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Heavy flavor observables provide valuable information on the properties of the hot and dense quark-
gluon plasma (QGP) created in ultrarelativistic nucleus-nucleus collisions. Various microscopic models have
successfully described many of the observables associated with its formation. Their transport coefficients differ,
however, due to different assumptions about the underlying interaction of the heavy quarks with the plasma
constituents, different initial geometries and formation times, different hadronization processes, and a different
time evolution of the QGP. In this study we present the transport coefficients of these models and investigate
systematically how some of these assumptions influence the heavy quark properties at the end of the QGP
expansion. For this purpose we impose on these models the same initial condition and the same model for the
QGP expansion and show that both have considerable influence on RAA and v2.
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I. INTRODUCTION

One of the major efforts of heavy-ion physics aims at
creating a phase of deconfined quarks and gluons [the quark-
gluon plasma (QGP)] and estimating the characteristic trans-
port properties of the QGP [1]. Due to its short lifetime,
estimation of the QGP properties relies on the comparison
between the experimental data and theoretical calculations,
which implement the interactions inside the medium.

Heavy quarks are among the most important probes for the
study of the QGP medium [2,3]. They are primarily produced
in the early stage of the heavy-ion collisions via hard QCD
scattering processes, and the production cross section can
be calculated using a perturbative QCD approach. During
their propagation through the medium, heavy quarks interact
with the medium and lose energy. Various approaches have
been developed to describe the interaction between the heavy
quarks and the surrounding medium.

It is useful to characterize this interaction by a few trans-
port coefficients: the drag coefficients ηD , the spatial diffusion
coefficient Ds , the momentum transport coefficients κL, κT , q̂
[4–8], etc. The reduction of the interaction to a few transport
coefficients has two advantages. On the one side, for each
approach that models the interaction between heavy quarks
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and the medium, by comparing the calculation for different
choices of transport coefficients with the experimental data,
one should be able to constrain the values and functional form
of the interaction strength. On the other side, it allows for
a comparison among various approaches, which have been
advanced to describe the heavy quark-QGP interaction.

A comparison of these calculations in order to understand
the different outcomes so far has been ambiguous [2,9]. This
is not only due to the relatively large uncertainties in the ex-
perimental measurements, which will be improved in the near
future, but also, more essentially, due to the interplay between
different assumptions when one models the full sequential
evolution of heavy quarks in heavy-ion collisions: initial con-
ditions, preequilibrium dynamics [10], formation time, time
evolution of the QGP, in-medium propagation, hadronization
[11,12], hadronic final-state interactions [13,14] (Fig. 1). Each
of these requires sophisticated modeling and introduces as-
sumptions that need to be justified, as it may compensate
differences in the description of the elementary heavy quark-
QGP interaction. It is therefore rather challenging to disen-
tangle the contributions from different stages of the evolution
apart from those of the heavy quark medium interactions, and
truthfully summarizes the theoretical uncertainties regarding
the determination of the transport coefficients in the QGP
phase. Despite all the difficulties, much effort has been made
during the past to compare among different theoretical cal-
culations and investigate the deviation, such as a systematic

2469-9985/2019/99(1)/014902(15) 014902-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.99.014902&domain=pdf&date_stamp=2019-01-10
https://doi.org/10.1103/PhysRevC.99.014902


YINGRU XU et al. PHYSICAL REVIEW C 99, 014902 (2019)

IC

PHSD

TRENTo

Model⇒ coefficients

PHSD

Catania-pQCD

Catania-QPM

Nantes

CCNU-LBT

Duke

Medium

Hydro3D

Hydro2D

PHSD

Results

Fig. 8: Initial conditions

Fig. 10 Medium effect

Fig. 11: Transport coefficients

Fig: 14: Einstein’s relationship

FIG. 1. A skeleton showing each ingredient that needs to be taken into consideration during the implementation of heavy quark evolution,
which could affect the estimation of the heavy quark transport coefficients in the QGP phase.

comparison of different charm quark transport coefficients in
a static medium contributed by the JET-HQ collaboration [15],
a broad investigation on the heavy quark evolution modeling
components conducted by the EMMI framework [16].

