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Role of relativistic effects and three-body forces in nuclear matter properties
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The role of three-body force (TBF) and the relativistic corrections (RC) on the equations of state of nuclear
matter and β-stable matter (BSM) within the relativistic lowest-order constrained variation (RLOCV) approach
are studied. The AV14 potential and its relativistic version (ṽ14) as well as the AV18 potential are considered
as the bare two-body potentials by employing the nuclear many-body Hamiltonian. It is shown that by using
ṽ14, all properties of cold nuclear matter can be correctly reproduced if TBF is used in RLOCV framework. The
energy and proton abundance of BSM are calculated for a wide range of baryon number densities, which are
of interest in astrophysics. It is also shown that by adding RC or TBF to our calculations, the maximum proton
abundance is pushed toward lower densities. Furthermore, the particle number densities decrease by including
RC and increase when TBF is added to the interactions. The opposite behaviors for the role TBF and RC on
saturation properties of nuclear matter as well as proton number densities of nuclear β-stable matter are found.
It is also shown that the effects of three-body forces are much larger than those of relativistic corrections.
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I. INTRODUCTION

The equation of state (EOS) of symmetric nuclear mat-
ter (SNM) and isospin-asymmetric nuclear matter, especially
pure neutron matter (PNM), plays a crucial role in both nu-
clear physics and its astrophysical applications. The energy-
density functional is very important in understanding rel-
ativistic heavy-ion collision, neutron stars, stellar collapse,
β-stable matter, core-collapse supernova, etc. [1–3]. More-
over, the nuclear matter symmetry energy and its density
dependence are important quantities in determining many
significant nuclear properties [4], such as the structure of
nuclei near the drip line and neutron skin of nuclear sys-
tems [5,6]. In addition, the relation between the equation of
state of neutron star and its radius and the characterization
of core crust transition in neutron stars can put important
constraints on the density dependence of symmetry energy
[7–9].

The EOS of asymmetric nuclear matter (ANM) that also
contains a certain amount of lepton is essential for the interior
part of neutron stars [2]. Since the properties of proton and
neutron superfluidity in protoneutron stars are related only
to the indirect observations, suitable theoretical predictions
based on microscopic many-body methods are desirable [10].
Moreover, the density-dependence behavior of the symmetry
energy influences strongly on the values of proton fraction and
the composition of β-stable nuclear matter [11,12].

During the past few decades, nuclear matter and symmetry
energy and its density dependence have been studied within
various phenomenological and microscopic many-body ap-
proaches based on a variety of phenomenological and mi-
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croscopic two-body interactions and phenomenological three-
body forces (TBF) in both relativistic and nonrelativistic
approaches.

There are some well-known theoretical many-body ap-
proaches that one can use to study the EOS of nuclear mat-
ter. These approaches can be divided into microscopic and
phenomenological ones. In the phenomenological approaches
such as Hartree-Fock (HF) [13], Thomas-Fermi (TF) [14],
and the mean-field approximation (MF) [15], the parameters
of interaction are fixed to nuclear saturation properties, such
as saturation density and energy, incompressibility, symmetry
energy, and so on.

The microscopic approaches are based on realistic po-
tentials, the parameters of which are fitted to experimental
nucleon-nucleon– (NN ) scattering data and deuteron prop-
erties. Therefore, the EOS obtained from microscopic ap-
proaches are more fundamental than those obtained from
phenomenological ones, especially in high density of nuclear
matter. There are generally two methods of microscopic ap-
proaches: Brueckner-type [16] and variational methods. The
Fermi hypernetted chain (FHNC) [17], variational Monte
Carlo (VMC) [18], and lowest-order constrained variational
method (LOCV) [19] are among the well-known variational
approaches.

The LOCV method is a self-consistent one which is ca-
pable of calculating the properties of various nuclear sys-
tems such as symmetric and asymmetric nuclear matter, pure
neutron matter, and β-stable matter by using well-defined
phenomenological potentials such as Ried [20,21], Urbana
V14 (AV14) [17], Argonne V14 (AV14) [22], Argonne V18
(AV18) [23], and ˜v14 potentials (which is a fitted relativisti-
cally NN-scattering phase shift) [24,25]. This method is also
generalized to finite temperature to study the thermodynamic
properties of mentioned nucleonic systems [26–28].
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The LOCV formalism is also extended to the relativis-
tic regime by Moshfegh and Zaryouni [29,30], namely the
relativistic lowest-order constrained variational formalism
(RLOCV). The RLOCV formalism is based on the works
of Bakamjian and Thomas [31] and Krajcik and Foldy [32]
in the variational hypernetted chain approach (VHC) [33].
It has been used for nuclear matter at both zero and finite
temperatures [29,30,34–36]. It is well known that the many-
body approaches are unable to reproduce the correct empir-
ical saturation properties of cold symmetric nuclear matter,
i.e., saturation density (0.17 ± 0.01 fm−3), binding energy
per nucleon (−16 ± 1 MeV), and symmetry energy (31.6 ±
2.66 MeV) when only two-body interactions are included in
the nonrelativistic Hamiltonian. Moreover, adding only the
relativistic corrections (RC) to the energies of nuclear matter
with a two-body phenomenological potential which has been
fitted nonrelativistically to NN-scattering phase shifts cannot
solve the nuclear matter problem. In addition, because the
relativistic effects can be interpreted as three-body forces
(TBF) in the nonrelativistic regimes [37], and because there
has been a competition between relativistic and three-body
forces effects for a long time, it is of great interest to compare
the role of TBF with that of RC in nuclear calculations. The
Urbana interaction, which includes attractive and repulsive
terms, based on meson exchange theory, has been presented
by Carlson, Pandharipande, and Wiringa [38]. The few param-
eters appearing in these forces are fitted in order to reproduce
the empirical saturation density and binding energy of three-
body nuclear systems. The phenomenological Urbana-type
(UIX) force has been used by Goudarzi and Moshfegh in the
LOCV method [39].

Motivated by this fact, we compare the EOS of nuclear
matter and density dependence of symmetry energy by a full
microscopic many-body calculation in both relativistic and
nonrelativistic regimes. We use a realistic potential in our
nuclear Hamiltonian, which has been fitted relativistically to
NN-scattering data, i.e., ˜v14, and its nonrelativistic version,
namely AV14 two-body interaction [22,25,40]. Furthermore,
we supplement the Urbana TBF (UIX) [41,42] to these two-
body potentials and compare the role of RC and TBF on
nuclear matter properties using both potentials [16,24,42,43].

With respect to the above arguments, the purpose of this
work is to compare the role of TBF and RC on the nuclear
matter properties as well as the BSM using both AV14 inter-
action and its relativistic version, namely ˜v14, in the LOCV
framework at zero temperature. The three-nucleon force is
included in the LOCV structure via an effective two-body
potential which is driven after averaging out of the third
particle, being weighted by the LOCV two-body correlation
functions of the 1S0 channel. The phenomenological Urbana
type of the three-body force is employed as an original three-
body force. The details are presented in Ref. [37]. Since there
is a competition between the TBF and relativistic effects, we
have compared the effects of this new version of TBF with RC
ones.

The outline of the article is as follows: Some important
nuclear matter properties, which we discussed above, are pre-
sented in Sec. II. Section III is devoted to β-stable matter. The
relativistic contributions are described in Sec. IV. Section V

describes briefly the UIX three-body force model. Finally, the
results and conclusions are considered in Sec. VI.

II. NUCLEAR MATTER PROPERTIES

Cold nuclear matter is an ideal system of infinite nucleons
which interact by only strong nuclear forces at zero temper-
ature. The energy per particle of cold nuclear matter depends
on both baryon density and asymmetric parameter δ defined as
δ = 1−R

1+R , where R is the ratio of proton to neutron densities.
It is clear that R is equal to 1 and zero for SNM and PNM,
respectively.

