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Effects of the equation of state on the core-crust interface of slowly rotating neutron stars
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We systematically study the symmetry energy effects of the transition density nt and the transition pressure
Pt around the crust-core interface of a neutron star in the framework of the dynamical and the thermodynamical
methods respectively. We employ both the parabolic approximation and the full expansion, for the definition of
the symmetry energy. We use various theoretical nuclear models, which are suitable for reproducing the bulk
properties of nuclear matter at low densities, close to saturation density as well as the maximum observational
neutron star mass. First we derive and present an approximation for the transition pressure Pt and crustal mass
Mcrust . Moreover, we derive a model-independent correlation between Pt and the slope parameter L for a fixed
value of the symmetry energy at the saturation density. Second, we explore the effects of the equation of state on
a few astrophysical applications which are sensitive to the values of nt and Pt including neutron star oscillation
frequencies, thermal relaxation of the crust, crustal fraction of the moment of inertia, and the r-mode instability
window of a rotating neutron star. In particular, we employ the Tolman VII solution of the TOV equations to
derive analytical expressions for the critical frequencies and the relative time scales, for the r-mode instability, in
comparison with the numerical predictions. In the majority of the applications, we found that the above quantities
are sensitive mainly to the applied approximation for the symmetry energy (confirming previous results). There is
also a dependence on the used method (dynamical or thermodynamical). The above findings lead us to claim that
the determination of nt and Pt must be reliable and accurate before they are used to constrain relevant neutron
star properties.
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I. INTRODUCTION

Neutron stars (NSs) are the most compact stellar objects in
the universe, which makes them extraordinary astronomical
laboratories for the physics of dense nuclear matter [1–3].
Very recently, the detection of gravitational waves from the
merger of two neutron stars, in a binary neutron-star system,
opened a new powerful window to the exploration of the
physics of NSs [4,5]. Particularly, many of the static properties
as well as dynamical processes of neutron stars are sensi-
tively dependent on the employed equation of state [6–14].
However, the knowledge of the equation of state, especially at
high densities, is very uncertain and consequently the relevant
predictions and estimations suffer from uncertainties. On the
other hand, for low densities (close to the saturation density of
symmetric nuclear matter) the equation of state (EoS) is well
constrained and the relevant predictions are more reliable.
This prediction includes the crust-core interface which is the
main subject of the present study.

The interior of a neutron star is divided into the outer core
and the inner one. It has a radius of approximately 10–14 km
and contains most of the star’s mass [6]. The crust, with a
thickness of about 10% of the total radius, contains only a
few percent of the total mass. It can also be divided into an
outer and an inner part. The equation of state of neutron-rich
nuclear matter is the important ingredient among all the bulk
properties of NS in the study of both the core and the crust. In
particular, the implementation of the EoS predicts the location

of the inner edge of a neutron star crust. The inner crust
comprises the outer region from the density at which neutrons
drip out of nuclei to the inner edge, separating the solid crust
from the homogeneous liquid core. At the inner edge, in fact,
a phase transition occurs from the high density homogeneous
matter to the inhomogeneous one at lower densities. It was
found that the transition density is related to some finite nuclei
properties including neutron-skin, dipole polarizability, etc.
[15–17].

The baryon transition density nt at the inner edge is
uncertain due to our insufficient knowledge of the EoS of
neutron-rich nuclear matter. In addition, the determination of
the transition density nt itself is a very complicated prob-
lem because the inner crust may have an intricate struc-
ture. A well established approach is to find the density
at which the uniform liquid first becomes unstable against
small-amplitude density fluctuations, indicating the forma-
tion of nuclear clusters. This approach includes the dynami-
cal method [18–24], the thermodynamical one [25–28], and
the random phase approximation (RPA) [17,29]. Recently,
a method to determine the transition density in the frame-
work of the unified equation of state has been presented in
Ref. [30].

The structure of the crust as well as some dynamical
processes are affected appreciably by the location of the crust-
core interface. First, if the transition density nt is sufficiently
high, it is possible for nonspherical phases, with rod- or
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platelike nuclei, to occur before the nuclei dissolve [31,32].
If nt is relatively low, then the matter undergoes a direct
transition from spherical nuclei to uniform nucleonic fluid.
In general, the values of the transition density are related to
the existence of the nuclear pasta, including various phases
i.e., droplet, rod, slab, tube, and bubble (see Refs. [30,33] for
a recent study) but we will not be studying this issue in the
present work. The pulsar glitches (sudden discontinuities in
the spin down of a pulsar) are related to the crustal fraction
of the moment of inertia [34–36]. Moreover, the frequencies
of a class of neutron star oscillations, which can be detected
from observations of quasiperiodic oscillations in the x-ray
emissions, are dependent on the transition density between
crust and core [37–39]. In the dynamical process of the
neutron star cooling, the thermal relaxation of the crust is
sensitive to the crust radius [37,40,41]. In addition, concerning
the r-mode instability condition, the critical angular velocity
depends appreciably on the core radius, the transition density,
and the energy density [42–50].

The motivation of the present work is twofold. First, in
the framework of the dynamical and the thermodynamical
method we calculate the transition density and the corre-
sponding pressure using various nuclear models. In particular
we explore the effects of the contribution of the Coulomb
and the density gradient terms on the determination of nt

and Pt and consequently on some neutron star properties,
while examining in parallel how the nuclear symmetry energy
affects the above mentioned values. Second, we concentrate
our study mainly on the error which can be introduced by
employing the well known parabolic approximation for the
symmetry energy, not only on the values of nt and Pt but also
on the predictions of some neutron star observable properties.
We exhibit the necessity to implement both the dynamical
method and the full approximation for the symmetry energy
in order to get reliable predictions.

Moreover, we provide analytical expressions for the mass
of the crust Mcrust and also for the transition pressure Pt . A
semianalytical expression, based on theoretical and empirical
arguments, has been derived and presented for the Pt . In
particular, considering fixed values of the symmetry energy
at the saturation density, we arrive at a model-independent
relation between Pt and the slope parameter L. Finally,
we employ the Tolman VII analytical solution of the TOV
equations and we derive analytical expressions for the time
scales and frequencies related with the r-mode instabilities
(which are sensitive to the crust-core interface). The proposed
approximation has been proved to be very accurate, providing
some useful analytical relations suitable for astrophysical
applications.

The article is organized as follows. In Sec. II, we present
the basic formalism of the dynamical method and also all the
key expressions needed to calculate the transition density and
the corresponding pressure including the nuclear symmetry
energy formalism. The nuclear models used in the present
study are presented in Sec. III. In Sec. IV we present appli-
cations of the methods in various astrophysical issues. Our
results are presented and discussed in Sec. V while Sec. VI
summarizes the present work.

II. DYNAMICAL METHOD FORMALISM

The study of the instability of β stable nuclear matter is
based on the variation of the total energy density, in the frame-
work of the Thomas-Fermi approximations (see the innovative
work by Baym, Bethe, and Pethick [18]). In the dynamical
method, compared to the thermodynamical one, effects from
inhomogeneities of the density and the Coulomb interaction
have also been included. The starting point of this method is
the consideration of small sinusoidal variations in the neutron,
proton, and electron densities defined as δnn(r), δnp(r), and
δne(r). The onset of instability occurs when the total energy
in the presence of density inhomogeneity is lower than the
energy of the uniform liquid. In particular, the expansion of
the total energy up to second order in the variation of the
densities leads to [18,19]

E − E0 = 1

2

∑
i,j

∫
δ2E

δni (k)δn∗
j (k)

δni (k)δn∗
j (k)

dk
(2π )3

= 1

2

∫
Udyn(k, n)|δnp(k)|2 dk

(2π )3
, (1)

where E0 is the energy of the uniform phase and δni (k) is
the density in momentum space. The onset of instability will
occur if the total energy E , in the presence of the density
inhomogeneity, is lower than E0. Udyn(k, n) is the so-called
effective interaction between protons given by [18,19]

Udyn(k, n)

=
(

∂μp

∂np

+ 2Dppk2 + 4πe2

k2

)
− (∂μp/∂nn + 2Dpnk

2)2

∂μn/∂nn + 2Dnnk2

− (4πe2/k2)2

∂μe/∂ne + Deek2 + 4πe2/k2
. (2)

