SP
L (r) ≈ Vn(r) exp

(−γ
[
E − VC (r) − U SP

L (r)
])

, (20)

where γ = μβ2/2h̄2 and Vn is the double-folding nuclear
potential as described in Sec. II A. The authors cautioned
that the local equivalent potential U SP

L is very well de-
scribed by the above equation except for small distances (i.e.,
r → 0). Further identifying the factor in the exponential with
a velocity

v2 = 2

μ
Ek (r) = 2

μ

[
E − VC (r) − U SP

L (r)
]
, (21)

the authors mentioned that the effect of the Pauli nonlocality
is equivalent to a velocity-dependent nuclear potential. Note
that the local equivalent São Paulo potential of Eq. (20) is, in
principle, the same as that proposed by Perey and Buck [in
Eq. (19)] if we substitute UN by the double folding potential
Vn(r) and neglect the Coulomb potential VC in Eq. (20).

Both the local equivalent potentials U SP
L and U PB

L are
energy dependent and as will be seen later, approach a finite
value as r → 0.

C. Mumbai potential

In Ref. [9], the authors proposed a novel method to solve
the integrodifferential equation in Eq. (11). The method,
which was introduced in Ref. [9], involved the use of the
mean value theorem of integral calculus to obtain an effective
potential, which, in contrast to the methods discussed so far,
was found to be energy independent. Apart from relying on
the mathematical validity, the method was further tested by
calculating the total and differential cross sections for neutron
scattering off 12C, 56Fe, and 100Mo nuclei in the low-energy
region (up to 10 MeV) and reasonably good agreement with
data was found. We shall refer to this approach of Ref. [9]
as the Mumbai approach and briefly review the main steps in
their derivation below.

Performing a partial wave expansion of VNL(r, r′) and
	(r′) in Eq. (11), one obtains the radial equation, which, in
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FIG. 1. The strong interaction potential between the alpha (4He) and the daughter nucleus (206Pb) in the decay of 210Po. The left panel
shows a comparison of the potentials, U SP

L (r) (dot-dashed line), U PB
L (r) (dashed line), U M

L (r) (dotted line), and the double folding potential
Vn(r) (solid line) with the knock-on exchange term included. The right panel shows the same without the exchange term. For the sake of this
comparison, we choose λ = 1 in Eq. (2).

the absence of the spin-orbit interaction is given as

h̄2

2μ

(
d2

dr2
− l (l + 1)

r2

)
ul (r) + Eul (r)

=
∫ ∞

0
gl (r, r′)ul (r

′) dr′, (22)

where

gl (r, r′) =
(

2rr′
√

πβ3

)
exp

(−r2 − r′ 2

β2

)

×
∫ 1

−1
UN

( |r + r′|
2

)
exp

(
2rr′x
β2

)
Pl (x) dx. (23)

Making use of the mean value theorem to rewrite the integral
on the right-hand side of Eq. (22) and restricting the upper
limit of integration to the range of the nuclear interaction, after
some algebra, the authors obtained an effective potential given
by [9]

U M
L (r) =

∫ rm

0
gl (r, r′) dr′, (24)

where gl (r, r′) is written as in Eq. (23). Note, however, that the
Mumbai (M) potential, in contrast to that of the Perey-Buck
(PB) model and the São Paulo (SP) potential, does not depend
on energy. Indeed, it also displays a different behavior at small
distances with U M

L → 0 for r → 0.

D. Behavior of UL in the three models

In Fig. 1, we compare the effective potentials to the
double-folding potential Vn(r). To perform this comparison,
we choose λ = 1 in Eq. (2). Thus, replacing UN (r) with
Vn(r) of Eq. (2), the Perey-Buck local equivalent potential
[U PB

L (r)] is evaluated using Eq. (19), the São Paulo local
equivalent potential [U SP

L (r)] is evaluated using Eq. (20) and
the local effective Mumbai potential [U M

L (r)] using Eq. (24).
Since the exchange term in Eq. (3) is often not included
in the calculation of the local equivalent potentials [9] (to
avoid double counting of the Pauli nonlocality), we show the
potentials with (left panel) as well as without (right panel)
this term included. The three potentials, U PB