In this work we would continue the investigation by
controlling variables and quantifying how differing model
assumptions other than the heavy quark medium interactions
contribute to the observed variability in the extracted heavy
quark transport coefficients. We evaluate the response of the
charm quark evolution inside a realistic QGP medium using
different sets of transport coefficients, which are estimated
by multiple microscopic transport models, in a standard
Langevin evolution framework. Figure 1 provides a schematic
overview of how we separate each ingredient out and investi-
gate its respective impact. The six sets of transport coefficients
analyzed in this study are estimated from the following micro-
scopic transport models:

(i) PHSD [17,18]: The parton-hadron-string dynamics
transport approach, based on off-shell Kadanoff-
Baym equations (in first-order gradient expansion).
Heavy quarks interact with the off-shell quasiparticles
whose masses and widths are evaluated to reproduce
the lattice QCD EoS. Heavy quarks scatter with light
quarks and gluons elastically, with the running cou-
pling being determined by the scale of the tempera-
ture.

(ii) Catania-pQCD [19,20]: Full space-time transport
model for describing both heavy quark and massless
light quark and gluon evolution based on the relativis-
tic Boltzmann equation, which is solved numerically
by means of the test-particle method. Heavy quarks
interact elastically with the bulk constituents where
the scattering cross section is calculated at leading-
order pQCD with a temperature-dependent running
coupling αs and Debye screening mass mD .

(iii) Catania-QPM [21,22]: The evolution of heavy quarks
and bulk partons is described by means of a

Boltzmann equation similarly to Catania-pQCD. In
this case, in order to account for nonperturbative
interactions, light quarks and gluons are dressed with
thermal masses according to a quasiparticle prescrip-
tion and the T dependence of αs is tuned to match the
lattice QCD EoS.

(iv) Nantes [23–25]: A pQCD inspired running αs Monte
Carlo at heavy quark approach MC@sHQ, where heavy
quarks interact with the medium constituents (thermal
massless partons) according to their scattering rate,
using a linearized Boltzmann equation. The running
coupling is implemented as reaching saturation at
small Q2 momentum transfer and the matrix elements
are simplified by adopting an effective scalar propaga-
tor 1

t−κm̃2
D (T )

, with the Debye mass m̃D (T ) evaluated
self-consistently. Both collisional and collisional +
radiative energy loss versions are implemented in the
MC@sHQ model. In this study, the collisional energy
loss only version is used.

(v) CCNU-LBT [26,27]: Linearized Boltzmann dynamics
of heavy quarks inside a hydrodynamical model de-
scribing the QGP medium. Heavy quarks interact with
the medium constituents (thermal massless partons)
according to pQCD scattering rates, where the running
coupling is dependent on the momentum transfer
scale. The gluon radiation rate utilizes the higher-
twist formula, which is the same as in the Duke
model.

(vi) Duke [28–30]: Improved Langevin dynamics of heavy
quark inside a QGP medium modeled by fluid dy-
namics, incorporating both collisional and radiative
energy loss. No specific assumption regarding the
nature of the medium degrees of freedom is made,
as the medium is defined by local temperature and
flow velocity and is simulated by a hydrodynamical
model. The interaction between heavy quarks and
the medium is characterized by diffusion coefficients,
which follow an empirical parametrization and are
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determined by Bayesian inference of the experimental
measurements.

Note that we do not intend to perform a comparison of the
different microscopic interaction mechanisms, which requires
a more sophisticated study and will be conducted in the future.

The paper is structured as follows. In Sec. II we will briefly
review the Langevin dynamics that is used as a reference
evolution model and present the transport coefficients ex-
tracted from the different models under discussion. Section III
will investigate the effects that different modeling ingredients
have on the outcome of the calculations. A summary will be
addressed in Sec. IV.

II. MODEL DESCRIPTION

A. Langevin dynamics

We investigate the contribution from different components
by inserting the extracted transport coefficients into a standard
Langevin approach [31]:

d �p
dt

= −ηD (p) �p + �ξ (1)

for the coefficients evaluated by collisional only models
(PHSD, Catania-pQCD, Catania-QPM, Nantes), while uti-
lizing the improved Langevin equation [28]:

d �p
dt

= −ηD (p) �p + �ξ + �fgluon (2)

for the coefficients evaluated by collisional + radiative models
(CCNU-LBT, Duke).

Here ηD �p is the drag force and �ξ are the ther-
mal random kicks that heavy quarks consistently re-
ceive from the medium, which satisfy 〈ξi (t )ξj (t ′)〉 =
[κLp̂i p̂j + κT (δij − p̂i p̂j )]δ(t − t ′). In the scenario where the
radiative energy loss is considered, we introduce an additional
recoil force �fgluon resulting from heavy quark emitting gluons
and define it as �fgluon = −d �pgluon/dt . The gluon radiation
probability is adopted from the higher-twist approach. More
details can be found in Refs. [28,29].