The chemical potential μn and μp are defined as

μn =
(

∂Eb

∂nn

)
np

, μp =
(

∂Eb

∂np

)
nn

, (3)

where nn and np are the number densities of neutrons and
protons respectively and Eb the energy per baryon (including
protons and neutrons). It is worthwhile to discuss here with
more detail the gradient terms Dij (i, j = p, n). These terms
are in general functions of the density but we treat them as
constants. Moreover, since the models used in the present
work do not have gradient terms we fix them in an approx-
imate way (see the discussion at the end of the subsection).
Now, in Eq. (2) neglecting the factor Dee and retaining for
consistency only terms of order of k2 in the curvature term,
due to the momentum wave number taking small values, we
find the well known approximation [18]

Udym(k, n) = U0(n) + ξk2 + 4πe2

k2 + k2
T F

, (4)

where

U0(n) = ∂μp

∂np

− (∂μp/∂nn)2

∂μn/∂nn

, (5)

ξ = 2(Dpp + 2Dnpζ + Dnnζ
2), ζ = −∂μp/∂nn

∂μn/∂nn

, (6)
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and also

k2
T F = 4

π

e2

h̄c
k2
e = 4

π

e2

h̄c
(3π2xn)2/3. (7)

In Eq. (7) ke is the electron Fermi momentum and x = ne/n
is the electron fraction. In addition, the electron chemical
potential μe is given by

μe = h̄c(3π2ne )1/3. (8)

We note that here we have Dij = Bij/n0 according to the
notation of Baym et al. [18]. In the specific case where Dpp =
Dnn = Dpn/2 we get

ξ = 2Dnn(1 + 4ζ + ζ 2).

The effective interaction Udym(k, n), given by Eq. (4), for a
fixed value of the density n, has a minimum at k = Q given
by

Q2 =
√

4πe2

ξ
− k2

T F . (9)

Now, replacing k = Q in Eq. (4) we find the least stable
modulation

Udyn(Q,n) = U0(n) + 4
√

παh̄cξ − 4αξ (9πx2n2)1/3,

α = e2/h̄c. (10)

The transition density nt is determined now from the condition
Udyn(Q,nt ) = 0. The basic ingredients of Eq. (10) are the
energy per baryon of nuclear matter Eb (and consequently
the chemical potentials of neutrons and protons) and also the
proton fraction x. Now, it is important to discuss the selected
values of the gradient terms Dij . Following the formalism
introduced by Bethe [51] and elaborated by Ravenhall and
co-workers [52,53] and Steiner et al. [54], we consider that
the total energy density of semi-infinite matter is given by

Eb(n) = nEb(n, x = 0.5) + D

(
dn(z)

dz

)2

, (11)

where z is the distance of the surface and D is a constant
related with the coefficients Dij according to D = 3Dnn/2 =
3Dpp/2 = 3Dnp/4. The quantity D can be determined either
from the surface energy of symmetric nuclear matter or from
the surface thickness of symmetric nuclei [37]. By minimizing
the total energy according to

∫ ∞
−∞ Eb(n)dz with respect to the

baryon density n(z) and for a fixed number of baryons we
found (see also the recent work [55])

n(Eb(n, x = 0.5) − λ) = D

(
dn(z)

dz

)2

, (12)

where λ is the Lagrange multiplier fixed by the equation
λ = Eb(ns, x = 0.5) = E0 (ns is the saturation density of
symmetric nuclear matter). We define the function

g(u) = u

(
Eb(n, x = 0.5) − λ

Ekin

)
, (13)

FIG. 1. The thickness parameter t90−10 (in fm) and the surface
tension σsnm (in MeV/fm2) as a function of the parameter D for the
employed models.

where u = n/ns and Ekin is the kinetic energy at the saturation
density ns . Now, the surface thickness is written

t90−10 =
√

Dns

Ekin

∫ 0.9

0.1

1√
g(u)

du. (14)

The surface tension of the symmetric nuclear matter σsnm

defined as

σsnm ≡
∫ +∞

−∞
(Eb − λn)dz

= 2
∫ +∞

−∞
[nEb(n, x = 0.5) − λn]dz (15)

can be written also as

σsnm = 2
√

DEkinn3
s

∫ 1

0

√
g(u)du. (16)

The function g(u) is defined for each applied nuclear model
and the parameter D is varied in an interval which leads
to reasonable values for the surface thickness t90−10 and the
surface tension σsnm. In particular, the gradient terms related
with t90−10 and σsnm are selected in a such a way that these
quantities are close to the empirical values [22,55–62]. In
Fig. 1 we plot, for the considered models, the dependence of
the surface tension and surface thickness on D. We found that
the value D = 72 MeV fm5 (and consequently Dnn = Dpp =
48 MeV fm5) leads to reasonable values both for the surface
thickness and surface tension. The results are presented also in
Table I. Of course one can fix the values of Dij for each model
separately in order to keep the uniformity of the gradient term
but we considered the present approximation to be reasonable.
In any case a more systematic study of the effects of the
gradient term on the transition density has been presented and
discussed also in Refs. [22,57].

It should be noted that neglecting in Eq. (4) the gradient
and the Coulomb contribution (the second and third term
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TABLE I. The values of the thickness parameter t90−10 (in fm)
and the surface tension σsnm (in MeV/fm2) for D = 72 MeV fm5

derived for the employed models.

MDI Sly4 SKI4 Ska HLPS

t90−10 2.63 2.51 2.43 2.52 2.67
σsnm 1.14 1.09 1.12 1.10 1.10

respectively), the dynamical method is reduced to the ther-
modynamical one [22,25–28]. In this case, the solution of
the equation U0(nt ) = 0 leads to the transition density nt .
Obviously, the contribution of the gradient and the Coulomb
term, to the estimation of nt and Pt , can be studied separately.

Symmetry energy

The symmetry energy plays an important role on the de-
termination of the transition density and the corresponding
pressure and is a key quantity to explain in general many
neutron star properties and dynamical processes [14]. We
consider that the energy per particle of nuclear matter Eb(n, I )
can be expanded around the asymmetry parameter I as [28]

Eb(n, I ) = Eb(n, I = 0) + Esym,2(n)I 2 + Esym,4(n)I 4

+ · · · + Esym,2k(n)I 2k + · · · , (17)

where I = (nn − np )/n = 1 − 2x (x is the proton fraction
np/n). The coefficients of the expansion (17) are given by the
expression

Esym,2k(n) = 1

(2k)!

∂2kEb(n, I )

∂I 2k

∣∣∣∣
I=0

. (18)

The nuclear symmetry energy Esym(n) is defined as the coef-
ficient of the quadratic term, that is

Esym(n) ≡ Esym,2(n) = 1

2!

∂2Eb(n, I )

∂I 2

∣∣∣∣
I=0

, (19)

and the slope of the symmetry energy L at the nuclear satu-
ration density ns , which is an indicator of the stiffness of the
EoS, is defined as

L = 3ns

dEsym(n)

dn

∣∣∣∣
n=ns

. (20)

In the framework of the parabolic approximation (PA) the
energy per particle is given by the expression

Eb(n, x) � Eb(n, I = 0) + I 2EPA
sym(n), (21)

where EPA
sym(n) is simply defined as

EPA
sym(n) = Eb(n, I = 1) − Eb(n, I = 0). (22)

In β-stable nuclear matter the following processes take place
simultaneously:

n → p + e− + ν̄e, p + e− → n + νe (23)

and considering that neutrinos generated in these reactions
have left the system, the chemical equilibrium condition takes

the form

μn = μp + μe. (24)

It is easy to show that after some algebra we get [50] (see also
the Appendix)

μn − μp =
(

−∂Eb

∂x

)
n

. (25)

Finally, using also Eq. (8), we found(
∂Eb

∂x

)
n

= −h̄c(3π2xn)1/3. (26)

Equation (26) is the most general relation that determines
the proton fraction of β-stable matter and we will mention
it hereafter as a full expansion (FE). Now the total energy per
particle of neutron star matter E(n, x) will be given by the
sum of the energy per baryon and electron energy, that is

E(n, x) = Eb(n, x) + Ee(n, x), (27)

where the fraction x is determined, in general, by Eq. (26).
The electrons are considered as a noninteracting Fermi gas
and consequently [1]

Ee(n, x) = 3
4 h̄c(3π2x4n4)1/3. (28)

Accordingly, the total pressure is decomposed also into
baryon and lepton contributions