L (r), U SP
L (r), and

U M
L (r) are evaluated for a double-folding potential between

an α and 206Pb nucleus, which are the decay products (and

hence originally the cluster nuclei) in the α decay of 210Po.
The nonlocality parameter β is taken to be 0.22 fm (expla-
nation given in Sec. VI), following the prescription given in
Ref. [30]. The São Paulo and Perey-Buck potentials are quite
similar, as expected, while the energy-independent Mumbai
potential, as mentioned earlier, behaves differently at small
r. The latter, as we shall see in the next section with the
example of a simple form for UN , follows quite simply from
the nonlocal radial equation. The discrepancy between U PB

L ,
U SP

L , and U M
L probably arises due to the assumptions in the

derivation of Eq. (19).

IV. MODEL DEPENDENCE AT SMALL DISTANCES

With the aim of understanding the difference in the small
r behavior of the effective potentials mentioned in the pre-
vious section, we shall now analyze the nonlocal kernel
using a simple rectangular well for the nuclear potential
and try to obtain analytical expressions. Let us begin by
considering the integral on the right-hand side of Eq. (22),
namely,

∫ ∞
0 gl (r, r ′) ul (r, r ′) dr ′. Given the fact that gl (r, r ′)

is peaked close to r = r ′ (see, for example, Figs. 1(a) and
5(a) in Ref. [9]), we perform a Taylor expansion of the wave
function about r = r ′ and write the above integral as

u(r)
∫ ∞

0
gl (r, r′)dr′ +

∫ ∞

0
(r′ − r)u′(r)gl (r, r′)dr′ + · · · .

(25)
For the case of a rectangular well of depth -U0 and range
R, i.e., for UN (r) = −U0�(R − r) (where � is the Heaviside
step function) and assuming l = 0 for simplicity, we can
evaluate the first integral in Eq. (25) analytically. Retaining
only the first term in the expansion (25) we can define

UL(r) =
∫ ∞

0
gl (r, r ′)dr ′, (26)

with

gl (r, r′) = 2√
πβ

UN

[
1

2
(r + r′)

]
exp

[
− (r2 + r′2)

β2

]
sinh

2rr′

β2

= − 2√
πβ

U0�

(
R − r + r′

2

)
exp

[
− (r2 + r′2)

β2

]

× sinh
2rr′

β2
. (27)
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One can see that � = 1 only for 2R − r − r′ > 0, i.e., 2R −
r > r′ and the upper limit of integration in Eq. (26) changes

from ∞ to 2R − r. If r > 2R, r′ is negative. Hence, to ensure
that r � 2R we write

UL(r) = −2U0√
πβ

�(2R − r)
∫ 2R−r

0
dr′ exp

[
− (r2 + r′2)

β2

]
sinh

2rr′

β2

= −U0

2
�(2R − r)

[
er f

(
2(R − r)

β

)
+ 2er f

(
r

β

)
− er f

(
2R

β

)]
. (28)

In the limit, r → 0 (for β > 0) since er f (0) = 0, the potential UL(r) vanishes. When r is finite, we must consider two cases:

UL(r) = −U0

2

[
er f

(
2(R − r)

β

)
+ 2er f

(
r

β

)
− er f

(
2R

β

)]
∀ r < R (29)

= −U0

2

[
−er f

(
2|R − r|

β

)
+ 2er f

(
r

β

)
− er f

(
2R

β

)]
∀ R < r < 2R. (30)

If β → 0 (i.e., in the absence of nonlocality) since er f (∞) =
1, UL(r) = −U0 for r < R and 0 for R < r < 2R, as expected.

The above derivation on the one hand justifies the behavior
of the Mumbai potential at small r, but on the other hand
displays an inconsistency between Eqs. (28) and (19). U PB

L (r)
in Eq. (19), approaches a finite value as r → 0 (for finite β)
as we already noticed in Fig. 1 with a more realistic form
of UN (r). However, UL(r), as derived above from the radial
nonlocal equation, vanishes for r → 0.

Since the starting point for the derivation of the Mumbai
potential is indeed the nonlocal radial equation, it seems to be
in agreement with the behavior of UL(r) as in Eq. (28) but not
with that in Eq. (19). The inconsistency between Eq. (19) and
Eq. (28) probably arises due to the approximations made in
the derivation of Eq. (19).