The advantages of our Langevin implementation is that the
interaction between heavy quarks and the medium is solely
dependent on the drag and transport coefficients ηD, κL, κT ,
regardless of the medium degrees of freedom or the mi-
croscopic mechanism of the interaction [32]. Therefore it is
suitable to serve as a framework for the comparison of the
various forms of coefficients from different models, either
calculated directly from theory, or parametrized and later
estimated from experimental data.

B. Transport coefficients

One of the ambitious goals for heavy flavor studies in
heavy-ion collisions is to get access to the properties of the
QGP medium, especially to calculate or estimate the inter-
action between heavy quarks and the medium by encoding
the interaction into a few transport coefficients. The drag and

momentum transport coefficients are defined as [33]:
⎧⎪⎨
⎪⎩

d
dt

〈p〉 ≡ −ηD〈p〉,
1
2

d
dt

〈(�pT )2〉 ≡ κT ,

d
dt

〈(�pz)2〉 ≡ κL,

(3)

which are the average momentum loss, the transverse and
longitudinal fluctuations, respectively.

Ideally one would derive the transport coefficients through
a first-principles calculation and confront them directly with
experimental data. However, most of the microscopic trans-
port models that are applied to simulate the heavy quark evo-
lution have approached the estimation problem more or less
in a data-driven way. Some ad hoc parameters usually need to
be introduced when implementing the heavy quark in-medium
evolution (e.g., corrections for higher-order processes or some
unknown nonperturbative effects), and these parameters are
later calibrated with experimental measurements. Clearly, part
of the difference observed in the extracted transport coeffi-
cients stems from the different intrinsic interaction mecha-
nisms that are considered when the model is implemented.
Yet, part of the discrepancy in the transport coefficients also
comes from the different choices of other components, such
as initial conditions, the hadronization process, the medium
evolution, and so on. All of these can have non-negligible ef-
fects on the final output, and thus in turn affect the estimation
of the transport coefficients in the QGP phase.

In Fig. 2–4 we compare the charm quark drag and mo-
mentum transport coefficients ηD, κL, κT as a function of
temperature and momentum for several models listed in Sec.
I. All the transport coefficients are evaluated such that each
model is able to describe the D meson RAA and v2 for
AuAu and/or PbPb collisions at RHIC and the LHC. The
drag and momentum transport coefficients are separated into
two groups, where the PHSD, Catania-QPM, Catania-pQCD,
and Nantes (collisional) models employ only the collisional
energy loss, and the Duke, CCNU-LBT models employ both
collisional and radiative energy loss for heavy quarks. For
the drag coefficient ηD , all the models show a monotonously
rising temperature dependence and a decrease for increasing
momentum. The Nantescoefficients have the largest gradient
in the high-temperature and low-momentum region, which is
due to a momentum-dependent running coupling constant.

Both the transport coefficients κL, κT show a strong pos-
itive momentum dependence and a mild temperature de-
pendence, except for the Dukecoefficients, which feature an
isotropy assumption unlike the others, and have the smallest
absolute value. The PHSD coefficients are consistently smaller
but still compatible with the Catania-QPM coefficients, while
some interplay appears in the low-momentum region when
one compares between Nantes and Catania-pQCD coeffi-
cients. The nontrivial peak for CCNU-LBT coefficients in the
low-momentum region is due to the nonconstant K factor,
which is included in the model in order to provide a satisfac-
tory description of experimental data, and its parametrization
reads as K = 1 + Kp exp(−p2/2σ 2

p ).
The drag and transport coefficients shown in Figs. 2–4

carry only contributions from elastic processes. These are the
most often used transport coefficients for characterizing the
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FIG. 2. Leading-order charm quark transport coefficients (drag coefficients ηD) estimated by each group to describe the D meson RAA and
v2 at AuAu and/or PbPb collisions at RHIC and the LHC.

interaction between heavy quarks and the medium, and are
frequently compared among different models. For models that
consider only collisional energy loss process, they represent
the total drag and momentum coefficients. However, for mod-
els incorporating both collisional and radiative energy loss—
Duke and CCNU-LBT—the inelastic processes contribution
may be significant, even though the gluon radiation process
is of higher order in αs . In order to make fair comparison be-
tween different models, it is therefore important to account for
all of these contributions, from elastic and inelastic processes.