P (n, x) = Pb(n, x) + Pe(n, x), (29)

where by definition

Pb(n, x) = n2

(
∂Eb

∂n

)
x

. (30)

The contribution of the electrons to the total pressure is equal
to

Pe(n, x) = 1

12π2

μ4
e

(h̄c)3
= h̄c

12π2
(3π2xn)4/3. (31)

Now, the transition pressure Pt in the case of the FE is given
by the equation

P FE
t (nt, xt ) = n2

t

(
∂Eb

∂n

)
n=nt

+ h̄c

12π2
(3π2xtnt )

4/3. (32)

In the case of the parabolic approximation, the use of Eq. (26)
with the definition (21) leads to the determination of the
proton fraction by the equation

4(1 − 2x)EPA
sym(n) = h̄c(3π2nx)1/3. (33)

In this case the transition pressure P PA
t is given by the relation

[28]

P PA
t (nt, xt ) = n2

t

[(
dEb(n, x = 0.5)

dn

)
n=nt

+
(

dEPA
sym(n)

dn

)
n=nt

(1 − 2xt )
2

]

+ h̄c

12π2
(3π2xtnt )

4/3. (34)
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III. MODELS

In the present work we employed various nuclear models,
which are suitable for reproducing the bulk properties of
nuclear matter at low densities, close to saturation density as
well as the maximum observational neutron star mass. In par-
ticular, in each case, the energy per particle of nuclear matter
Eb(n, I ) is given as a function of the baryonic number density
n and the asymmetry parameter I (or the proton fraction x).

A. MDI model

The momentum-dependent interaction (MDI) model used
here was already presented and analyzed in previous pa-
pers [63,64]. The MDI model is designed to reproduce the
results of the microscopic calculations of both nuclear and
neutron-rich matter at zero temperature and it can be extended
to finite temperature. The energy per baryon at T = 0 is
given by

Eb(n, I ) = 3

10
E0

F u2/3
[
(1 + I )5/3 + (1 − I )5/3

] + 1

3
A

[
3

2
−

(
1

2
+ x0

)
I 2

]
u +

2
3B

[
3
2 − (

1
2 + x3

)
I 2

]
uσ

1 + 2
3B ′[ 3

2 − (
1
2 + x3

)
I 2

]
uσ−1

+ 3

2

∑
i=1,2

[
Ci + Ci − 8Zi

5
I

](
�i

k0
F

)3
⎛
⎝ [(1 + I )u]1/3

�i

k0
F

− tan−1 [(1 + I )u]1/3

�i

k0
F

⎞
⎠

+ 3

2

∑
i=1,2

[
Ci − Ci − 8Zi

5
I

](
�i

k0
F

)3
⎛
⎝ [(1 − I )u]1/3

�i

k0
F

− tan−1 [(1 − I )u]1/3

�i

k0
F

⎞
⎠. (35)

In Eq. (35) the ratio u is defined as u = n/ns , with ns

denoting the equilibrium symmetric nuclear matter density
(or saturation density), ns = 0.16 fm−3. The parameters
A, B, σ, C1, C2, and B ′ which appear in the description of
symmetric nuclear matter take the values A = −46.65, B =
39.45, σ = 1.663, C1 = −83.84, C2 = 23, and B ′ = 0.3.
They are determined by the requirement that Eq. (35) repro-
duces the binding energy Eb(n = ns, I = 0) = −16 MeV at
the saturation density ns = 0.16 fm−3 and the incompressibil-
ity is K = 240 MeV. The finite range parameters are �1 =
1.5k0

F and �2 = 3k0
F with k0

F being the Fermi momentum at
the saturation density ns . By suitably choosing the parameters
x0, x3, Z1, and Z2, it is possible to obtain a different form
for the density dependence of the symmetry energy as well as
for the value of the slope parameter L and the value of the
symmetry energy at the saturation density [50,64]. Actually,
for each value of L the density dependence of the symmetry
energy is adjusted so that the energy of pure neutron matter is
comparable with those of existing state-of-the-art calculations
[50,64].

B. Skyrme model

The Skyrme functional providing the energy per baryon of
asymmetric nuclear matter is given by the formula [65,66]

Eb(n, I ) = 3

10

h̄2c2

m

(
3π2

2

)2/3

n2/3F5/3(I )

+ 1

8
t0n[2(x0 + 2) − (2x0 + 1)F2(I )]

+ 1

48
t3n

σ+1[2(x3 + 2) − (2x3 + 1)F2(I )]

+ 3

40

(
3π2

2

)2/3

n5/3

[
[t1(x1 + 2) + t2(x2 + 2)]

×F5/3(I ) + 1

2
[t2(2x2 + 1) − t1(2x1 + 1)]

×F8/3(I )

]
, (36)

where Fm(I ) = 1
2 [(1 + I )m + (1 − I )m] and the parametriza-

tion is given in Refs. [65,66].

C. HLPS model

Recently, Hebeler et al. [56,67] performed microscopic
calculations based on chiral effective field theory interactions
to constrain the properties of neutron-rich matter below nu-
clear densities. It explains the massive neutron stars of M =
2M	. In this model the energy per particle is given by [56]
(hereafter HLPS model)

Eb(u, x) = 3T0

5
[x5/3 + (1 − x)5/3](2u)2/3

− T0[(2α − 4αL)x(1 − x) + αL]u

+ T0[(2η − 4ηL)x(1 − x) + ηL]uγ , (37)

where T0 = (3π2n0/2)2/3h̄2/(2m) = 36.84 MeV. The param-
eters α, η, αL, and ηL are determined by combining the
saturation properties of symmetric nuclear matter and the
microscopic calculations for neutron matter [56,67]. The pa-
rameter γ is used to adjust the values of the incompressibility
K and influences the range of the values of the symmetry
energy and its density derivative. In the present work we
employ the values γ = 4/3, α = 5.87, η = 3.81, also αL =
1.3631 with ηL = 0.7596 (soft and intermediate equation of
state) and αL = 1.531 48 with ηL = 1.020 84 (stiff equation
of state) [56].
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IV. APPLICATIONS

In the following we provide some applications of the crust-
core interface in astrophysics. First, we provide a derivation
of model-independent relations between the mass of the crust
and the transition pressure and also one between the latter
and the slope of the symmetry energy. Second, we concen-
trate our study on the effects of the transition density and
transition pressure on (a) the oscillation frequencies obtained
from observations of quasiperiodic oscillations (QPOs),
(b) the thermal relaxation time of the crust during the cooling
process of a hot neutron star, (c) the crustal fraction of the
moment of inertia and its effects on the creation of neutron
star glitches, and (d) the conditions for the r-mode instabilities
of rotating neutron stars.

A. Radius and mass of the crust

The radius Rcrust and the mass Mcrust of the crust play an
important role in various neutron star properties as we will
present below. In addition it will be useful and instructive to
find analytical approximations to relate the above quantities
both with the bulk neutron star properties as well as, if
it is possible, with some details of the neutron star EoS.
The starting point of this effort is the well known Tolman-
Oppenheimer-Volkoff (TOV) equations [68,69] which de-
scribe the structure of a neutron star and have the form

dP (r )

dr
= −GE (r )M (r )

c2r2

(
1 + P (r )

E (r )

)

×
(

1 + 4πP (r )r3

M (r )c2

)(
1 − 2GM (r )

c2r

)−1

, (38)

dM (r )

dr
= 4πr2

c2
E (r ). (39)

Recently, Zdunik et al. [70], starting from the assumption that
the term 4πP (r )r3/M (r )c2 is very small compared to 1 and
employing also the relation

dP

E + P
= dμ

μ
, (40)

where

μ = E + P

n
(41)

is the baryon chemical potential, found that the radius of such
a star and the corresponding values for its crust and core are
given respectively by the expressions

R = Rcore

1 − (ht − 1)(Rcorec2/2GM − 1)
, (42)

Rcrust

R
= (ht − 1)(1 − 2β )

ht − 1 + 2β
, (43)

and

Rcore

R
= 2βht

ht − 1 + 2β
. (44)

In Eqs. (42)–(44) β = GM/Rc2 is the compactness parameter
and ht is defined as

ht =
(

μt

μ0

)2

, (45)

where μt and μ0 are the chemical potentials at the crust-
core interface and on the surface respectively. Actually, at
the transition density we have Et 
 Pt and consequently the
above relation becomes

ht � 1

μ2
0

(Et

nt

)2

. (46)

In the present work we consider that μ0 = 930.4 MeV [3].
According to Eqs. (42) and (43) the effect of the EoS is
included indirectly via the compactness parameter β and the
radius R and directly via the factor ht which is related with
the energy per particle of neutron star matter at the transition
density. It is worthwhile to point out that a similar expression
has been found by Lattimer et al. [37] by just replacing the
quantity ht by H where

H = e2(μt−μ0 )/mbc
2
.