V. ITERATIVE SCHEMES

Models for the nonlocal nuclear interaction are usually
tested for their validity by reproducing scattering data. The
solution of the radial equation (22) is obtained by implement-
ing an iterative procedure. The starting point of the iterative
procedure involves an effective or local equivalent potential
which is a solution of the homogeneous equation such as
Eq. (16). For example, the iteration scheme can be started with
the local equation

h̄2

2M

(
d2

dr2
− l (l + 1)

r2

)
u0

l (r) + [E − UL(r)]u0
l (r) = 0,

(31)

and followed by

h̄2

2M

(
d2

dr2
− l (l + 1)

r2

)
ui

l (r) + [E − UL(r)]ui
l (r)

=
[∫ R

0
gl (r, r′)ui−1

l (r′) dr′ − UL(r)ui−1
l (r)

]
, (32)

where the suffix i denotes the ith order approximation to the
correct solution. The upper limit R is the radius at which the
contribution of the kernel becomes negligible. The iteration

is continued until the logarithmic derivative at R obtained
from ui

l (r) agrees up to a certain reasonable precision with the
one calculated from ui−1

l (r). Generally one finds that a few
iterations [6,9,10] already lead to a good agreement with the
data.

The effect of the nonlocal potentials can, in principle,
be tested by calculating the half lives of radioactive nuclei.
Restricting ourselves to the discussion of α decay, one can
follow a similar iteration scheme as above, however, with the
difference that ul (r) will have different boundary conditions.
Considering the decaying nucleus as a resonant state (and
noting that there are no incident particles), the solution of
the radial equation will be a “Gamow function” [29], which
vanishes at the origin and behaves as a purely outgoing wave
asymptotically. The so-called correct solution obtained from
such an iterative scheme could then be used in a quantum
mechanical description of the α particle decay rates. Such
an analysis of the α decay of several nuclei could serve as
a complementary tool for fixing the parameters or assump-
tions of the nonlocal models. To find out if such a task is
worth undertaking, in the present work we take the first step
of comparing the α decay half-lives of some heavy nuclei
using different models of the local equivalent (or effective)
potentials which satisfy the homogeneous equation. The latter
allows us to follow the procedures outlined in Sec. II to
evaluate the half-life within the JWKB approximation where
the wave function is a solution of the homogeneous equation.

VI. RESULTS AND DISCUSSION

To study the effect of nonlocality in α decay, we evalu-
ate the half-lives of some spherical nuclei (with spin-parity,
JP = 0+), decaying in the s-wave. To calculate the half-
lives, we use the density-dependent double-folding model
introduced in Sec. II A as input for the evaluation of the
effective potentials UL. Note that the nonlocality appears
only in the strong part of the potential to which we add
the Coulomb and the centrifugal part as given in Sec. II A.
Since the half-lives are evaluated within the semiclassical
JWKB approximation, the potentials are required to satisfy
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FIG. 2. Comparison of the local equivalent potentials for the interaction between 4He and 206Pb. The full potentials (including the strong
and Coulomb interaction as well as the centrifugal part arising due to the Langer term) are displayed in the left panel. The right panel shows the
Coulomb barrier on a different scale. The knock-on exchange term is not included. The values of λ appearing in Eq. (2) are listed in Table III.

the Bohr-Sommerfeld condition in Eq. (6) which then fixes
the strength of λ in Eq. (2). In Fig. 2, we compare the full
potentials (i.e., Eq. (1) for the double folding potential and
UL(r) + VC (r) + h̄2 (l + 1/2)2

μ r2 for the PB, SP, and M cases)

evaluated for the interaction between 4He (α) and 206Pb which
form the cluster in 210Po. To evaluate the energy-dependent
Perey-Buck and São Paulo potentials, we assume the energy
to be the Q-value (which is approximately the kinetic energy
of the alpha in the final state) in the decay of 210Po.

Using the three different models for the effective strong
interaction, we now evaluate the half-lives in the α decay of
medium and heavy nuclei. The nonlocality parameter β is
given by β = b0m0/μ, where b0 is the nonlocal range of the
nucleon nucleus interaction, m0 is the nucleon mass, and μ

the α-nucleus reduced mass (see Ref. [30] for details). We
choose b0 = 0.85 fm as in Ref. [6], so that β = 0.22 fm. The
half-lives evaluated with the nonlocality included are found
to decrease as compared to those evaluated using the double-
folding model without nonlocality.