The EOS of SNM can be expanded around the saturation
density ρ0 by neglecting the higher-order terms as the follow-
ing parabolic approximation:

E0(ρ, δ = 0) = E0(ρ0) + K0

2
χ2 + O(χ3) + . . . , (1)

where E0(ρ0) is the binding energy per nucleon at saturation
density for SNM, χ is a conventional dimensionless variable
that is defined as χ = ρ−ρ0

3ρ0
, and K0 is the incompressibility of

SNM and describes the curvature of E (ρ, δ = 0) at saturation
density, expressed as:

K0(δ = 0) = 9ρ2
0

[
d2E (ρ, δ = 0)

dρ2

]
ρ0

. (2)

Obviously, according to the definition of saturation density of
SNM, the first power of χ should be absent in Eq. (1). It has
been shown that the general accepted range of the isobaric
incompressibility of SNM is within the range 230 ± 40 MeV
[44], and 250 < K0 < 315 MeV, which is measured from
the nuclear giant monopole resonance [45]. One can expand
the isobaric incompressibility of asymmetric nuclear matter
around asymmetric parameter δ = 0 as:

K (δ) = K0(δ = 0) + Kasyδ
2 + O(δ4) + . . . , (3)

where K0 is expressed by Eq. (2) and Kasy describes the isospin
dependence of the isobaric incompressibility at saturation
density.

Moreover, one can expand the energy of asymmetric nu-
clear matter around the asymmetric parameter δ = 0 at each
density as:

E (ρ, δ) = E (ρ, δ = 0) + 1

2!

[
∂2E (ρ, δ)

∂δ2

]
δ=0

δ2

+ O(δ4) + . . . . (4)

It is seen that the odd-order terms in δ are absent in Eq. (4),
due to the exchange symmetry between neutrons and protons
when the Coulomb interaction is neglected. The expansion
coefficient in the second term is the general symmetry energy,
i.e.,

Esym(ρ)|(exact) = 1

2!

[
∂2E (ρ, δ)

∂δ2

]
δ=0

. (5)

Since the major contribution of symmetry energy is due to
the quadratic term (for example, the magnitude of the δ4) the
coefficient at nuclear saturation density has been calculated
less than 1 MeV [46]. Neglecting the higher-order terms in
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Eq. (4) leads to the famous empirical parabolic law for the
asymmetric nuclear matter. Within the parabolic approxima-
tion, the density dependence of symmetry energy can be
extracted as:

Esym(ρ)|(approximate) = E (ρ, δ = 1) − E (ρ, δ = 0), (6)

Moreover, the nuclear symmetry energy can be expanded
around the nuclear saturation density. Up to the second order
of χ , it is expressed as:

Esym(ρ) = Esym(ρ0) + Lχ + Ksym

2!
χ2 + . . . , (7)

in which L and Ksym denote the slope and curvature parame-
ters of symmetry energy around ρ0 defined as:

L = 3ρ0

[
dEsym(ρ)

dρ

]
ρ0

, Ksym = 9ρ2
0

[
d2Esym(ρ)

dρ2

]
ρ0

, (8)

If the parabolic approximation of EOS of SNM is used, i.e.,
Eq. (1), then Kasy can be expressed as:

Kasy � Ksym − 6L. (9)

The quantities E0(ρ0), K0, Esym(ρ0), L, and Ksym provide
reliable information about nuclear properties and isospin de-
pendence of nuclear symmetry energy.

III. β-STABLE MATTER

β-stable matter is an equilibrium mixture of protons, neu-
trons, and a certain amount of leptons (electrons and muons)
that is electrically neutral. The nucleons interact through
strong forces, and the condition of charge neutrality states
where the electromagnetic interaction can be ignored and the
weak interactions are neglected.

The baryon number density (ρB) is expressed as the sum of
neutron and proton number densities,

ρB = ρn + ρp, (10)

and the condition of electrical neutrality requires:

ρp = ρe + ρμ, (11)

where ρe and ρμ are the electron and muon number densities,
respectively.

The leptons (electrons and muons) form two relativistic
Fermi seas. The contribution of the energy per baryon of these
Fermi seas is [47]

EL =
∑

i=e,μ

m4
i c5

8π2h̄3ρB

[
xi

(
1 + x2

i

)1/2(
2x2

i + 1
) − sinh−1xi

]
,

(12)
where

xi = h̄ki/mic, (13)

where ke(kμ) are the electron (muon) Fermi momenta. These
Fermi momenta are related through the chemical equilibrium
condition of β stability, i.e.,

μn − μp = μe = μμ, (14)

where μ states the chemical potential of particle. This condi-
tion implies that

mec2
(
1 + x2

e

)1/2 = mμc2
(
1 + x2

μ

)1/2
. (15)

To calculate the chemical potentials of neutrons and protons,
one need to know the EOS of asymmetrical nuclear matter.
It can be shown that if the asymmetry dependence of is EOS
assumed to be quadratic, i.e., approximate Eq. (4) up to the
second term, then we can find μn − μp = 4Esym(ρ)δ. Then
the role of symmetry energy is obvious. Thus, the energy per
nucleon for β-stable matter is

E =
∑
i=p,n

ρi

ρB

(
3

5

h̄2

2mi
k2

i + mic
2

)
+ EL + E2, (16)

where kp(kn) are the proton (neutron) Fermi momenta and E2

is the two-body cluster energy. By minimizing E with respect
to the correlation functions under the constraints of Eqs. (10),
(11), and (14), the proton abundance ρp/ρB can be obtained at
each baryon number density.

IV. RELATIVISTIC CONTRIBUTION

The relativistic Hamiltonian, reported by Bakamjian and
Thomas [31] and Krajcik and Foldy [9,32] in a relativistically
covariant form, can be written as:

HR =
N∑
i

[√
p2

i c2 + m2
i c4 − mic

2
] +

∑
i< j

[ṽi j + δv(Pi j )],

(17)

where ṽi j is the two-body potential which is determined by
fitting deuteron properties and two nucleon scattering data by
using the relativistic quantum mechanics in the two-body rest
frame in which their total momentum (Pi j = pi + p j) vanishes
[24,34] and can be written as:

ṽ(12) =
∑
p,α

V p
α (12)Op

α, (18)

where V p
α (12) is the two-nucleon interaction in each channel

and α = {J, L, S, T, MT }; p = 1 is used for uncoupled chan-
nels (singlet and triplet channels with J = L) and p = 2, 3 are
used for triplet channels with J = L ± 1. Op=1,2,3

α are given by
[19,48]:

Op=1,2,3
α = 1, (2/3) + (1/6)S12, (1/3) − (1/6)S12, (19)

where S12 = 3(σ1 · r̂)(σ2 · r̂) − (σ1 · σ2) is the usual tensor
operator.

Moreover, δv(Pi j ) in Eq. (1) is called the boost interaction.
As mentioned in our previous works, it depends on the total
momentum of interacting particles [24,34]. It is obvious that:

δvi j (Pi j = 0) = 0. (20)

Krajcik and Foldy [32] formally calculated δv(Pi j ) to all

orders in
P2

i j

4(mc)2 . In our calculations, as well as Friar, Forest,
and Pandharipande [9,49], we keep only the first two terms of

024307-3



HEIDARI, ZARYOUNI, MOSHFEGH, AND GOUDARZI PHYSICAL REVIEW C 99, 024307 (2019)

δv(Pi j ) [34,35] related to the static parts of vi j , i.e.,

δv(Pi j ) = − P2
i j

8(mc)2
vs

i j + 1

8(mc)2

[
Pi j · ri jPi j · ∇i j, v

s
i j

]
.

(21)

where vs
i j represents the static part of potential. The two

terms are denoted by δvRE and δvLC, the relativistic energy
expression and Lorentz contraction of boost interaction cor-
rections, respectively. The derived relations of δvRE and δvLC

are reported in Refs. [35].
In LOCV formalism, the trial wave function in

many-particle interacting systems is denoted by [19,26–
28,30,36,50]:

ψ = Fϕ, (22)

where ϕ is a Slater determinant of single-particle state wave
functions of N independent nucleons (ideal Fermi gas wave
function) and F’s are the N-body correlation functions which
can be given by the product of the two-body correlation
functions in Jastrow form, written as

ϕ = A
N∏

i=1

φi, (23)

F = S
∏
i< j

f (i j), (24)

where φi’s are one-body wave functions, A(S ) is an anti-
symmetric (symmetric) operator, and f (i j)’s are two-body
correlation functions that are written as:

f (i j) =
∑
α,p

f (p)
α (i j)O(p)

α (i j), (25)

in which O(p)
α are given by Eq. (19).