Obviously for (μt/μ0)2 − 1 � 1 the two approximations co-
incide. In the present work we will employ the approximations
(43) and (44).

Now, we will derive an approximate expression for the
Mcrust in comparison with recent studies [70]. First, we neglect
the term 4πP (r )r3/M (r )c2 in the first of the TOV equations,
which is three orders of magnitude less than unity in the region
from the crust-core interface to the surface. We consider also
the approximation r � Rcore which introduces an error at most
10% (which appears just close to the surface) and mainly for
low values of neutron star mass. The combination of the TOV
equations now leads to the equation

dP (r )

dM (r )
= − GM (r )

4πR4
core[1 − 2GM (r )/Rcorec2]

(47)

and integrating from the crust-core edge to the surface we get∫ 0

Pt

dP = − c4

4πR2
coreG

∫ xs

xt

x

1 − 2x
dx,

x ≡ x(r ) = GM (r )

Rcorec2
. (48)

The analytical value of the integral is∫ xs

xt

x

1 − 2x
dx = 1

4

[
2(xt − xs ) + ln

(
1 − 2xt

1 − 2xs

)]
,

xt = GMcore

Rcorec2
, xs = GM

Rcorec2
. (49)

After some algebra we get

Pt = c4

16πR2
coreG

[
−2Mcrustβcore

Mcore

− ln

(
1 − 2Mcrustβcore/Mcore

1 − 2βcore

)]
,

βcore = GMcore

Rcorec2
. (50)
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The above approximation relates the microscopic quantity Pt

with the macroscopic quantities Mcore,Mcrust, Rcore and conse-
quently only indirectly depends on the EoS. The observational
determination of the crustal and core mass as well as the
core radius will impose constraints on the values of Pt and
consequently on the EoS and subsaturation densities. Now, in
order to proceed further and considering that

a = 2Mcrustβcore/Mcore

1 − 2βcore
� 1

we employ the approximation

ln(1 − a) = −a − a2

2
+ O(a3). (51)

In this case, the transition pressure is approximated by the
expression

Pt = GMcrustMcore

4πR4
core(1 − 2βcore )

(
1 + Mcrust/Mcore

2(1 − 2βcore )

)
, (52)

and therefore

Mcrust = Mcore

(
1 − 2GMcore

Rcorec2

)(√
8πR4

corePt

GM2
core

+ 1 − 1

)
.

(53)
Considering also that

8πR4
corePt

GM2
core

� 1

we get √
8πR4

corePt

GM2
core

+ 1 � 1 + 1

2

8πR4
corePt

GM2
core

(54)

and finally we find

Mcrust = 4πPtR
4
core

GMcore

(
1 − 2GMcore

Rcorec2

)
. (55)

Actually, Eq. (55) has been provided by Zdunik et al. [70]. It
is right to point out that a similar expression has been derived
by Pethick and Ravenhall [6]. In particular they provided the
approximation

Mcrust � 4πPtR
4

GM

(
1 − 2GM

Rc2

)
.

Recently, Baym et al. [71], following a similar approach,
provided the approximation

Mcrust � 2πPtR
4
core

GMcore

(
1 − 2GMcore

Rcorec2

)
,

which is half of the value obtained by Zdunik et al. [70].
It is also worthwhile to mention the approximation found in
Ref. [72] where the authors following the same assumptions
for the the solid crust but considering a specific equation of
state, i.e., the well known polytropic one, P (E ) = KE4/3,
obtained very simple analytical expressions for the crustal
moment of inertia and mass. In their work the crustal mass

is given by [72]

Mcr ≈ 8πR3
corePt

(
Rcore

Rs

− 1

)

×
[

1 + 32

5

(
Rcore

Rs

− 3

4

)
Pt

Et
+ · · ·

]
, (56)

where Rs = 2GM/c2. Obviously, the leading order terms of
the approximations (53) and (56) coincide.

Now we can proceed further by considering the accurate
approximation

Pt = GMcrustMcore

4πR4
core(1 − 2βcore )

, (57)

and also the empirical assumptions Mcrust �
(0.02–0.03)M	, Mcore = M, Rcore = 0.9R which hold
for a neutron star with mass M = 1.4M	. In this case,
considering also that the corresponding radius lies in the
interval 11 km � R1.4 � 14 km, we find the semianalytical
relation

Pt =
(

Ct (1.4M	)

R1.4

)4

MeV fm−3, (58)

where

Ct (1.4M	) = 10.25 ± 0.71 km.

The higher the values of the observational measure of R1.4,
the higher the accuracy for determination of Pt . Moreover, the
combination of relation (58) with the empirical prediction of
Lattimer and Prakash [73],

P (ns ) =
(

R1.4

Cs (ns, 1.4M	)

)4

MeV fm−3,

Cs (ns, 1.4M	) = 9.52 ± 0.49 km, (59)

where P (ns ) is the pressure of neutron star matter at the
saturation density, helps to constrain the EoS at subsaturation
densities. Considering also that at the saturation density ns , in
a good approximation, the pressure is given by [37]

P (ns ) = n2
s

(
dEsym(n)

dn

)
n=ns

(1 − 2x)2

+ nsx(1 − 2x)Esym(ns ), (60)

where the proton fraction is x � [4Esym(ns )/h̄c]3/(3π2ns )
and also Esym(ns ) � 30 MeV. Then, after some algebra we
find the expression

P (ns ) �
(

nsL

3
Cs

)
MeV fm−3, Cs = 0.90 ± 0.05. (61)

Finally, combining Eqs. (58), (59), and (61) by eliminating
the radius R1.4 and taking into account that ns � 0.16 fm−3

we find that

Pt =
(

CL

L

)
MeV fm−3, CL = 32.08 ± 15.80 MeV,

(62)
where L is given in MeV. It is worthwhile to notice that
Eq. (62) has been constructed in a model independent way
by using only the TOV equations and the empirical formulas
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(59). We would like to emphasize here that Eq. (62) has been
obtained considering that the value of the symmetry energy
at the saturation density is constant, i.e., Esym(ns ) = 30 MeV.
However, in the case where both L and Esym(ns ) vary, the
dependence of Pt on L may exhibit a different behavior as
found for example in Ref. [74]. According to Eq. (62) the
stiffness of the EoS acts against the solidification of nuclear
matter providing theoretical agreement with and interpretation
of previous results [22,50,75,76]. Although the uncertainty in
Eq. (62) is relatively high, the exhibited Pt − L dependence is
qualitatively correct.

B. Neutron star oscillation frequencies

Information about radii can be obtained also from obser-
vations of quasiperiodic oscillations in the x-ray emissions
caused most likely by the torsional vibration of the crust
of a neutron star (for more details see the discussion of
Lattimer et al. [37]). Now, considering the approximation
vr � ut (where vr and vt are the average radial and transverse
shear speed respectively) the authors in Ref. [38] found simple
relations for the frequencies. In particular, the frequencies of
the fundamental and higher modes can be written [37]

fn=0,l=2 � 263.3

(
km

R

)√
(ht − 1 + 2β )(1 − 2β )

βht
Hz, (63)

fn>0 � 1170n

(
km

R

)
ht − 1 + 2β

ht − 1
Hz. (64)

Obviously the measurement of more than one of the frequen-
cies can be used to identify R and β as functions of the
quantity ht [37]. Moreover, eliminating R from Eqs. (63) and
(64), a dependence β ≡ β(ht ) can be found.