The percentage decrease in half-life due to nonlocality is
defined as

PD = τDF
1/2 − τNL

1/2

τDF
1/2

× 100, (33)

where, τDF
1/2 is the half-life evaluated in the double folding

model without the inclusion of nonlocalities and τNL
1/2 is the

one evaluated using the different nonlocal frameworks. We
remind the reader that we choose the cluster preformation
factor Pα = 1 for this comparison.

In Table II we list the percentage decrease in the half-lives
of several nuclei. The numbers outside parentheses corre-
spond to calculations with the so-called knock-on exchange
term excluded to avoid double counting of the Pauli nonlo-
cality. Inclusion of this term (numbers in parentheses) causes
a larger percentage decrease of half-lives due to nonlocality
within the Perey-Buck and São Paulo models. The effect of

nonlocality is, in general, small within the Mumbai approach.
Apart from this, we note that the effect of nonlocality is
smaller in the decay of 212Po (Q = 8.954 MeV) as compared
to 210Po (5.407 MeV). Though the difference is not large,
it hints towards a decrease in the effect of nonlocality with
increasing energy in the two isotopes.

To understand the results in Table II, let us examine Fig. 2
and the factors presented in Table III. We consider the num-
bers outside the parentheses in Table II, which means that
the knock-on exchange term is not included in the calculation
of Vn. The full potentials given in Fig. 2 are obtained using
Eqs. (1) and (2) with the values of λ (listed in Table III)
being fixed by the Bohr-Sommerfeld condition (6). Assuming
Pα = 1 and rewriting the expression for the width in Eq. (8) as

� = h̄2

2 μ
NP,

where the normalization factor N = [
∫ r2

r1
dr/k(r) ]

−1
and

the exponential factor or the penetration probability P =
e−2

∫ r3
r2

k(r) dr we note from Table III that it is indeed the

TABLE II. Percentage decrease, PD as in Eq. (33), in α decay
half-lives of nuclei using three different models of nonlocality. Num-
bers within parentheses include the effect of the so-called knock-on
exchange term and those outside ignore this term. The nonlocality
parameter β = 0.22 fm.

Mumbai São Paulo Perey-Buck

254Fm 2.49 (3.85) 31.7 (69.8) 40.3 (71.5)
210Po 3.4 (2.4) 29.9 (66.2) 37.3 (67.9)
212Po 3.26 (3.28) 26.7 (62.0) 33.0 (63.8)
180W 3.8 (4.0) 30.1 (66.1) 37.6 (67.7)
168Pt 4.9 (4.1) 27.5 (62.7) 34.9 (64.9)
144Nd 3.9 (3.8) 25.9 (60.3) 31.2 (61.9)
106Te 3.2 (4.1) 19.4 (51.9) 24.1 (53.6)
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TABLE III. Factors contributing to the calculated half-lives in different models. The strength of the strong interaction λ, which is fixed by

the Bohr-Sommerfeld condition (6), the normalization factor N = [
∫ r2

r1
dr/k(r)]

−1
, and the penetration probability P = e−2

∫ r3
r2

k(r) dr , are listed
in all models for each of the nuclei considered. The knock-on exchange term is not included.

Isotope Q-Value Double folding Mumbai São Paulo Perey-Buck
[MeV]

λ P N λ P N λ P N λ P N
[fm−2] [fm−2] [fm−2] [fm−2]

254Fm 7.307 1.95 3 × 10−25 0.34 1.96 3.1 × 10−25 0.34 2.08 4.5 × 10−25 0.34 2.30 5.2 × 10−25 0.34
212Po 8.954 2.02 3 × 10−14 0.34 2.03 3.2 × 10−14 0.34 2.17 4.2 × 10−14 0.33 2.36 4.6 × 10−14 0.33
210Po 5.407 2.10 5.4 × 10−27 0.36 2.12 5.6 × 10−27 0.35 2.25 7.8 × 10−27 0.35 2.45 8.6 × 10−27 0.36
180W 2.515 2.04 2 × 10−46 0.36 2.05 2.1 × 10−46 0.36 2.17 2.8 × 10−46 0.36 2.35 3.1 × 10−46 0.35
168Pt 6.989 2.08 3 × 10−18 0.35 2.10 3.2 × 10−18 0.35 2.22 4.2 × 10−18 0.35 2.41 4.6 × 10−18 0.35
144Nd 1.903 2.23 3.6 × 10−44 0.37 2.26 3.8 × 10−44 0.37 2.39 4.9 × 10−44 0.36 2.55 5.3 × 10−44 0.36
106Te 4.290 2.28 6.2 × 10−17 0.35 2.30 6.5 × 10−17 0.35 2.43 7.9 × 10−17 0.35 2.58 8.4 × 10−17 0.35