Now the energy expectation value per nucleon is obtained
in the cluster expansion theory by using the relativistic Hamil-
tonian [Eq. (17)] and trial wave function [Eq. (22)]. If the
contribution of higher-order terms is neglected, then it can be
written as:

E = 1

N

〈ψ |HR|ψ〉
〈ψ |ψ〉 = E1R + E2R + . . . , (26)

where E1R is one-body kinetic energy in the relativistic lowest-
order constrained variation framework for asymmetric nuclear
matter which contains Z protons and N neutrons and is
independent of f (i j), and can be written as

E1R = E1NR + δE1R, (27)

in which E1NR and δE1R are the nonrelativistic one-body ki-
netic energy and the relativistic correction of one-body kinetic
energy, respectively calculated as [29,34,35]:

E1NR =
2∑

i=1

(
ρi

ρB

)
3

5

h̄2ki
F

2

2m
, (28)

δE1R =
(

− 9π2

7ρB

) 2∑
i=1

Ci
Rki

F ρ2
i , (29)

where ρB = ρp + ρn is the baryon density; Ci
R = h̄4/8m3

i c2;
labels 1 and 2 denote protons and neutrons, respectively; and
ki

F is the Fermi momentum of the ith particle and is given by:

ki
F = (3π2ρi )

1/3. (30)

Also E2R in Eq. (26) is the two-body clusters energy calculated
as:

E2R = 1

2A

∑
〈i j|WR(12)|i j〉a = E2NR + δE2R. (31)

In the rest frame, the “effective potential” WR(12) can be
written as:

WR = WNR + δWR, (32)

where WNR is defined as

WNR(12) = − h̄2

2m

[
f (12),

[∇2
12, f (12)

]] + f (12)V (12) f (12).

(33)

and δWR is obtained to be

δWR = CR
(
2
[∇2

12, f (12)
][∇2

12, f (12)
]

− [
f (12),

[∇2
12, f (12)

]]∇2
12

−∇2
12

[
f (12),

[∇2
12, f (12)

]])
. (34)

By substituting WR in Eq. (31) and after some tedious
algebraic calculations, Euler-Lagrange equations are obtained
by minimizing the two-body cluster energy with respect to
variations in the correlation functions under normalization
constraint. By solving these equations, δE2R can be calculated.
An explicit relation for δE2R is stated in Ref. [35].

V. TBF CONTRIBUTION

As mentioned in the Introduction, the contribution of TBF
in the energy of nuclear matter is very important and should
be calculated. Therefore, UIX three-body force interaction is
included in our Hamiltonian for the purpose of reproducing
the correct saturation properties of cold SNM. We use the gen-
eral form of semiphenomenological UIX interaction, which is
based on meson-exchange theory, generally written as

V123 = V 2π
123 + V R

123, (35)

where V 2π
123 and V R

123 are the contributions of the two-pion
exchange potential and the phenomenological repulsive part,
respectively, represented as

V 2π
123 = A

∑
cyc

({X12, X23}{τ1.τ2, τ2.τ3}

+ 1

4
[X12, X23][τ1.τ2, τ2.τ3]) (36)

and

V R
123 = U

∑
cyc

T (mπ r12)2T (mπ r23)2, (37)

where the one-pion exchange operator X12 is defined as

X12 = Y (mπ r12)σ1.σ2 + T (mπ r12)S12, (38)
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where mπ , σ, τ , and S12 are the average pion mass, spin,
isospin, and the usual tensor operator, respectively. The in-
dices 1, 2, and 3 refer to three interacting nucleons while ad-
justable parameters U = −0.000483 MeV and A = −0.0316
MeV have been determined by Goudarzi and Moshfegh [37]
by fitting empirical saturation properties of cold SNM in the
LOCV method. Y (mπ r12) and T (mπ r12) are the Yukawa and
tensor functions, respectively. They are written as

Y (mπ r12) = e−mπ r

mπ r

(
1 − e−cr2)

, (39)

T (mπ r12) =
[

1 + 3

mπ r
+ 3

(mπ r)2

]
e−mπ r

mπ r

(
1 − e−cr2)2

. (40)

By averaging over the third particle coordinates, and also
after being weighted by LOCV calculations, two-nucleon

correlation functions f (r), an effective two-body interaction
Ṽ12(r) has been derived as a reduced TBF [37] at each density,

Ṽ12(r) = ρ

∫
d3r3

∑
σ3,τ3

f 2(r13) f 2(r23)V123. (41)

By inserting Eq. (35) in the above equation and taking the
z axis along the vector r12, the effective two-body potential
which has the following operator structure is obtained as [37]:

Ṽ12(r) = (τ1 · τ2)(σ1 · σ2)V 2π
στ (r)

+ S12 (̂r)(τ1 · τ2)V 2π
t (r) + V R

c (r), (42)

where

V 2π
στ (r) = 2π

r
ρ

∫ ∞

0
xdx

∫ |r+x|

|r−x|
ydy f 2(x) f 2(y)

∑
cyc

∑
σ3τ3

4A[Y (mπx)Y (mπy) + 2P2(cosθ )T (mπx)T (mπy)], (43)

V 2π
t (r) = 2π

r
ρ

∫ ∞

0
xdx

∫ |r+x|

|r−x|
ydy f 2(x) f 2(y)

∑
cyc

∑
σ3τ3

4A[Y (mπx)T (mπy)P2(cosθx )

+ T (mπx)Y (mπy)P2(cosθy) + T (mπx)T (mπy)P], (44)

V R
c (r) = 2π

r
ρ

∫ ∞

0
xdx

∫ |r+x|

|r−x|
ydy f 2(x) f 2(y) ×

∑
cyc

∑
σ3τ3

U [T (mπx)T (mπy)]2. (45)

The details and notations of Eqs. (43) to (45) are de-
scribed in Ref. [37]. In the next section we present our
results regarding the effects of both TBF and RC on the
saturation properties of SNM, the symmetry energy of our
nuclear matter and β-stable matter with the LOCV, as well as
the RLOCV methods by using two different potentials AV14
and its relativistic version, i.e., ṽ14, obtained relativistically
NN-scattering phase shift.

VI. RESULTS AND DISCUSSION

First, we consider the results which are obtained for sym-
metric nuclear matter. The next subsection is devoted to the
calculation of asymmetric nuclear matter. Finally, the results
of β-stable matter are given in the last subsection.

A. Symmetric nuclear matter

As mentioned in the previous section, we use the real-
istic model of ṽ14 which was introduced by Carlson, Pand-
haripande, and Schiavilla [24,25] to present our numerical
results for nuclear matter. This potential is a two-body phe-
nomenological interaction in configuration space that has
been relativistically fitted with the NN-scattering data. We
have compared the results of the effects of TBF and RC which
come from this potential and its nonrelativistic version, i.e.,
the AV14 potential.