C. Thermal relaxation time of the crust

The cooling of the core of a protoneutron star, according to
the accepted theory, is due to the neutrino emission. During
the cooling process the star is not in thermal equilibrium
as a consequence of the long thermal relaxation time of the
crust. It is expected that the relaxation time is of the order
10–100 years [37]. After this time the surface comes into
thermal equilibrium with the core. Actually, this is related to
the specific heat and thermal conductivity of the crust as well
as the crust radius. It was found that tw is given by the simple
expression [37,40]

tw = αt1 (yr), α ≡
(

Rcrust

km

)2

(1 − 2MG/Rc2)−3/2, (65)

where t1 is the normalized relaxation time which depends
solely on the macroscopic properties of nuclear matter includ-
ing thermal conductivity and heat capacity [40]. For example
for nonsuperfluid stars and considering that the transition den-
sity is nt = 0.5n0 = 0.08 fm−3, Gnedin et al. [40] suggested
the values t1 = 28 ± 0.2 yr for the rapidly cooling model and
t1 = 22.9 ± 1.2 yr for the slowly cooling models. Actually the
effects of the crust-core interface are introduced through the
value of the radius of the crust. Obviously, as already stated
in Ref. [41] if the crust radius can be connected with the

bulk neutron star properties M and R, then useful information
concerning the neutron star structure can be inferred from the
observation of the surface cooling.

D. Crustal fraction of the moment of inertia and pulsar glitches

The pulsar glitches are sudden discontinuities in the spin
down of pulsars (for a recent review see Ref. [34]). According
to the more possible scenario they are due to the transfer
of angular momentum from the superfluid component to the
nonsuperfluid part of the crust [35]. Link et al. [77] showed
that glitches represent a self-regulating instability for which
the star prepares over a waiting time. For example in the
case of Vela pulsar the observational glitches indicate that
the moment of inertia of the crust must be at least 1.4% of
the total moment of inertia (although there are also some other
explanations). So, if glitches originate in the liquid of the inner
crust, this means that Icrust/I > 0.014.

The crustal fraction of the moment of inertia Icrust/I can be
expressed as a function of the total mass M and radius R with
the only dependence on the equation of state arising from the
values of Pt and nt . Actually, the major dependence is on the
value of Pt , since nt enters only as a correction according to
the following approximate formula [77]:

Icrust

I
� 28πPtR

3

3Mc2

(1 − 1.67β − 0.6β2)

β

×
(

1 + 2Pt

ntmc2

(1 + 5β − 14β2)

β2

)−1

. (66)

The crustal fraction of the moment of inertia is particularly
interesting since it can be inferred from observations of pulsar
glitches, the occasional disruptions of the otherwise extremely
regular pulsations from magnetized, rotating neutron stars
[22]. More recently the authors in Refs. [78,79], considering
the entrainment of superfluid neutrons in the crust, found that
the lower limit of Icrust/I must be larger than 0.07, in order to
explain glitches. Moreover, Link [80], who discussed in more
detail the origin and the connection of the moment of inertia
of the crust and the core, concluded that low values of Icrust/I
must be expected. Very recently the authors in Ref. [81] came
to the conclusion that the moment of inertia of the neutron
superfluid in the crust is large enough so that glitch models
based on the superfluid neutrons in the inner crust cannot be
ruled out. The above brief discussion reveals the necessity of
further observational and theoretical work in order to solve
the problem of glitches. In any case, it will be of interest to
explore the effects of the transition density and pressure on
Icrust/I compared to both the dynamical and thermodynamical
method. Since the ratio Icrust/I is sensitive to nt and mainly
to Pt useful constraints for the EoS close to the crust-core
interface will be obtained from future observation data from
pulsar glitches.

E. r-mode instability of a rotating neutron star

The r modes are oscillations of rotating stars whose restor-
ing force is the Coriolis force [42–49]. The gravitational
radiation-driven instability of these modes has been pro-
posed as an explanation for the observed relatively low spin
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frequencies of young neutron stars and of accreting neutron
stars in low-mass x-ray binaries as well. This instability can
only occur when the gravitational-radiation driving time scale
of the r mode is shorter than the time scales of the various
dissipation mechanisms that may occur in the interior of the
neutron star.

The nuclear EoS affects the time scales associated with the
r mode, in two different ways. First, the EoS defines the radial
dependence of the mass density distribution ρ(r ), which is the
basic ingredient of the relevant integrals. Second, it specifies
the core-crust transition density ρt and also the core radius
Rcore which is the upper limit of the mentioned integrals.

The critical angular velocity �c, above which the r mode
is unstable (for m = 2), is given by [42]

�c

�0
=

(
− τ̃GR

τ̃v

)2/11(108 K

T

)2/11

, (67)

where �0 = √
πGρ, ρ = 3M/4πR3 is the mean density of

the star, T is the temperature, and τ̃GR and τ̃v are the fiducial
gravitational radiation time scale and the fiducial viscous time
scale respectively. The last two are defined respectively by the
following expressions (for arbitrary value m):

τGR = τ̃GR

(
�0

�

)2m+2

, (68)

τv = τ̃v

(
�0

�

)1/2(
T

108 K

)
. (69)

The gravitational radiation time scale τGR is given by [42]

1

τGR

= −32πG�2m+2

c2m+3

(m − 1)2m

[(2m + 1)!!]2

(
m + 2

m + 1

)2m+2

×
∫ Rcore

0
ρ(r )r2m+2dr. (70)

The damping time scale τv due to viscous dissipation at the
boundary layer of the perfectly rigid crust and fluid core is
given by [42]

τv = 1

2�

2m+3/2(m + 1)!

m(2m + 1)!!Im

√
2�R2

coreρt

ηt

×
∫ Rcore

0

ρ(r )

ρt

(
r

Rcore

)2m+2
dr

Rcore
. (71)

� is the angular velocity of the unperturbed star, ρ(r ) is the
radial dependence of the mass density of the neutron star,
Rcore, ρt , and ηt are the radius, density, and viscosity of the
fluid at the outer edge of the core respectively. In neutron
stars colder than about 109 K the shear viscosity is expected
to be dominated by electron-electron scattering. The viscosity
associated with this process is given by [42]

ηee = 6.0 × 106ρ2T −2 (g cm−1 s−1), (72)

where all quantities are given in cgs units and T is measured
in K. For temperature above 109 K, neutron-neutron scattering
provides the dominant dissipation mechanism. In this range
the viscosity is given by [42]

ηnn = 347ρ9/4T −2 (g cm−1 s−1). (73)

In the present work we consider the case of m = 2 r mode
and also we neglect the effects of bulk viscosity, which are
not important for T � 1010 K. In our previous work it was
found that the time scale τ̃GR takes the form [50]

τ̃GR = −0.7429

(
R

km

)9(
M	
M

)3

[I (Rc )]−1 (s), (74)

where

I (Rc ) =
∫ Rcore

0

(
ε(r )

MeV fm−3

)(
r

km

)6

d

(
r

km

)
. (75)

The integral I (Rc ) is a basic ingredient of the r-mode
studies (see Ref. [50]). The fiducial viscous time τ̃v ,
after some algebra, is written for the case of viscos-
ity due to electron-electron and neutron-neutron scattering
respectively [50],

τ̃ee = 10.8386

(
R

km

)3/4(
M	
M

)1/4(km

Rc

)6(MeV fm−3

Et

)3/2

I (Rc ) (s), (76)

τ̃nn = 41.904

(
R

km

)3/4(
M	
M

)1/4(km

Rc

)6(MeV fm−3

Et

)13/8

I (Rc ) (s). (77)

The corresponding critical angular velocities �c are given by
the relation

�ee
c = 1.9377 × 105

(
Rc

Km

)12/11( Et

MeV fm−3

)3/11

× [I (Rc )]−4/11

(
108 K

T

)2/11

(s−1) (78)

and also

�nn
c = 0.930 515 × 105

(
Rc

Km

)12/11( Et

MeV fm−3

)13/44

× [I (Rc )]−4/11

(
108 K

T

)2/11

(s−1). (79)

Now we consider that, in a very good approximation, the
energy density of a neutron star is given by the Tolman VII
analytical solution,

E (r ) = 15Mc2

8πR3

[
1 −

( r

R

)2
]
. (80)

It is well known that despite its simplicity, this distribution
reproduces in a very good accuracy various neutron star
properties including the binding energy and moment of inertia
while being in good agreement with realistic equations of
state for neutron stars with M > 1M	 [73,82]. Moreover, the
Tolman VII solution has the correct behavior not only in the
extreme limits r = 0 and r = R but also in the intermediate
region (see Fig. 5 of Ref. [73]). Below we will employ the
Tolman VII solution, in order to provide some analytical
expressions for the fiducial times and the critical temperature,
for two reasons: (a) first to exhibit the role played by the crust-
core interface and (b) to provide some analytical expressions
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which can be easily manipulated and used for the study of the
r-mode instability windows. Now, the integral I (Rc ) takes the
analytical form

I (Rc ) = 10 583.45

(
M

M	

)(
Rcore

km

)4(
Rcore

R

)3

×
[

9 − 7

(
Rcore

R

)2
]
. (81)

The above approximation is accurate (4% deviation for M =
1.4M	 and less than 1% for M � 1.7M	). It can be found
easily that the use of the Tolman VII solutions leads to

Mcore = 5M

2

(
Rcore

R

)3
[

1 − 3

5

(
Rcore

R

)2
]
. (82)

In addition, we obtained using the approximation (44) that

Mcore = 5M

2

(
2βht

ht − 1 + 2β

)3
[

1 − 3

5

(
2βht

ht − 1 + 2β

)2
]
.