The gluon radiation implemented in Duke and CCNU-LBT
is time dependent (proportional to sin2(�t/2τf ) where τf is
the gluon formation time), which breaks the localization of
the interaction and mimics the coherence effect of medium-
induced radiation. We calculate the momentum change and
broadening using Monte Carlo techniques, by propagating
the heavy quarks in a static medium for 1 fm/c, and cal-
culating the total coefficients by Eq. (3). The results from
the dynamical calculation are presented in Fig. 5 at fixed
temperature T = 0.3 GeV and fixed momentum p = 10 GeV
correspondingly. The solid lines (with or without markers) are
the overall coefficients (containing both elastic and inelastic
contributions), while the dashed lines are the contributions
from elastic processes, the difference between these two are
the additional contributions from inelastic processes. We can
already see that for the Duke and CCNU-LBT models the gluon
radiation contributes effectively at higher momenta and at

temperatures, which we observe at the beginning of the QGP
expansion. The existence of radiative processes can partially
explain why the transport coefficients estimated by the Duke
and CCNU-LBT models are comparatively smaller than those
in models containing solely elastic interactions when one only
includes the elastic components in the analysis.

III. HEAVY QUARK IN-MEDIUM EVOLUTION

In this section, we implement charm quark propagation
inside a QGP medium using Langevin dynamics coupled to
a realistic description of the QGP medium in AuAu collisions
at

√
s = 200A GeV. We test the impact of several model

components, and compare the charm quark energy loss at
the end of the QGP phase (Tc = 0.155 GeV [34,35]). The
two variables evaluated are the nuclear modification factor
RAA, here defined as the ratio between the final-state spectra
and initial-state spectra RAA = dNfinal

dpT dy
/ dNinitial

dpT dy
, and the elliptic

flow v2 = 〈p2
y−p2

x

p2
y+p2

x
〉. We do not intend to compare the different

hadronization mechanisms, which are among the least under-
stood processes yet have been investigated in Ref. [16].

This section is structured as follows: first we will compare
the results generated from different initial conditions using
the same QGP medium evolution model (a hydrodynamical
description), and the heavy quarks interact with the medium
using common transport coefficients. Then we will compare
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FIG. 3. Same as Fig. 2 but for longitudinal momentum transport coefficient κL.

FIG. 4. Same as Fig. 2, 3 but for transverse momentum transport coefficient κT .
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FIG. 5. Overall heavy quark transport coefficients with radiative process considered. The values are estimated by propagating charm quarks
inside a static medium for 1 fm/c. The solid lines (with or without markers) represent the total transport coefficients, while the dashed lines
represent the contribution from collisional only process. The difference between those two is the contribution from higher-order radiative
process.

the results using different medium evolution models, in which
the media expand from the same initial conditions. Later we
compare in detail how heavy quarks respond to different drag
and momentum transport coefficients for a given standard
initial condition and a common medium evolution. Different
schemes for the Einstein relationship implementation as well
as the temperature and momentum dependence of the drag
and transport coefficients are inspected at the end of this
section.

A. Initial conditions

Charm quarks are created initially by hard processes,
which can be calculated in perturbative QCD. In this study
we employ FONLL [36,37] complemented by the nuclear
shadowing effect (cold nuclear matter effect) in the EPS09
parametrization [38] to calculate the initial spectra of the c
quarks.

In position space the initial geometry of the collisions
still remains one of the largest uncertainties in modeling
the QGP evolution in heavy-ion collisions [39]. Therefore
the correlation between the initial energy/entropy density of
the QGP and the initial position distribution of heavy quarks
is still a matter of active research.

In this study, we compare two different initial conditions:

(i) PHSD: the procedure developed in Ref. [40] is ap-
plied in order to solve the Landau matching condi-
tion T μνuν = euμ by diagonalization of the energy-
momentum tensor extracted from the PHSD simula-
tions. We construct a grid in Milne coordinates with
a cell size �τ = 0.2 fm/c, �x = �y = 1 fm, and
�η = 0.1). The starting time t = 0 considered here
corresponds to the first nucleon-nucleon collision. In
the PHSD model, the particle coordinates are converted
from (t, x, y, z) to Milne coordinates using the fol-
lowing relations (τ = √