We start with presenting the results of EOS of SNM.
Figure 1 shows the density dependence of energy per nucleon

of SNM for two-body potentials, i.e., AV14 and ṽ14 as well
as both potentials which were supplemented by the TBF of
the Urbana UIX interaction, i.e., AV14+UIX and ṽ14+UIX
in the LOCV and RLOCV formalisms. It is seen that the
binding energy decreases and the saturation density increases
by including RC, i.e., δER + δv (δER = δE1R + δE2R) to the
nuclear Hamiltonian, especially for both 2BF interactions
AV14 and ṽ14 and not so much for 2BF+TBF potentials
AV14+UIX and ṽ14+UIX. Therefore, as mentioned earlier
in Ref. [30], the RC shows a repulsive effect on the EOS of
SNM. The same behavior has been reported in Refs. [33,39].
In other words, adding RC to the nuclear Hamiltonian shifts
the saturation density toward higher densities and also shifts
the binding energy toward the more negative values. On the
other hand, the binding energy and the saturation density
decrease by adding TBF to both two-body interactions, i.e.,
AV14 and its relativistic version, ṽ14, in both the LOCV
and RLOCV formalisms. Accordingly, the saturation density
moves to lower densities and the EOS of SNM becomes
harder by including TBF to the nuclear Hamiltonian. Thus
TBF shows an attractive effect to the EOS of SNM. Similar
results have been observed in the Brueckner-Hartree-Fock
(BHF) and LOCV methods with AV18 interaction [8,30,50].
It is seen from this figure that the role of TBF effect on both
two-body potentials (relativistic and nonrelativistic ones) is
the same in both relativistic and nonrelativistic frameworks,
i.e., the RLOCV and LOCV methods. Also, the effect of TBF
is more considerable than the effect of RC. In all cases, the
relativistic version of the interaction gives stiffer EOS than the
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FIG. 1. The binding energy per nucleon versus density for AV14
as well as ṽ14. Dot curves are drawn by using HNR in LOCV method
without including TBF, dot-dashed curves by using HR in RLOCV
method only by using two-body force (2BF), dashed curves are used
for both 2BF and TBF in our LOCV calculations, and solid curves
are related to RLOCV method with including TBF to their two-body
interactions.

nonrelativistic one. It is due to the fact that the tensor force in
ṽ14 is weaker than the nonrelativistic one and, consequently,
its central component is stronger than AV14. So ṽ14 gives rise
the binding energy of nuclear matter. The major difference
in the strength of the tensor force in nuclear matter arises
from the spin triplet isospin singlet 3S1-3D1 channel. A similar
description has been reported in Ref. [24].

Saturation properties of our nuclear matter in LOCV and
RLOCV calculations by using 2BF as well as 2BF+TBF and
the comparison with other methods and various interactions
are listed in Table I. One can see from this table that if
two-body interaction AV14(ṽ14) is used, then the binding
energy is obtained −22.7 (−18.0) MeV at saturation density
0.33 (0.26) fm−3 in LOCV formalism, while the result in
relativistic regime is −24.9 (−20.6) MeV at 0.37 (0.31) fm−3.
Therefore, the saturation point of SNM for both version of
two-body interactions gets away from the empirical value
by adding the relativistic effects (δER + δv) to the EOS of
nuclear matter. However, if the two-body relativistic version
ṽ14 is considered in relativistic nuclear Hamiltonian which is
defined by Eq. (17) in RLOCV formalism, then the effects
of complete RC means (using relativistic Hamiltonian HR

with relativistic NN interaction) pulls it toward lower values.
So it can produce a better saturation point compared with

AV14, but it is still far from the empirical value. Also, if TBF
is considered in AV14 (ṽ14) interaction, using nonrelativistic
Hamiltonian in LOCV framework, then the calculated sat-
uration point is −15.2 (13.6)− MeV at 0.17 (0.16) fm−3.
Therefore, the calculated saturation points (especially satu-
ration densities) by using both relativistic and nonrelativistic
versions of potential get close to each other in the RLOCV
framework if TBF effects are considered. Moreover, the satu-
ration points by adding TBF to these potentials will get closer
to each other and also to empirical values in the RLOCV
formalism, i.e., −16.0 (−14.9) MeV at 0.17 (0.17) fm−3.
Therefore, the effects of TBF and RC can reproduce the
acceptable saturation point in both versions of interaction. So
although the relativistic effects alone cannot make the empir-
ical saturation point properly, the TBF effects, especially in
the relativistic regime, reproduce the empirical binding energy
−16 ± 1 MeV at saturation density 0.17 ± 0.01 fm−3. In ad-
dition, the incompressibility of SNM at normal density (K0),
which is calculated by Eq. (2) in both the LOCV and RLOCV
methods with two-body interactions AV14, lie neither in the
acceptable range 230 ± 40 MeV [44] nor in 250 < K0 < 315
MeV, which is obtained by reanalyzing data on the nuclear gi-
ant monopole resonance [45], while the isobaric incompress-
ibility with ṽ14 lies in the acceptable ranges 230 ± 40 MeV in
LOCV or 250 < K0 < 315 MeV in the RLOCV framework.
On the other hand, the similar calculations by adding TBF to
our two-body potentials show that the incompressibility in the
LOCV formalism fits in the region 250 < K0 < 315 MeV for
both versions of interaction, but in the RLOCV method, only
the relativistic version of potential fits in the empirical region.
Therefore, only in the RLOCV method, by adding TBF to the
relativistic potential ṽ14, binding energy, saturation density,
and incompressibility lie in the experimental region.

The contribution of the total RC which is given by the
sum of one-body and two-body relativistic kinetic energy
corrections and the boost interaction corrections, i.e., δERC =
δER + δv are listed in Table II for both two-body AV14 and
ṽ14 interactions as well as their 2BF+TBF potentials, i.e.,
AV14+UIX and ṽ14+UIX. As expected, it is seen that RC
contributions for ṽ14 interaction is more than its nonrelativistic
version for all densities.

Since these potentials have been obtained from scattering
phase shift, a potential containing a week tensor component
needs a strong central component. So ṽ14 has a stronger cen-
tral component and, consequently, the contribution of RC in
ṽ14 is higher than its nonrelativistic version. Engvik et al. have
given the similar report [51]. In addition, the central channel
1S0 with (L = 0) has the largest contribution of relativistic
effects, as one can see from Table IV. Similar results are
obtained for ṽ14+UIX as compared with AV14+UIX from
Table II. It is also obvious from this table that the contribution
of RC for both 2BF+TBF interactions, namely AV14+UIX
and ṽ14+UIX, are higher compared to 2BF potentials AV14 and
ṽ14, respectively.

As previously mentioned, in order to use TBF in the
LOCV formalism, we have averaged over the third particle
coordinates to reach a density-dependent effective two-body
interaction [37]. Thus, in the LOCV formalism, three-body
forces contribute only to the two-body cluster energy. The
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TABLE I. A comparison of saturation properties of nuclear matter for LOCV and RLOCV treatment with several many-body interactions
and techniques.

Potential Method Author ρ0 (fm−3) E0(ρ0) (MeV) K(ρ0) (MeV)

AV18 LOCV GM [37] 0.327 −23.37 373.3
AV18+UIX LOCV GMH [50] 0.172 −15.64 306.4
AV18 VHC APR [33] 0.3 −18.22 289
AV18+UIX VHC APR [33] 0.17 −11.9 289
AV18 BHF VPPR [8] 0.240 −17.30 213.6
AV18+UIX BHF VPPR [8] 0.176 −14.62 185.9
UV14 VHC WFF [64] 0.33 −17.1 243
UV14+TNI VHC WFF [64] 0.16 −16.6 261
AV14 VHC WFF [64] 0.32 −15.6 205
AV14+UIX VHC WFF [64] 0.194 −12.4 209
AV18 BHF ZLLM [65] 0.26 −18.2 207
Bonn DBHF DFF [66] 0.193 −16.9 289
AV14 LOCV This work 0.33 −22.7 354
AV14+UIX LOCV This work 0.17 −15.2 303
AV14 RLOCV This work 0.37 −24.9 316
AV14+UIX RLOCV This work 0.17 −16.0 339
ṽ14 LOCV This work 0.26 −18.0 246
ṽ14+UIX LOCV This work 0.16 −13.6 286
ṽ14 RLOCV This work 0.31 −20.6 304
ṽ14+UIX RLOCV This work 0.17 −14.9 283
Empirical 0.17 ± 0.01 −16 ± 1 190–315

contribution of TBF can be considered as δETBF = E2(2BF +
T BF ) − E2(2BF ). We have compared the contribution of
TBF for these two kinds of potentials at different densities
in Table III. It is seen that the TBF contribution in relativistic
version of potential, namely ṽ14, is less than the nonrelativistic
one (AV14) for all densities. It can be valuable to determine
the separate contributions of RC as well as TBF in different
partial waves in our calculation for SNM. Our results of such
separation at empirical saturation density 0.17 fm−3 have
been reported in Table IV. The first two columns present
the contributions of TBF and the next two columns show
the contributions of RC. It can be seen from Table IV that
the 3S1-3D1 channel gives the significant contribution to TBF,
while the 1S0 channel gives, relatively, the major contribution
to RC for both versions of interaction. Similar results have
been obtained for all densities. This is due to effect of tensor
component of the nuclear force which comes mainly through
3S1-3D1 channel. The similar explanation has been stated in
Refs. [30,52]

TABLE II. The contributions of RC (δERC = δER + δv) in MeV
for symmetric nuclear matter with AV14, ṽ14, AV14+UIX, and
ṽ14+UIX interactions.