(83)

This approximation is also very accurate (4% deviation for
M = 1.4M	 and less than 1% for M � 1.7M	). However, it
fails to reproduce with the proper accuracy the mass of the
crust Mcrust.

Since the fiducial time scales (and also the critical angular
momentum) are functionals of the integral I (Rc ) we can
proceed to derive analytical solutions, by replacing its value
using Eq. (81). In this case the fiducial time τ̃GR takes the
form

τ̃GR = −7 × 10−5

(
R

Rcore

)7(
R

km

)5(
M	
M

)4

×
[

9 − 7

(
Rcore

R

)2
]−1

. (84)

Taking into account that at the transition density it holds that
Pt � Et and therefore μt � Et/nt , we find

Et � μ0nt

√
ht. (85)

Using the above approximation the time scales τ̃ee and τ̃nn are
written respectively as

τ̃ee = 4.042

(
fm−3

nt

)3/2 1

h
3/4
t

(
Rcore

R

)(
M

M	

)3/4(km

R

)5/4

×
[

9 − 7

(
Rcore

R

)2
]
, (86)

τ̃nn = 6.65

(
fm−3

nt

)13/8 1

h
13/16
t

(
Rcore

R

)(
M

M	

)3/4(km

R

)5/4

×
[

9 − 7

(
Rcore

R

)2
]
. (87)

It is worthwhile to present also the following analytical ex-
pressions for the critical frequencies:

�ee
c = 4.298 × 104

( nt

fm−3

)3/11
h

3/22
t

(
Rcore

R

)−16/11

×
(

km

R

)4/11(
M	
M

)4/11
[

9 − 7

(
Rcore

R

)2
]−4/11

×
(

108 K

T

)2/11

(s−1), (88)

�nn
c = 3.926 × 104

( nt

fm−3

)13/44
h

13/88
t

(
Rcore

R

)−16/11

×
(

km

R

)4/11(
M	
M

)4/11
[

9 − 7

(
Rcore

R

)2
]−4/11

×
(

108 K

T

)2/11

(s−1). (89)

The above expressions, although being approximations, ex-
hibit the dependence of the instability window on the main
properties of the crust-core interface. Moreover, the maximum
angular velocity �K (Kepler angular velocity) for any star
occurs when the material at the surface effectively orbits the
star [83]. This velocity is nearly �K = 2

3�0. Thus, there is
a critical temperature Tc for which the gravitational-radiation
instability is completely suppressed by viscosity is given by
[42]

Tc

108K
=

(
�0

�c

)11/2(
− τ̃GR

τ̃v

)
=

(
3

2

)11/2(
− τ̃GR

τ̃v

)
. (90)

A decrease of Tc leads to an increment of the instability
window (at least for low values of temperatures).

We discuss briefly the case of an elastic crust. In this case
the r mode penetrates the crust and consequently the relative
motion (slippage) between the crust and the core is strongly
reduced compared to the rigid crust limit [84–86]. In this
consideration the slippage factor S has been included on the
r-mode problem and the revised time scale is written

τS
ee(nn) → τee(nn)

S2
. (91)

Actually, the factor S depends mainly on the angular veloc-
ity, the core radius Rc, and the shear modulus, but can be
treated also, approximately, as a constant which is varied in
the interval from very low values (S = 0.05) up to S = 1
corresponding to a complete rigid crust.

V. RESULTS AND DISCUSSION

A. Accuracy of the dynamical approximations
and the gradient coefficients Di j

First, we check the accuracy of the approximation for the
effective interaction Udyn(n, k) given in Eq. (4) compared
with the full expression given in Eq. (2). We employ, as an
example, the MDI-FE model (with L = 80 MeV and D =
72 MeV fm5) (actually the results and conclusions are similar
for all the employed nuclear models). In particular, we found
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TABLE II. The transition density nt (in fm−3), pressure Pt

(in MeV/fm3), and the thermodynamical factor ht obtained from the
considered models by employing the full expansion.

Model n
dyn
t P

dyn
t h

dyn
t nth

t P th
t hth

t

MDI(65) 0.070 0.213 1.0342 0.078 0.317 1.0363
MDI (72.5) 0.064 0.213 1.0320 0.073 0.319 1.0350
MDI (80) 0.060 0.184 1.0310 0.069 0.295 1.0335
MDI (95) 0.050 0.074 1.0236 0.059 0.155 1.0265
MDI (110) 0.044 0.031 1.0203 0.051 0.083 1.0225
Sly4 0.086 0.377 1.0184 0.098 0.578 1.0094
SKI4 0.073 0.248 1.0358 0.081 0.337 1.0378
Ska 0.069 0.377 1.0409 0.079 0.530 1.0443
HLPS (soft) 0.088 0.359 1.0394 0.098 0.455 1.0410
HLPS (stiff) 0.079 0.415 1.0425 0.089 0.551 1.0451

that using the dynamical potential, given by Eq. (2) that nt =
0.060 505 7 fm−3 and Pt = 0.185 374 MeV fm−3, while using
the approximation (4) we found that nt = 0.060 394 8 fm−3

and Pt = 0.184 194 MeV fm−3. In general we found that,
in each case, the error of the transition density is less than
0.5% while for the transition pressure it is less than 1%.
We have also seen that, using the parabolic approximation
for the symmetry energy, the error of the approximation (4)
[compared to the expression (2)], concerning the values of nt

and Pt , is also less than 0.5% and 1% respectively. Finally,
we investigated the effect of the gradient term Dij on the
crust-core interface. We also note that this result is important
since, in most of the cases, the values of Dij are not included
in the nuclear models and must be inserted by hand. We found
that, for reliable values of Dij , the approximations (4) and (2)
predict similar results.

B. Transition densities and transition pressures
for various models and approximations

So far, we have considered above both the approximation
(4) providing a high accuracy, independent of the employed
nuclear models (including the nuclear symmetry energy), and
the values of the gradient terms. Now we proceed with the
determination of the transition density and pressure for all
the proposed nuclear models. Actually, we use mainly four
cases. First we use the dynamical method by considering for
the calculation of the proton fraction Eq. (26) (DYN-FE case
hereafter) and the parabolic approximation Eq. (33) (DYN-
PA case hereafter). Second, we employ the thermodynamical
method for the calculation of the proton fraction via Eq. (26)
(THER-FE case hereafter) and the parabolic approximation
Eq. (33) (THER-PA case hereafter). It must be noted that sim-
ilar effects have been obtained using other nuclear models. It
has been found that the predicted results are only qualitatively
different.

In Tables II and III we present the transition density,

pressure, and the quantity ht = 1
μ2

0
( Et
nt

)
2
. In Table II we show

our results by employing both the dynamical and thermody-
namical methods in the framework of the full approximation.
The values of nt calculated by the dynamical method are lower

TABLE III. The transition density nt (in fm−3), pressure Pt (in
MeV/fm3), and the thermodynamical factor ht obtained from the
considered models by employing the parabolic approximation.