difference in the penetration probabilities P, which leads to
the differences in the percentage decrease in the half-lives in
Table II. The normalization factors are almost constant in all
models. This fact is also reflected in Fig. 2. In the right panel
we notice that the Coulomb potential in the São Paulo and
Perey-Buck models is shifted to the right as compared to the
double-folding and Mumbai potentials. This shift leads to a
shift of the second turning point r2, to bigger values and hence
smaller half-lives (due to the bigger exponential factor as can
be seen in Table III).

Before closing the discussions, some comments about one
of the earliest investigations of nonlocalities in α decay are in
order here. In a series of works [31–34], M. L. Chaudhury
studied the effects of nonlocalities in α decay of different
nuclei. Using an integrodifferential equation similar to that
of Frahn and Lemmer [35], in Ref. [31], the author calcu-
lated the transmission coefficient (or penetration factor) for
α tunneling within the WKB approximation. The point-like
Coulomb field was superimposed by a nonlocal α-nucleus
interaction based on the Igo potential [36] and a Gaussian
form was used for the nonlocal function with a nonlocality
parameter of β = 0.9 fm. Investigating for the α decay of
254Fm in Ref. [31], the penetration factor was found to in-
crease by a factor of 1.7 due to nonlocality. This amounts to
a decrease of about 40% in the half-life. The investigation
in Ref. [31] was extended to several even-even nuclei and
the author once again found a large increase (∼50%) [32] in
the penetration factors due to nonlocality. The author further
studied the effects of nonlocality in deformed and rare-earth
nuclei [33,34] with the inclusion of an exchange term in the
nonlocal kernel. Though the calculation in Ref. [31] involves
a different nonlocal framework as compared to the models
considered in the present work, the 40% decrease in the value
of the half-life of 254Fm [31] (evaluated without the exchange
term in the nonlocal kernel), is similar to the Perey-Buck
model result in Table II, without the inclusion of the knock-on
exchange term.

VII. SUMMARY

Investigation of the effects of nonlocality in the nuclear
interaction began several decades ago, but has remained to be

a topic of continued interest until now. The vast majority of
works proposing different approaches to understand the origin
as well as the manifestations of the nonlocality concentrate on
the reproduction of scattering data. Here we propose the study
of the effects of nonlocality on α decay half-lives of nuclei as
a complementary tool for determining the nonlocal interaction
within different models.

To be specific, we study these effects using three different
models available in literature. Though all the three models
agree qualitatively on the result that the nonlocal nuclear
interaction leads to a decrease in half-lives, the percentage
decrease in the three models is quite different. The recent
Mumbai model [9,10] predicts a very small percentage de-
crease of about 2 to 5% in most heavy nuclei studied, however,
the Perey-Buck and São Paulo models predict a much bigger
decrease of around 20 to 40% (in the absence of the knock-on
exchange term).

To understand the above differences, we examined the
model assumptions in detail and found an inconsistency in the
behavior of the local equivalent potentials, UL(r), derived by
starting with the three-dimensional Schrödinger equation and
its radial part. Whereas the former leads to UL(r) which is
finite at the origin, the latter leads to UL(r) which vanishes as
r → 0. Indeed the Perey-Buck and the São Paulo models are
of the first type (with the local equivalent potential being finite
at r = 0), but the effective potential of the Mumbai group
vanishes at r = 0. Introducing the nonlocal framework to find
the Gamow functions corresponding to the decaying nuclei
and performing a more exact quantum mechanical calculation
of the half-lives to compare with data could possibly provide a
better explanation of the different behaviors of the potentials.
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