t2 − z2, x, y, η = 1/2 ln[(t +
z)/(t − z)]). Each of these particles then contributes to
the energy-momentum tensor with a Gaussian weight
where the widths are taken to be (�x)2 = (�y)2 in
the transverse direction and (�η)2 in the longitudinal
direction. This smearing procedure allows us to obtain
a smooth profile with only one PHSD simulation con-
taining 30 parallel events. To avoid any overcounting,
each particle is restricted to only contribute once in
a given bin in proper time τ . In addition, particles
with nonreal proper times and space-time rapidities are
simply discarded. Using this method, the local energy
density e, the pressure components and the cell flow
velocity �β are extracted for each space-time cell of the
Milne grid.
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FIG. 6. Initial conditions at τ0 = 0.6 fm/c for AuAu collisions at 200 GeV with impact parameter b = 6 fm, generated from: (Left) PHSD
initial conditions; (Middle) TRENTo average initial condition, which is averaged by 50 TRENTo events who share the similar spatial eccentricity
as in PHSD initial condition; (Right) one example of single TRENTo event.

(ii) TRENTo: A parametric initial condition that does not
assume a specific physical mechanism, but deposits
energy/entropy according to a parametric function that
maps the projectile thickness TA into initial distribu-
tion dS/dy at midrapidity. The mapping function is
calibrated to experimental data of light hadron observ-
ables by Bayesian analysis and the functional form
dS/dy ∝ √

TATB is used in this comparison.

Although initial event-by-event fluctuations are generally
regarded as an important feature in modeling the collision
and have been shown to have a considerable impact on flow
observables, here, we will, for the sake of simplicity, consider
averaged TRENTo initial conditions which are obtained using
50 single TRENTo events. These averaged initial conditions are
widely utilized in hydrodynamical models in the literature and
are computationally significantly less expensive.

Figure 6 shows a PHSD initial condition, a TRENTo initial
condition and an averaged TRENTo initial condition for AuAu
collisions at

√
s = 200 AGeV with an impact parameter b = 6

fm at the hydro starting time τ0 = 0.6 fm/c (as well as the
starting time of heavy quarks interacting with the medium).
The top figures are the initial energy density for the soft
medium, while the bottom figures are the histograms of initial
heavy quark positions for the corresponding same events. The
(averaged) TRENTo initial condition is constructed by aver-
aging over 50 independent TRENTo initial conditions. All the
TRENTo initial conditions are selected to have a similar spatial
eccentricity ε2(s) as the PHSD initial condition. Those initial

energy densities are the input for the (2+1)D hydrodynamical
model, VISHNU, to simulate the evolution of the QGP medium,
starting from τ0 = 0.6 fm/c. Figure 7 (left), shows the time
evolution of the spatial and the momentum eccentricity of the
medium, displaying the well-known behavior of decreasing
ε2(s) and increasing ε2(p) as the system expands. The mo-
mentum eccentricity can be interpreted as the response of the
system to the initial spatial eccentricity. The hydrodynamic
medium evolution with the PHSD initial condition shows a

FIG. 7. Time evolution of the spatial and momentum anisotropy
of the QGP medium that is simulated by a (2+1)-dimensional
[(2+1)D] hydrodynamical model (VISHNU) [18,41]. The medium
starts from two different initial conditions: PHSD initial condition,
and averaged TRENTo initial condition.
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FIG. 8. (Left) Development of charm quark elliptic flow inside
a (2+1)D hydrodynamical medium during the QGP phase. (Right)
Charm quark v2(pT ) evaluated at the end of the QGP phase. The
charm quarks interact with the medium following an improved
Langevin dynamics, with Duke coefficients applied.

more rapidly increasing momentum anisotropy at earlier times
of the evolution (due to the initial flow �β introduced in the
system) and slowing down after the first few fm/c. The final
momentum anisotropy, however, is comparable to the one
with an averaged TRENTo initial condition.

Using these initial conditions, we then propagate charm
quarks in the QGP medium till the end of the QGP phase,
using Duke transport coefficients (this choice is arbitrary; we
just need to fix one set of coefficients for the comparison).
Figure 8 (left), shows the time evolution of the elliptic flow
of charm quarks. A significant fraction of this elliptic flow
is generated at later times during the evolution, when the
medium itself has a larger momentum anisotropy. We observe
a persistent difference between the charm quark v2 generated
by these two different initial conditions. This implies that
charm quarks can actually not only retain information about
the initial condition, but also keep a record of the QGP
medium expanding history, particularly the later stages of the
evolution. At the end of the QGP phase, charm quarks starting
from an average TRENTo initial condition have picked up a
larger v2 than the ones from the PHSD initial conditions, as
shown on the right of Fig. 8, plotted as the charm quark pT

differential flow at the end of the QGP phase.