Model n
dyn
t P

dyn
t h

dyn
t nth

t P th
t hth

t

MDI(65) 0.086 0.425 1.0389 0.097 0.594 1.0422
MDI (72.5) 0.082 0.483 1.0397 0.094 0.728 1.0449
MDI (80) 0.082 0.529 1.0402 0.094 0.836 1.0469
MDI (95) 0.084 0.615 1.0396 0.099 1.079 1.0497
MDI (110) 0.087 0.776 1.0426 0.105 1.406 1.0556
Sly4 0.085 0.426 1.0441 0.094 0.546 1.0462
SKI4 0.082 0.356 1.0386 0.091 0.496 1.0415
Ska 0.083 0.622 1.0475 0.093 0.867 1.0524
HLPS (soft) 0.094 0.421 1.0411 0.104 0.537 1.0430
HLPS (stiff) 0.087 0.525 1.0453 0.097 0.694 1.0483

by (10–15)% compared with the thermodynamical one. Our
results confirm previous calculations [22,56,75]. The most
distinctive feature is the marked lowering of the values of
the transition pressure P

dyn
t compared to P th

t . As we will see
below this has also a pronounced effect on the neutron star
properties which are sensitive to the values of the critical
pressure.

In Table III we present results corresponding to the use
of the parabolic approximation (33). In this case the values
of nt, Pt , and ht are higher compared to the use of the full
approximation. In particular, the values of nt increase even
more by 15–20% compared to the full approximation both
in the dynamical and thermodynamical methods. The effects
are even more sizable concerning the transition pressure Pt

since its values increase twice or even more compared to the
dynamical method. The main conclusion is the following: The
use of the dynamical method, in the framework of the full ap-
proximation for the symmetry energy, significantly lowers the
values of nt and Pt compared to the thermodynamical method
(both in parabolic or full approximation). Now, since many
neutron star properties depend on the crust-core interface, one
has to carefully take into account the transition point. Below,
we examine both quantitative and qualitative effects of the
transition point on a few neutron star properties and evolution
processes.

C. Discussion of the approximation for Mcrust and relations
with the transition pressure

Before we proceed with the analysis of the effects of Pt and
nt on various neutron star static and dynamical properties it
is important to discuss further the approximations concerning
the crustal radius and crustal mass. The approximations (43)
and (44) are very accurate and will be used below to derive
some analytical expressions for the thermal relaxation time,
the QPOs frequencies, and the critical angular velocities.

In the present work we derived also a semitheoretical
expression which relates the transition pressure Pt with the
total radius of a neutron star with mass M = 1.4M	. Actually,
the expression (58) works with a proper accuracy excluding
only the very stiff and very soft EoSs. Since the majority of
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FIG. 2. The mass as a function of the radii for the MDI model
(for L = 80 MeV) including constraints from neutron star seis-
mology according to Eqs. (63) and (64) and for the four selected
cases. The straight lines correspond to the equation β = β(ht ), which
emerges from the elimination of R in Eqs. (63) and (64), for each of
the four cases.

the observational neutron stars has a mass close to this limit,
the expression (58) may be proven useful in order to construct
a bridge between the bulk observation quantity R and the
microscopic one Pt . In particular, the accurate observational
measurement of R may help to constrain Pt . For example a
measurement R1.4 = 13 km will provide the constraint Pt =
0.4 ± 0.11 MeV fm−3. Moreover, an accurate experimental
measurement of Pt may help to constrain the radius. For
example the value Pt = 0.45 MeV fm−3 will provide the
constraint R = 12.51 ± 0.86 km.

Now we discuss further the semitheoretical expression
(62). According to Tables II and III the use of the dynami-
cal (thermodynamical) method in the framework of the full
approximation satisfies the expression (62). However, the use

of the parabolic approximation leads to the inverse behavior
(see also Ref. [22]). This is an additional indication that the
PA may lead to misleading results concerning the values
of the transition pressure and its dependence of the slope
parameter L.

D. Effects on the frequencies of QPOs and thermal
relaxation of the crust

In Fig. 2 we present a mass-radius diagram showing the
constraints from neutron star seismology (originating from
the soft gamma-ray repeater SGR 1806-20) (for more details
see Refs. [37,38]). First, we plot the mass-radius dependence
using the MDI model (for L = 80 MeV). We consider that
fn=0,l=2 = 29 Hz and also fn=1,l=1 = 626.5 Hz [37] and
we solve Eqs. (63) and (64) correspondingly for the four
selected cases. The predicted mass-radius constraints have
been included also in Fig. 2.

Obviously the effects of the transition density are more
pronounced in the case of the fn=1,l=1 modes. In particular,
the use of the DYN-FE decreases the corresponding values
of the mass (for fixed values of the radius). Moreover, even
for the same approximation (FE or PA) the dynamical method
decreases also the constrained values of the mass. As a general
conclusion a more realistic EoS (DYN-FE) decreases appre-
ciably the values of the mass. In the case of the fundamental
mode fn=0,l=2, the effects of the EoS are less important and
appear mainly for high values of the radius. In the same
figure we plot the four values of β which emerge from the
elimination of R in Eqs. (63) and (64). Once again, we found
that the effects of the crust-core interface must be taken into
account in order to impose constraints on the mass-radius
diagram.

In Fig. 3(a) we present the thermal relaxation time of the
crust tw as a function of the neutron star mass M using Eq. (65)
with t1 = 28 ± 0.2 yr by displaying the results for the four
selected cases. The use of the dynamical method with the full
approximation leads to a marked lowering of the values of tw.
As expected the effects are more pronounced for low neutron
star mass due to the strong tw − Rcrust dependence. It is very

FIG. 3. (a) The thermal relaxation time tw as a function of the total mass for the four selected cases. (b) Constraints on the M-R diagram
form the thermal relaxation time tw for the four selected cases. The M-R dependence for the MDI model (L = 80 MeV) has been included
also for comparison. For more details see text.
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FIG. 4. (a) The crustal fraction of the moment of the inertia as a function of mass presented for the four selected cases. For comparison we
include the horizontal lines, each one representing a possible Icrust/I constraint, deduced for the Vela pulsar (assuming a mass M = 1.4M	).
(b) The mass-radius diagram for various nuclear EoS and the constraints Icrust/I = 0.014 are derived from the four selected cases.

interesting to see that the thermodynamical method with the
parabolic approximation leads to very high values of tw (more
than twice for low masses) compared to the DYN-FE case
and consequently to a large error. In Fig. 3(b) we display the
constraints of the thermal relaxation time on the R-M diagram
for the four selected cases. We consider that t1 = 28 yr and for
the three values tw = 3, 10, 30 yr we solve Eq. (65) in order
to display the M-R dependence for the four selected cases.
Obviously the constraints on the R-M diagram imposed by
the crust-core interface are important. In particular the use of
the realistic DYN-FE method leads to smaller values for the
neutron star mass M and consequently larger values for the
radius R especially in the case of high values of the relaxation
time. For low values of tw the effects are less important but
not negligible.

E. Effects on the crustal moment of inertia

The effects of the transition pressure Pt and density nt are
important also for the calculations of the crustal moment of in-
ertia. Actually the major dependence is upon the pressure Pt .
According to Eq. (66) smaller values of Pt reduce the crustal
moment of inertia leading to more restrictive constraints [77].
In Fig. 4(a) we display the fraction Icrust/I as a function of the
total mass for the MDI model (for L = 80 MeV), for the four
considered cases. Obviously, the use of the DYN-FE model
(which leads to low values of Pt) decreases the allowed region
compared to the other three cases. In order to clarify further
this point in Fig. 4(b) we plot also the constraint Icrust/I �
0.14 for the four cases. In the same figure we display also
the M-R dependence for a few selected nuclear models. In
any case, the constraints imposed by the DYN-FE model are
the most restrictive and in any case support the statement that
the transition density and pressure must be calculated with
the proper accuracy in order to impose reliable constraints on
the bulk neutron star properties. The same conclusions will be
inferred if one uses even higher values of the ratio Icrust/I .

More recently the authors in Refs. [78,79] considered that
due to entrainment of superfluid neutrons in the crust, the
lower limit of Icrust/I must be larger, that is Icrust/I > 0.07,

in order to explain glitches. From another point of view, Link
[80] discussed in more detail the origin and the connection
of the moment of inertia of the crust and the core concluding
that low values of Icrust/I must be expected. In any case, fur-
ther observation measurements of glitches and more refined
theoretical calculations will impose more accurate limits and
help to restrict also the crust-core properties.

F. Effects on the r-mode instabilities

In Tables IV and V we present the fiducial time scales as
well as the corresponding critical frequencies and the critical
temperatures for neutron stars with M = 1.4M	 and M =
1.8M	 respectively. In the same table we include also the
results of the approximation due to the use of the Tolman
VII analytical solution. The fiducial time scales, especially the
viscous time τ̃v , is sensitive to the employed approximation.
Specifically, the DYN-FE decreases the absolute value of
t̃GR around 10% and increases the value of τ̃v around twice
compared to the THER-PA (for a neutron star mass M =
1.4M	).