ρ (fm−3) AV14 ṽ14 AV14+UIX ṽ14+UIX

0.1 −0.20 −0.50 −0.31 −0.71
0.15 −0.45 −0.87 −0.61 −1.38
0.2 −0.80 −1.34 −1.00 −2.18
0.25 −1.30 −1.94 −1.48 −3.07
0.3 −1.77 −2.69 −2.06 −4.07
0.35 −2.27 −3.64 −2.78 −5.15
0.4 −3.16 −4.83 −3.66 −6.31

B. Asymmetric nuclear matter

We have calculated the binding energy per nucleon of
asymmetric nuclear matter for various values of asymmetric
proton to neutron ratio R with step of 0.3, against density
for both 2BF potentials, namely AV14, ṽ14 as well as their
2BF+TBF potentials, i.e., AV14+UIX and ṽ14+UIX in both
the LOCV and RLOCV methods. Our results are presented
in Figs. 2(a)–2(d). It is seen from these figures that the
difference between two versions of potentials is negligible at
low densities and becomes more considerable by increasing
density. Moreover, this difference is larger in the LOCV
method in comparison with the RLOCV method. Also, this
difference is remarkable by employing just 2BF interactions.
As expected, including RC in our Hamiltonian pulls the
saturation densities toward higher values by decreasing bind-
ing energies for different values of R in both interactions,
while adding TBF pushes saturation densities toward lower
values by increasing binding energies, for various values of

TABLE III. The contributions of TBF [δETBF = E2(2BF +
TBF) − E2(2BF)] in MeV for symmetric nuclear matter with AV14
and ṽ14 interactions.

ρ AV14 ṽ14

0.1 −0.27 −0.39
0.15 1.51 1.20
0.2 5.19 4.64
0.25 10.86 10.07
0.3 18.57 17.65
0.35 28.38 27.50
0.4 40.34 39.54
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FIG. 2. The comparison of asymmetric nuclear matter binding energy against density for various proton to neutron ratio for both versions
of interactions, i.e., AV14 (dashed curves) and ṽ14 (solid curves). Panels (a) and (b) show the results of 2BF potentials in LOCV and RLOCV
calculations, respectively, and panels (c) and (d) are devoted to the results of 2BF+TBF potentials in LOCV and RLOCV methods, respectively.

R in both versions of interactions. On the other hand, at
a constant density, when the proton number is decreased,
the saturation density leads to lower values and the EOS
becomes harder in all cases [Figs. 2(a)–2(d)]. Furthermore,
at a constant R, the EOS of ṽ14 shows a harder behavior
compared with nonrelativistic version AV14 whether 2BF or
2BF+TBF interactions are considered, whether the LOCV
or RLOCV calculations are regarded. But if both TBF and

RC are added to system Hamiltonian, then the EOS of AV14

become very close to its relativistic version, i.e., ṽ14. The
proton to neutron ratio that the system becomes no longer
bound is 0.08 (0.11) for AV14 (ṽ14) in the LOCV calculation,
and 0.06 (0.09) in the RLOCV calculation. The calculated
mentioned ratio for AV14+UIX (ṽ14+UIX) is 0.14 (0.15) in
the LOCV calculation, and 0.13 (0.13) in the RLOCV cal-
culation, too. Therefore, in our relativistic calculation, if TBF
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TABLE IV. The separate contributions of δETBF as well as δERC

of partial waves in MeV for SNM with AV14 and ṽ14 interactions at
saturation density 0.17 fm−3. All the quantities are in MeV.

Partial waves TBF TBF RC RC
AV14 ṽ14 AV14 ṽ14

1S0 1.12 1.00 − 0.70 − 0.96
3P0 0.17 0.17 − 0.02 − 0.06
1P1 2.04 2.04 − 0.05 − 0.04
3S1-3D1 − 3.82 − 3.82 0.53 0.03
3P1 0.40 0.42 0.001 − 0.04
1D2 − 0.04 − 0.04 0.03 0.03
3D2 1.44 1.41 − 0.006 − 0.005
3P2 − 3F2 0.32 0.32 − 0.02 0.0080

includes in potentials, then the proton-to-neutron ratio that the
system becomes no longer bound is the same for two different
versions of interaction. Apparently, the effective potential wall
of relativistic version of interaction (ṽ14) is shallower than
nonrelativistic one (AV14) as the system moves to PNM.
Also, the effect of RC causes this effective potential wall to
become deeper, while the effects of TBF is inverse. The effect
of both RC and TBF cause the depth of this potential wall
for both versions of interaction to become similar. Our results

FIG. 3. The comparison of the saturation energy per nucleon
versus asymmetry parameter for both 2BF interactions AV14 and
ṽ14 in LOCV method (dot curves), in RLOCV method (dot-dashed
curves), as well as 2BF+TBF potentials (AV14+UIX and ṽ14+UIX)
in LOCV and RLOCV frameworks (dashed and solid curves),
respectively.

FIG. 4. The same as Fig. 3 but for the saturation density of
nuclear matter.

are comparable with the BHF and DBHF methods [53–55],
the LOCV formalism with Reid 93 [28], as well as the TF
approach [56,57].

In Fig. 3 the asymmetric nuclear matter saturation energy
has been plotted against the asymmetry parameter δ in both
the LOCV and RLOCV calculations, respectively. In all cases
the absolute value of saturation energy in the relativistic
version of interaction is less than the nonrelativistic one.
Moreover, these values are different at asymmetric systems,
and this difference decreases by increasing the asymmetric
parameter δ. It is also seen from this figure when TBF is
added to both versions of potentials specially in relativistic
approach, the values of saturation energies come close to
each other. The similar comparison has been presented for
the saturation density versus δ in Fig. 4. It is observed at a
constant proton abundance, adding TBF to our interactions
decreases saturation density while, including RC to our cal-
culations increases ρ0. It seems the effects of RC and TBF are
completely different on nuclear matter. The effect of TBF is
also significant in compared with RC. Moreover, the effect of
TBF on saturation density is more considerable than the effect
of TBF on binding energy.

The nuclear symmetry energy of asymmetric nuclear mat-
ter can be obtained from Eq. (6) with a good parabolic
approximation. Figure 5 shows the quadratic dependence of
symmetry energy as a function of quadratic isospin asym-
metry parameter (δ2) for both versions of 2BF potentials
(AV14 and ṽ14) as well as 2BF+TBF potentials AV14+UIX,
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Ṽ14+ (RLOCV)
Ṽ14+ UIX(LOCV)
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FIG. 5. (a) The LOCV and RLOCV calculations of the quadratic
dependence of the nuclear symmetry energy as a function of δ2 using
two different versions of 2BF as well as 2BF+TBF interactions at
ρ = 0.17 fm−3. (b) The same as (a) but at ρ = 0.35 fm−3.

and ṽ14+UIX. Figure 5(a) shows to the results at empirical
saturation density (0.17 fm−3) while Fig. 5(b) is devoted
to the density (0.35 fm−3). It is seen that in all cases the

symmetry energy increases nearly linearly with δ2. Therefore,
the parabolic law is actually valid in the whole range of δ.
The slope of each curve describes the approximate value of
symmetry energy at the density (0.17 fm−3). As can be seen
from Fig. 5(a), the symmetry energy is almost independent
of kind of potentials, namely nonrelativistic or relativistic
ones. Furthermore, inclusion of RC has no noticeable effect
on the curves and the value of symmetry energy, while TBF
causes a remarkable difference on the curves and the value of
symmetry energy compared with the case of using only 2BF.
It can be seen from Fig. 5(b) that the effects of TBF and RC
on the symmetry energy almost cancel each other specially in
relativistic potential.