B. QGP medium evolution

The interaction between heavy quarks and the medium
is dependent on the local temperature and the flow velocity
of the medium. In microscopic transport models such as
Boltzmann dynamics, the interactions will also depend on the
medium degrees of freedom.

Various approaches have been developed to describe the
evolution of the QGP medium in heavy-ion collisions. Hydro-
dynamical models are very successful in describing hadron
multiplicities, and flow coefficients up to pT 	 3 GeV. How-
ever, they do rely on the assumption of local thermal equi-
librium during the evolution. An alternative approach to the
hydrodynamical description is microscopic transport, which
employs microscopic kinetic theory and evolves the system
of partons using a transport equation such as the Boltzmann
equation [17,22,42]. These types of models do not rely on
any equilibrium assumptions but require assumptions on the

medium degrees of freedom. The differences between those
two classes of models result in significant deviation of the
medium properties, especially the viscosity corrections. An
early comparison between a hydrodynamical model and an
expanding fireball model already revealed some significant
differences regarding the charm quark v2 at the end of QGP
phase due to the different development of radial and elliptic
flow in those two models [43,44]. Thus one may also expect
differences if one compares medium evolutions based on
hydrodynamics vs. kinetic theory.

Here we briefly summarize the default medium evolution
models that are utilized in the heavy quark transport models
mentioned in Sec. I.

(i) PHSD: Off-shell transport approach with a hadronic
and a partonic phase, the simulation of the medium is
based on the off-shell Kadanoff-Baym equations (in
first-order gradient expansion), the medium consists
of quasiparticles, whose masses and widths are deter-
mined by fitting the lattice QCD EoS (PHSD).

(ii) (2+1)D viscous hydrodynamical model VISHNU: Im-
plementation of boost-invariant viscous hydrodynam-
ics, which has been updated to handle event-by-event
fluctuated initial conditions and incorporates shear
and bulk viscosity corrections with temperature de-
pendence, calculating the second-order Israel-Stewart
equations in the 14-momentum approximation (Duke,
CCNU-LBT).

(iii) Boltzmann transport model [19]: Full Boltzmann sim-
ulation with QGP medium composed either of pQCD
massless or massive particles. The local cross section
for the interaction between the bulk constituents is
tuned to a fixed value of η/s(T ). This is realized
through the Chapmann-Enskog approximation and
allows us to gauge the Boltzmann collision integral to
the wanted η/s(T ) and simulate the fluid evolution in
analogy to hydrodynamic approach (Catania-pQCD,
Catania-QPM).

(iv) EPOS: Event generator with fluctuating initial con-
ditions and (3+1)D viscous hydrodynamics vHLLE
using a lattice QCD EoS (Nantes).

In this section we compare the charm quark propagation
through three different QGP medium evolutions: the PHSD
medium, the (2+1)D hydrodynamical VISHNU medium, and
the (3+1)D hydrodynamical vHLLE medium. We prepare the
medium evolutions following the same methodology as dis-
cussed in Ref. [40], starting from the same initial conditions
(initial energy density e, flow velocity �β) that have been
generated by the PHSD model. The initial energy density and
transverse flow �β generated from PHSD is plotted in Fig. 9,
at hydro starting time τ0 = 0.6 fm/c. A detailed comparison
regarding the PHSD medium and the hydrodynamical medium
can be found in Ref. [40].

The charm quarks then propagate through the three media
using our standard Langevin dynamics, where two sets of
transport coefficients are chosen as examples: the collisional-
only PHSD coefficients, and the collisional + radiative Duke
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FIG. 9. Hydro initial condition (τ0 = 0.6 fm) generated from
PHSD, used as input for hydro evolution.

coefficients. Charm quark RAA(y), RAA(pT ) and v2 are eval-
uated at the end of the QGP phase, and are shown in Fig. 10.

As shown in Fig. 10 the evolution of charm quarks inside
hydrodynamical (2+1)D VISHNU and (3+1)D vHLLE media
are quite similar to each other. For the RAA with respect
to rapidity y, whose value is dominated by low-pT charm
quarks, discrepancies among the three media appear at large
rapidities. Among those, the low-pT charm quarks are most
suppressed in a PHSD medium around |y| 	 2.