The effects on the fiducial time scales are well reflected
in the values of the critical frequencies fc as exhibited in
Tables IV and V. There is also a decrease of the values of fc

between 12% and 15%. This difference is important since as

TABLE IV. The fiducial time scales, the critical frequencies,
and the critical temperatures for the MDI model (L = 80 MeV) for
M = 1.4M	. The corresponding results of the use of the Tolman
VII solution as an approximation have been included also in a
parentheses for each case.

DYN-FE THER-FE DYN-PA THER-PA

τ̃GR −3.72 (−3.67) −3.82 (−3.73) −3.95 (−3.85) −4.11 (−3.98)
τ̃ee 40.68 (37.26) 33.73 (30.61) 26.85 (24.45) 22.46 (20.54)
τ̃nn 94.95 (86.95) 77.35 (70.21) 60.25 (54.86) 49.51 (45.28)
f ee

c 823 (834) 855 (866) 898 (909) 936 (946)

f nn
c 706 (715) 735 (745) 775 (785) 811 (819)

Tc 0.851 (0.916) 1.053 (1.133) 1.368 (1.464) 1.702 (1.802)
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TABLE V. The fiducial time scales, the critical frequencies, and the critical temperatures for the MDI model (L = 80 MeV) for M =
1.8M	. The corresponding results of the use of the Tolman VII solution as an approximation have been included also in a parentheses for each
case.

DYN-FE THER-FE DYN-PA THER-PA

τ̃GR −0.954 (−0.942) −0.967 (−0.950) −0.982 (−0.967) −0.997 (−0.975)
τ̃ee 46.52 (44.33) 38.35 (36.30) 30.29 (28.94) 25.23 (24.00)
τ̃nn 108.57 (103.47) 87.95 (83.25) 67.96 (64.92) 55.64 (52.90)
f ee

c 779 (784) 808 (813) 846 (851) 878 (882)
f nn

c 667 (672) 695 (699) 731 (735) 761 (765)
Tc 0.191 (0.198) 0.235 (0.243) 0.302 (0.311) 0.368 (0.378)

we shall see below there are some cases of neutron stars which
lie close to the limit of the proposed instability window. In the
same tables we present also the critical temperature Tc. The
use of the DYN-FE also reduces to double the values of Tc and
consequently increases the instability window at least at low
temperatures. It is also noted that the use of the Tolman VII
solution leads to a good accuracy of the mentioned quantities
(time scales, critical frequencies, and temperatures). Actually
in our previous work the uniform density approximation has
been employed [50]. The present results indicate that, at
least in this kind of calculation, the Tolman VII solution
produces results which are in better agreement with those
of realistic calculations compared to the use of the uniform
density approximation.

In any case the DYN-FE leads to a decrease of the critical
frequency. To clarify further this point in Figs. 5(a) and 5(b)
we compare the r-mode instability window for the selected
four cases with those of the observed neutron stars in low-
mass x-ray binary (LMXB) and millisecond radio pulsars
(MSRPs) for M = 1.4M	 and M = 1.8M	 respectively. We
find that the instability window drops by 20–40% Hz when
the mass is raised from M = 1.4M	 to M = 1.8M	. Fur-
thermore, the stiffness of the EoS leads to an increase of the
instability window (which is specified, in this case, by the
fc − T dependence). Following the study of Wen et al. [87]
and Haskell et al. [88] we include many cases of LMXBs
and a few of MSRPs (for more details, see [89,90] and
Table I of Ref. [88]). The masses of the mentioned stars are

not measured accurately. In addition, we point out that the
estimates of the core temperature T have large uncertainties.
In the present work, the values of T are taken from Ref. [88]
and the uncertainties, in a few relevant cases, are derived by
employing the method suggested in Ref. [91].

It is obvious from Figs. 5(a) and 5(b) that the majority
of the stars lie outside the instability windows predicted by
the present models. There are four exceptions, that is, the
4U 1608-52, the SAX J1750.8-2900, the 4U-1636-536, and
the MXB 1658-298 which lie close to the instability window
(for mass M = 1.4M	) and two of them inside (for mass
M = 1.8M	). In any case, the stiffness of the EoS has a strong
effect on the width of the instability window and this effect is
more pronounced for high values of the neutron star mass.

VI. CONCLUDING REMARKS

The values of the density, pressure, and energy density
of the crust-core interface (which strongly depends on the
applied equation of state) play an important role in some
static and dynamical properties and processes of neutron stars.
The transition pressure is directly related to the crustal mass
while the radius of a neutron star can be determined, with a
moderate accuracy, by the knowledge of Pt . Having precise
values of nt and Et , for a neutron star with fixed mass and
radius, the core radius can be determined with high accuracy.
In the present work a semianalytical expression, based on
theoretical and empirical arguments, has been derived and

FIG. 5. The critical frequency-temperature dependence for a neutron star with mass M = 1.4M	 (a) and M = 1.8M	 (b) constructed for
the selected EoSs. The observed cases of LMXBs and MSRPs from Haskell et al. [88] are also included for a comparison. The cases IGR
J00291+5934, XTE J1751-305, and SAX J1808-3658 with well-known observation spin-down rate are also indicated.
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presented for Pt . To be more specific, a model-independent
correlation between Pt and the slope parameter L has been
obtained, for fixed values of the symmetry energy at the
saturation density. The value of the thermal relaxation time of
the crust during the cooling process as well as the frequencies
of the crust are sensitive also to the crustal thickness and total
radius of the star and consequently to the crust-core interface.
We found that even for the same model the value of tw is
significantly reduced, especially for a low mass neutron star if
one employs the DYN-FE method (compared with the THER-
PA). Moreover, the use of the DYN-FE leads to an appreciable
decrease of the predicted mass (for given values of radius)
compared to the THER-PA method for the fn=1,l−1 frequency.
The use of the DYN-FE shrinks the allowed region in a M-R
diagram due to corresponding lower values of the crustal
moment of inertia. Finally, there is a moderate dependence
of the critical frequency on nt and Pt . In particular, the use
of the DYN-FE method enlarges the instability window and
consequently increases the possibility that neutron stars are
sources of gravitational waves, via the r-mode instability.
Moreover, we employ the Tolman VII analytical solution
of the TOV equations to find analytical expressions for the
critical frequencies and the relative time scales, for the r-mode
instability, in comparison with the numerical predictions. The
dependence of the above quantities on the transition density
and energy density has been presented and compared with
the corresponding numerical studies. The above conclusions
strongly indicate that the observational determination of the
crustal thickness, crustal moment of inertia, thermal relax-
ation time, QPOs frequencies, and critical frequencies would
help significantly to constraint the EoS of neutron star close
to the crust-core interface and vice versa.

A final comment is appropriate. The main motivation of the
present work is not only to study in detail possible constraints
on the EoS from the crust-core interface since many studies
have been dedicated to this effort. Actually we intended also
to exhibit the extent of sensitivity of the EoS constraints to the
crust-core interface properties (density, pressure, chemical po-
tential etc.). We focused on the effects of the error introduced
by employing the parabolic approximation in the framework
of the dynamical and thermodynamical approximation. We
estimated that although the PA is an accurate approximation
for the total energy per baryon of nuclear matter, its derivative
(which is involved in the calculations of nt and Pt via the
symmetry energy) is not. Consequently the deviations from
the use of FE are important and must be taken into account. In
total, our findings support the statement that the location of the
crust-core interface must be estimated with a high accuracy
so that the imposed constraints on the EoS can be as much as
possible reliable.
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APPENDIX

Considering that E ≡ Eb(n, x) is the energy per particle
of nuclear matter then the chemical potentials of neutrons and
protons are given by the relations

μn = Eb + n

(
∂Eb

∂n

)
− x

(
∂Eb

∂x

)
, (A1)

μp = Eb + n

(
∂Eb

∂n

)
+ (1 − x)

(
∂Eb

∂x

)
. (A2)

Also we have

∂μp
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∂n
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n
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∂x
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∂μp

∂nn

= ∂μp

∂n
− x

n

∂μp

∂x
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After some algebra we find
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