The exact and approximate values of nuclear symmetry
energy of asymmetric nuclear matter can be calculated from
Eqs. (5) and (6), respectively. The results of nuclear symme-
try energy against density in both the LOCV and RLOCV
calculations, with and without including TBF using AV14
and ṽ14, are shown in Fig. 6. Figure 6(a) shows the results
obtained in the LOCV framework, while Fig. 6(b) is devoted
to the results of the RLOCV treatment. It is observed from
both panels that including TBF causes a remarkable difference
in both value and behavior of Esym(ρ) in comparison with
the case of using only 2BF. The calculations in both the
LOCV and RLOCV approaches for both versions of potentials
with and without including TBF provide the same values for
symmetry energy at low densities, which tend to be different
at higher ones. This is quite expected that the effects of RC
become important at higher densities. These differences in
the values of symmetry energy begin at high densities in
the LOCV approach, while they start at moderate densities
in the RLOCV approach. Moreover, using only 2BF interac-
tions leads to a sharply increasing function of density, while
including the TBF to both versions of potentials produces
a symmetry energy with higher values at low and moderate
densities tending to saturated at higher ones in both the LOCV
and RLOCV formalisms. It can be seen from both panels
that the effect of RC causes no significant differences in
the value and particularly in the behavior of Esym(ρ) using
two versions of potentials. The effect of RC on the value of
Esym(ρ) is small at low densities, while this effect increases at
higher densities, as expected. In addition, there is no important
difference, especially between the common behavior and the
values of Esym(ρ) calculated from approximate and exact
relations. These results are in agreement with the calculation
of the AV18 potential in Ref. [50].

In Fig. 7, the density dependence of symmetry energy
calculated in the RLOCV method by using both relativis-
tic and nonrelativistic versions of 2BF interactions as well
as 2BF+TBF ones is compared with the other many-body
calculations using different potentials, such as AP in the
variational method with AV18 interaction [58], MB in the
density-dependence Mishigan three Yukawa terms (DDM3Y)
model [59], GMH in the LOCV approach by using AV18
[50], MZE in the BHF approach with both AV18 and Bonn
potentials [60], ZBLSZ in BHF by including TBF using AV18
[61] or LLSZ by using Bonn [55], and LKLB in DBHF with
AV18 [53]. It is observed that the results obtained in the
present work, around saturation density, and especially by
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FIG. 6. (a) The exact (solid curves) and approximate (dashed
curves) values of density dependence of symmetry energy obtained
by LOCV approach for different potentials. (b) The same as panel (a)
but for RLOCV approach.

including TBF, are in ordinary agreement with those extracted
within other many-body methods.

The values of Esym as well as its slope and curvature and
Kasy calculated from our method are presented in Table V. It
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FIG. 7. The comparison of the nuclear symmetry energy against
density calculated in this work with other potentials and many-body
techniques.

can be seen that the value of Esym(ρ0) in the LOCV method
using nonrelativistic 2BF is 39.0 MeV, which is too large,
while its relativistic version of 2BF in the LOCV method leads
to the smaller value (34.9 MeV) for Esym where none of them
lie in the empirical range (31.6 ± 2.66) [62]. However, the
calculations for the slope parameters at normal density predict
the values 62.7 and 65.9 MeV for AV14 and ṽ14, respectively,
which are both consistent with the range 58.9 ± 16.0 MeV
[62]. The value of the isospin-dependent part of the incom-
pressibility of SNM (Kasy) obtained by 2BF within the LOCV
method is −513.7 (−467.9) MeV for AV14 (ṽ14), which both
lie in the experimental range −550± 100 MeV [63]. The
similar calculations within the RLOCV model show that both
L and Kasy calculated by using ṽ14 lie in the experimental
ranges for these quantities which were mentioned earlier,
while for AV14 it is not the case. Even though including TBF
to ṽ14 causes Esym, L, and Kasy in the LOCV calculation lie
in acceptable ranges, Kasy is not in the acceptable area for
AV14. In the RLOCV treatment all of these values lie in the
acceptable area for both AV14+UIX and ṽ14+UIX. It can
be understood that the properties of nuclear matter such as
binding energy, normal density, incompressibility, symmetry
energy, etc., lie in the experimental area in the RLOCV
approach using ṽ14+UIX.

We have separated the symmetry energy into its one-body
〈E1〉 and two-body 〈E2〉 energies parts. Our results at each
saturation density (which are represented in Table I) are
reported in Table VI. The first four columns are devoted
to the LOCV approach and the next four columns present
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TABLE V. The values of nuclear symmetry energy at saturation density, its slope and curvature and Kasy.

Potential (method) Esym (MeV) L (MeV) Ksym (MeV) Kasy (MeV)

AV18 (LOCV) [37] 40.52 74.1 − 76.3 − 520.6
AV18+UIX (LOCV) [50] 34.17 77.3 − 95.9 − 559.9
AV18 (BHF) [8] 35.8 63.1 − 27.8 − 339.6
AV18+UIX (BHF) [8] 33.6 66.9 − 23.4 − 343.8
MDI (SHF) [67] 30.5 14.7 − 264.0 − 352.0
SLY4 (SHF) [67] 31.8 45.4 − 119.9 − 392.1
NL3 (RMF) [68] 37.29 118.2 100.9 − 608.3
FSUGold (RMF) [69] 32.59 60.5 − 51.3 − 414.3
TM1 (RMF) [70] 36.9 110.8
DDM3Y (RMF) [71] 30.71 45.11 − 183.7 − 454.4
AV14 (LOCV) (this work) 39.0 62.7 − 137.6 − 513.7
AV14 (RLOCV) (this work) 37.0 39.7 − 196.8 − 434.7
AV14+UIX (LOCV) (this work) 33.7 69.6 − 234.7 − 652.5
AV14+UIX (RLOCV) (this work) 33.3 60.8 − 233.8 − 598.6
ṽ14 (LOCV) (this work) 34.9 65.9 − 72.2 − 467.9
ṽ14 (RLOCV) (this work) 35.8 70.4 − 71.8 − 494.4
ṽ14+UIX (LOCV) (this work) 31.4 66.0 − 187.8 − 584.0
ṽ14+UIX (RLOCV) (this work) 30.3 60.1 − 118.1 − 478.7

RLOCV calculations. It is also seen from this table that the
larger contribution of Esym(ρ0) comes from the 〈E1〉 part
compared to 〈E2〉 when only 2BF interactions are consid-
ered, while if TBF is included in our interactions, the con-
tribution of the 〈E2〉 part in Esym(ρ0) becomes more than
〈E1〉 in both LOCV and RLOCV approaches, as physically
expected.

The partial wave decomposition of the 〈E2〉 part of
Esym(ρ0) up to J = 2 at each normal density (ρ0) has been
represented in Table VII. It is observed, in the RLOCV
approach, that the absolute value of the separate contributions
of each channel to Esym are more than the LOCV approach
for both 2BF and 2BF+TBF interactions. Also, by using
2BF+TBF, the absolute value of separate contributions of
partial wave energies of each channel to Esym are smaller in
comparison to using only the 2BF interaction except 3S1-3D1,
which has the larger contribution to symmetry energy when
TBF are added to 2BF interactions. The 3S1-3D1 channel
gives the largest contribution to Esym(ρ0) in all studied cases.
Therefore, the spin triplet (S = 1) and isospin singlet (T =
0) channel contribute the most to symmetry energy. Similar
results have been reported in Refs. [50,52], which indicates
that the tensor component of the nuclear potential makes a
significant contribution to symmetry energy. In addition, the
absolute value of the contribution of each channel to sym-

metry energy for relativistic version of potential (ṽ14) is less
than the nonrelativistic version whether 2BF or 2BF+TBF
has been used in either the LOCV or RLOCV method. As
mentioned, it is due to the fact that the tensor force component
of ṽ14 is less than the nonrelativistic version.