High-pT charm quarks propagating inside a hydrodynami-
cal medium (solid and solid dots lines) show a larger suppres-
sion than in the PHSD medium (dots lines) and develop a larger
elliptic flow v2. While RAA(y) and RAA(pT ) are almost identi-
cal for (2+1)D and (3+1)D hydrodynamical calculations, the
values of v2 differ by about 15%. This is understandable as
the medium anisotropy is weaker in a (3+1)D simulation but
also reveals the limitation of the predictive power of (2D+1)
hydrodynamical calculations. The difference between charm
quarks propagating in a hydrodynamical medium and a PHSD
medium, however, is more significant. A factor of 2 difference
in the momentum differential flow v2 is observed in the high-
momentum region.

A previous study [40] has shown that although the shear
(bulk) viscosity implemented in the hydrodynamical medium

are compatible (smaller) than what is embedded in the PHSD
model, the latter has a weaker response to the bulk pres-
sure, resulting in a slightly smaller momentum eccentricity
for the bulk sector at later times of the evolution in the
PHSD model. Recalling what is shown in previous section,
charm quarks develop a significant part of their flow at
later evolution times. The substantial discrepancy between
the charm quark evolution inside the two different media,
shows that charm quarks are more susceptible to the dif-
ferent bulk pressures of the media, compared to the bulk
matter itself. This study shows that the heavy quark observ-
ables are sensitive to both, the heavy quark-medium inter-
action and the description of the QGP expansion. One of
the caveats is that different combinations of the transport
coefficients and the medium expansion can lead to very simi-
lar results in one observable, for example, the charm quark v2

results of the PHSD (coefficients)-Hydro3D (medium) combi-
nation, and Duke (coefficients)-PHSD (medium), whereas for
other observables, such as RAA(pT ), the results are rather
different. This reveals that multiple (additional) observables
are necessary to uniquely determine the transport coefficients
and the medium expansion even if all other ingredients, such
as the initial conditions, were known.

C. Heavy quark transport coefficients

The interactions between heavy quarks and the medium
are encoded into transport coefficients, which have a nontriv-
ial temperature and momentum dependence. In this section,
we will implement different sets of charm quark transport
coefficients into our standard Langevin dynamics coupled to
the same (2+1)D hydrodynamical medium, evolved from the
same PHSD initial conditions. This setup will not only provide
us with a direct comparison between the response of the charm
quark observables (RAA and v2) to the transport coefficients,
but also give us an insight into the difference of the interaction
mechanisms employed by each model, in particular, Langevin
dynamics versus microscopic transport dynamics.

The results of charm quark RAA and v2 at the end of the
QGP phase are plotted in Fig. 11. At intermediate and higher

FIG. 10. Charm quark RAA as a function of y (left), and pT (middle), elliptic flow v2 as a function of pT (right) at the end of the QGP
phase. The charm quarks are following a Langevin dynamics with two sets of transport coefficients applied: PHSD (red) and Duke (green).
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FIG. 11. Charm quark RAA as a function of y (left), and pT (middle), elliptic flow v2 as a function of pT (right) at the end of the QGP
phase. The charm quarks are propagating in a hydrodynamical medium simulation for AuAu collisions at 200 GeV with b = 6 fm/c (top), and
b = 2 fm/v (bottom).

pT (>5 GeV), notable differences appear among different
sets of coefficients. The PHSD and Catania-QPM models
have very similar transport coefficients, and therefore their
RAA and v2 are comparable to each other. Both generate the
least suppression and the smallest momentum anisotropy. The
RAA also levels off at higher pT due to the lack of radiative
energy loss.

The Duke and CCNU-LBT coefficients result in moderate
suppression and flow among the six, although the Duke co-
efficients are the smallest of all. This a the consequence of
including the radiative energy loss in the improved Langevin
equation, which significantly strengthens the interaction be-
tween heavy quarks and the medium. The Nantes coefficients
result in the strongest suppression and the largest flow, even
though the Nantes (κL, κT ) are not the largest. In fact, when
one examines the Nantes and Catania-pQCD coefficients,
these two are comparable with each other yet the RAA and
v2 are substantially different. This could be a consequence of
the stronger momentum dependence of the drag coefficient ηD

presented in the Nantes coefficients, which results in a greater
energy loss in a dynamical medium.

The RAA with respect to rapidity, which is dominantly
driven by the low-pT charm quarks, has less differentiating
power in terms of different transport coefficients. However,
the rapidity dependence of heavy charm observables may still

be useful for distinguishing features in the medium evolution,
as demonstrated in Sec. III B.