C. β-stable matter

The equilibrium configuration of β-stable matter (BSM)
can be obtained at each total baryon number density (ρB)
by minimizing the binding energy with respect to the two-
body correlation functions and the relative proton abundance
(ρp/ρB) subject to the constraints of Eqs. (10), (11), and
(14) and the normalization constraint in LOCV or RLOCV
calculations.

The EOS of BSM (without considering baryon rest masses)
are plotted in Fig. 8 in both the LOCV and RLOCV frame-
works with and without including TBF for both nonrelativistic
and relativistic versions of interactions, i.e., AV14 and ṽ14.
The results of PNM are also shown in Fig. 9 for comparison. It
is seen that the extra degree of freedom presented by β decay
leads to a softer EOS than the PNM. As expected, the BSM
becomes harder by adding TBF to our interactions, while
it becomes softer when RC is included in our calculations
for both versions of potential. In other words, at a constant
density, inclusion of RC decreases the binding energy per

TABLE VI. The contribution of one-body and two-body cluster energy in Esym at each ρ0 for two different versions of 2BF as well as
2BF+TBF interactions in both LOCV and RLOCV frameworks. All the quantities are in MeV.

LOCV RLOCV

AV14 ṽ14 AV14+UIX ṽ14+UIX AV14 ṽ14 AV14+UIX ṽ14+UIX

〈E1〉 (MeV) 20.74 17.31 13.22 12.69 22.74 19.23 13.70 13.54
〈E2〉 (MeV) 17.62 15.72 19.23 18.18 18.52 17.50 19.28 19.32
Total (MeV) 38.36 33.03 32.46 30.87 41.25 36.73 33.68 32.86
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TABLE VII. The separate contributions of partial wave energies of 〈E2〉 part of symmetry energy (in MeV) at each ρ0 for two different
versions of 2BF as well as 2BF+TBF interactions in both LOCV and RLOCV frameworks.

LOCV RLOCV

AV14 ṽ14 AV14+UIX ṽ14+UIX AV14 ṽ14 AV14+UIX ṽ14+UIX

1S0 2.22 1.47 0.60 0.58 3.08 2.29 0.83 0.98
3P0 0.30 − 0.031 0.0011 − 0.097 0.69 0.33 0.081 0.043
1P1 − 7.94 − 6.02 − 5.51 − 5.03 − 9.34 − 7.25 − 6.01 − 5.89
3S1-3D1 23.04 18.89 26.11 23.52 23.11 18.95 27.17 25.27
3P1 6.79 5.17 4.11 3.56 8.23 6.52 4.41 4.11
1D2 − 4.95 − 3.56 − 2.81 − 2.52 − 5.78 − 4.28 − 3.04 − 2.92
3D2 9.44 6.83 2.56 2.30 11.13 8.31 2.76 2.64
3P2 − 3F2 − 11.28 − 7.03 − 5.83 − 4.14 − 12.61 − 7.36 − 6.22 − 4.92

nucleon while inclusion of TBF increases the binding energy
and makes it more density dependent. Also, the effect of TBF
is more significant on the EOS of BSM in compared to the
effects of RC. Moreover, the EOS of BSM by using only 2BF
relativistic version of potential (ṽ14) is harder than the nonrel-
ativistic one (AV14) in both LOCV and RLOCV calculations.
The same behavior is also observed for 2BF+TBF potentials
(ṽ14+UIX, AV14+UIX). The EOS of BSM in relativistic
and nonrelativistic approaches are not very different at low
densities for both 2BF and 2BF+TBF interactions, but the
results become different at high densities. Therefore, one can

FIG. 8. The energy of BSM without considering baryon rest
masses as a function of baryon densities. Dot (dot-dashed) curves
represent our results for LOCV (RLOCV) calculation using only 2BF
and dashed (solid) curves are used for LOCV (RLOCV) methods
using 2BF+TBF.

conclude that in protoneutron stars which have high density,
the effect of RC and particularly TBF may be very important
in determining the EOS of these stars.

In Fig. 10 the energy per baryon number density of BSM
has been plotted for both AV18 and its 2BF+TBF interaction
(AV18+UIX) as a function of density. The results for PNM
obtained by GMH [50] have been also represented for com-
parison. The effect of TBF on BSM for this potential is also
very similar to the above-mentioned interactions.

The relative proton abundance (ρp/ρB) for relativistic
and nonrelativistic approaches with and without including
TBF in our interactions versus baryon density is plotted in
Fig. 11. The results of the nonrelativistic version of potential
(AV14) are plotted in Fig. 11(a) while Fig. 11(b) shows
the results of the relativistic one (ṽ14). It can be seen from

FIG. 9. The same as Fig. 8 but for PNM.
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FIG. 10. The EOS of PNM as well as BSM using AV18 with
and without including TBF. The solid curves represent the calculated
EOS of BSM and broken curves show the results of PNM.

Fig. 11(a) that in LOCV calculations, by using only 2BF
(AV14), the relative proton abundance increases by increasing
baryon density which tends to be saturated at high densities

(ρ > 1 fm−3), while including the RC provides ρp/ρB with
lower values, which is saturated at the moderate density 0.35
fm−3. It reaches 4% of the baryon abundance. On the other
hand, adding TBF to our interaction produces the relative
proton abundance with higher values at low densities, which
is saturated at the same density (0.35 fm−3) in LOCV as well
as in RLOCV frameworks. By using AV14+UIX, this ratio
comes to 8.5% of the baryon abundance in LOCV treatment,
while reaching 6% of the baryon density in the RLOCV
method. Therefore, adding RC to the β-stable results de-
creases the maximum ρp/ρB, while including TBF increases
the maximum value of proton abundance. It is observed that
Fig. 11(b) has similar behaviors by including RC as well as
TBF in the β-stable results. By using relativistic potential ṽ14,
the maximum of the proton abundance is pushed to the higher
baryon densities with the lower proton abundance with respect
to the nonrelativistic version. If only the 2BF interaction ṽ14

uses the LOCV (RLOCV) calculation, then the maximum
value of proton abundance is 3% (1.8%) of the baryon density,
which occurs at baryon density 0.8 fm−3. By adding TBF,
the value ρp/ρB is pushed to the lower baryon densities. The
maximum of proton abundance is around 6.4% (5.3%) of
baryon abundance at the baryon number density 0.35 fm−3

for the LOCV (RLOCV) formalism. So the maximum value of
proton abundance depends on the relativistic or nonrelativistic
versions of interaction, and the relativistic or nonrelativistic
approach, and particularly on the TBF. Since in protoneutron
stars we deal with dense matter at high energies, the effects of
RC as well as TBF may be very important on the maximum of
proton abundance. Moreover, it can be concluded that using
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FIG. 11. (a) The comparison of the relative proton abundance against baryon number density using AV14. Dot (dot-dashed) curves show
the results by using 2BF in LOCV (RLOCV) treatment and dashed (solid) curves show the results by using 2BF+TBF in these approaches,
respectively. (b) The same as panel (a) but for ṽ14.
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FIG. 12. The proton abundance ρp/ρB as a function of baryon
density calculated in this work as well as other methods and
interactions.

the realistic potential which has been fitted relativistically
to nucleon-nucleon scattering phase shifts may affect the
maximum of proton abundance. This shows that, aside from

particles densities, the RC, and in particular the TBF, may play
a great role in the EOS of neutron stars.

The proton abundance ρp/ρB calculated by using AV18
and AV18+UIX is also shown in Fig. 12. Similar results
with mentioned potentials are observed when TBF includes
the AV18 interaction. So it can be concluded that using
2BF+TBF interactions, the protoneutron stars may have a
higher ρp at lower densities, with respect to using only
the 2BF interaction. The results of MM [48] in the LOCV
formalism with Reid and �-Reid interactions and TLKM
[12] in a mean-field study with CDM3Y6 and CDM3Y6s
interactions are also presented for comparison. The agree-
ment is good, particularly at low-baryon-number densities.
The quantity ρp/ρB, which is obtained by employing 2BF
interactions AV14 and AV18 in the present work and those
calculated by TLKM with CDM3Y6 interaction increase,
while the results using 2BF+TBF potentials AV18+UIX,
AV14+UIX and those of MM with Reid and �-Reid and
TLKM with CDM3Y6s show a decreasing trend in relative
proton abundance.

The maximum of relative proton abundance is due to the
fact that in the above interactions, the system takes advantage
of the tensor components. Since the 2BF+UIX (TBF) inter-
action has more repulsive components compared with 2BF,
such as the 3S1-3D1 channel, the peak consequently occurs at
a lower density.

In Fig. 13 the calculated number densities of protons (p),
electrons (e), and muons (μ) have been plotted as a function
of the total baryon number density in both nonrelativistic
and relativistic treatment for both 2BF and 2BF+TBF in-
teractions. The results of AV14, ṽ14, and AV18 have been
shown in Figs. 13(a), 13(b), and 13(c), respectively. We find
that ρp, ρe, and ρμ increase (decrease) by including TBF at
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FIG. 13. (a) The particle densities of proton, electron and muon versus baryon density, for AV14 potentials with and without adding TBF
to our interactions in both RLOCV (solid and dot-dashed curves) and LOCV (dashed and dot curves) frameworks. (b) The same as panel (a)
but for ṽ14. (c) The same as panel (a) but for AV18 only in LOCV method.
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low (high) baryonic densities. It is also seen from Fig. 13(a)
that the muon densities are almost zero for ρB � 0.15 fm−3

in the LOCV framework using the 2BF interaction AV14,
and the muons set in at higher baryon density as we include
RC to our calculations, while they begin at lower baryon
number density when TBF are included in our interactions.
These effects are much more pronounced in the case of the ṽ14

potential. So the muon densities get started for ρB � 0.6 fm−3

in the LOCV framework by using the 2BF ṽ14 interaction and
the muons set in at lower baryon number density when TBF
is added to the ṽ14 interaction. This shows that the effect of
RC on particle densities is the opposite of the effect of TBF.
A similar behavior happens for 2BF AV18 and its 2BF+TBF
interaction (AV18+UIX), as shown in Fig. 13(c). Like AV14,
using the 2BF potential, the muon’s densities set in at ρB =
0.15 fm−3, which leads to lower baryonic densities when the
2BF+TBF interaction is used.

VII. SUMMARY AND CONCLUSION

In summary, the LOCV approach with the inclusion of RC
as well as TBF of the Urbana UIX interaction is used to study
the properties of cold nuclear matter, with the focus on the
roles of RC and TBF on the properties of such nucleonic
matter. In order to compare the relativistic effects with the
effects of TBF, we have used two different versions of v14,
relativistic (ṽ14) and nonrelativistic (AV14) ones, as the bare
two-body interactions. The separate contributions of RC as
well as TBF of partial wave energies are also calculated. It
is found that the 1S0 partial wave provides the largest contri-
bution of relativistic effects for both versions of interactions,
while the major contribution to the effects TBF come through
the 3S1-3D1 channel.

The values of binding energy, saturation density in a wide
range of asymmetry parameters, incompressibility, symmetry
energy and its slope and curvature parameters, and the density
dependence of nuclear symmetry energy are also investigated.
It can be concluded that with the inclusion of TBF to the
relativistic lowest-order constrained variation formalism, the
RLOCV is successful to reproduce correctly the nuclear
matter saturation properties, i.e., density, binding energy,
the isobaric incompressibility at saturation point, as well as
the symmetry energy and its slope and curvature. Most of
the mentioned quantities lie in the experimental ranges by
using AV14, while all of them lie within the experimentally
determined ranges by using ṽ14. It is also found that the
coupled channel 3S1-3D1 provides the largest contribution to
symmetry energy.

The β-stable matter and its proton abundance in a wide
range of baryon number densities are also studied. It is seen
that the extra degree of freedom offered by the β decay leads
to a slight softening of EOS, as would be expected. It is
seen that the maximum values of proton abundance which
are obtained by 2BF+3BF interactions are much larger than
those of 2BF potentials (AV14, ṽ14, AV18) and they occurred
in much lower baryon number densities. It was observed that
adding RC to our calculations has an opposite effect on BSM
with respect to the effect of TBF. It was shown that the RC
and especially TBF may play an important role in increasing

the percentage of proton abundance in protoneutron stars. In
the central core of these stars, which is so dense, the role of
TBF can be great, and these stars may have lower densities
than previously thought. The EOS of BSM is softer than PNM
and the effects of RC and TBF may influence the structure of
nucleonic stars and the behavior of dense matter.

In conclusion, despite close agreements between the results
of the LOCV method and other many-body techniques, i.e.,
BHF, FHNC, etc., it is worthwhile to mention that the correla-
tion function is a key quantity to characterize each many-body
method. The short- and long-range correlation functions are
directly available in the LOCV method, while in the BHF
framework the short-range correlation functions can extract
only throw defect function. This fact has been elucidated in
Ref. [40]. In the LOCV method, the average kinetic energy
is affected directly by correlations, and the total correlation
energy includes a kinetic part and a potential part. But in
the BHF scheme the kinetic energy is not modified and the
whole correlation energy is contained in the potential part
extracted from the G matrix, which describes the two-nucleon
scattering amplitude. On the other hand the kinetic energy in
BHF framework modifies by the momentum dependence of
G matrix [40]. The LOCV formalism is a fully self-consistent
method with state-dependent correlation functions. There is
no free parameter in this approach, except those included in
the potentials. The only constraint that is considered in the
LOCV formalism is the normalization condition, which is
the physical condition of the system. This assumption keeps
the higher-order terms as small as possible. By functionally
minimizing the two-body energy with respect to the short-
range parts of the correlation functions, we obtained a set
of Euler-Lagrange equations. The long-range behavior of the
correlation functions also assumes a particular form in order
to carry out an exact functional minimization. The functional
minimization procedure represents a great computational sim-
plification over the unconstrained methods such as VHC,
where the short-range behavior of the correlation functions is
parameterized, trying to go beyond the lowest order. In other
microscopic methods, such as the BHF approach, only the
expectation value of the energy is obtained without calculating
any correlation functions.

The correlation functions are very important in calculat-
ing two-nucleon spectral functions. These functions contain
information on the NN correlations, the nuclear structure,
and, in particular, the NN interactions. The spectral functions
of the many-body systems can give us important quantities,
such as the one-particle ground-state energy. Moreover, by
calculating the spectral function of a nucleus, it can extract the
correlation energy between the two nucleons and eventually
find the total ground-state energy of the system. Thus, as
was pointed out, the calculation of the two-proton spectral
functions of a nucleus is an important quantity of interest. In
recent years, generally a number of theoretical methods have
been carried out for determining the two-nucleon spectral
functions with different approximations. In these works the
short-range correlation and the long-range effects have been
able to closely explain the experimental properties of the
target ground state. However, the connection of the correlation
function and the spectral function is very transparent in the
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LOCV method [72], while it is not straightforward in BHF
[73]. Finally, another advantage of the LOCV framework is
that not only can it apply for whole densities (from lower to
higher than the saturation point) but also it has been extended
to the relativistic approach, it can be added to TBF, and it can
be used at finite temperature.

So, with respect to the above arguments, one can conclude
that most of the minor differences in the results of LOCV
and other variational methods return to density behavior of
correlations functions, which is discussed in the appropriate
references. Thus, we can claim the LOCV is a good candidate
to approximate nuclear symmetry energy and its density de-
pendence as well as the proton abundance of β-stable matter.
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