At the end of this section, we should be cognizant that the
observed variability of RAA(pT ) and v2(pT ) resulting from
different description of the medium expansion (as shown in
Fig. 10), is of the same order of the magnitude as the vari-
ability resulting from different sets of transport coefficients
(Fig. 11). Clearly one approach to improve upon this partic-
ular ambiguity is to make sure that the respective medium
evolution is calibrated to well reproduce the largest possible
set of observables in the light hadron sector.

D. Einstein’s relationship

Most of the transport approaches presented here are based
on the Boltzmann equation. The Boltzmann collision integral
is solved by a Monte Carlo procedure, which conserves energy
and momentum for each collision. The drag and momentum
transport coefficients can be calculated from the Boltzmann
collision integral [45]. The H theorem guaranties that a system
approaches thermal equilibrium when its time evolution is
given by the Boltzmann equation. However, when using these
transport coefficients in a Langevin equation, the approach
to equilibrium is only guarantied when the Einstein’s re-
lationship between the drag and the momentum transport
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FIG. 12. Charm quarks distribution after propagating within the Langevin evolution in a static medium with constant temperature for
t = 50 fm/c. The dashed black lines are the equilibrium Boltzmann distribution.

coefficients is satisfied [46–48]. When the equilibrium dis-
tribution obeys Boltzmann-Jüttner statistics, the Einstein’s
relationship yields (in the prepoint discretization scheme of
the Langevin equation):

ηD = κL

2ET
− κL − κT

p2
− ∂κL

∂p2
. (4)

The drag and momentum transport coefficients deter-
mined by the Boltzmann collision integral do not usu-
ally fulfill the Einstein’s relationship. When using all three
ηD, κL, κT coefficients independently, the system does not
approach equilibrium, as shown in Fig. 12. Although it has
been shown that the Langevin equation reproduces the re-
sults of the Boltzmann equation under the condition that
the scattering angle is small [49], such condition is often
not fulfilled for heavy quark scattering in the pQCD ap-
proach and therefore the difference between a Boltzmann
dynamics and a reduced Langevin dynamics could be dis-
tinct, depending on the quark mass and regulator, as shown
in Ref. [50].

We are therefore facing an ambiguity when imposing
Einstein’s relationship as only two (one) variables among
the ηD, κL, κT are required in the anisotropic (isotropic) im-
plementation. Here, we compare the results from different
implementation of Einstein’s relationship in a static medium,
showing in Fig. 13. Heavy quarks are initialized with an initial
momentum pz(0) = 30 GeV and then propagate in a static
medium (T = 0.3 GeV) for 200 fm/c following different

FIG. 13. Comparison between different implementation of Ein-
stein’s relationship in a static medium. Heavy quarks are initial-
ized with same momentum as pz(0) = 30 GeV, and propagate in
a static medium (T = 0.3 GeV) for 200 fm/c under: linearized
Boltzmann dynamics (red dashed line), Langevin dynamics taking
(ηD, κL, κT ) calculated from linearized Boltzmann dynamics (blue
line), Langevin dynamics taking (κT ) while κL, ηD are calculated
from Einstein’s relationship (orange line), Langevin dynamics taking
(κL) while κT , ηD are calculated from Einstein’s relationship (cyan
line), Langevin dynamics taking (κT , κL) while ηD are calculated
from Einstein’s relationship (purple line), Langevin dynamics taking
(ηD) while κL, κT are calculated from Einstein’s relationship (green
line).
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FIG. 14. Charm quark RAA as a function of pT (top), elliptic flow v2 as a function of pT (bottom) at the end of the QGP phase. The charm
quarks are propagating in a hydrodynamical medium simulation for AuAu collisions at 200 GeV with b = 6 fm/c, with different scenario of
Einstein’s relationship applied.

dynamics. The red dashed line represents the average energy
evolution under a linearized Boltzmann dynamics, while the
others are the results from Langevin evolution while taking
different choices of the drag and momentum transport coeffi-
cients. As shown on the left panel of Fig. 13, without involv-
ing of the longitudinal momentum transformation κL, heavy
quarks lose energy similarly under linearized Boltzmann and
Langevin dynamics.

It should be pointed out that the coincidence among the
implementation of the cases: ηD = ER(κT ), κT = κL, κT =
κL = ER(ηD ) is, as a matter of fact, very model dependent.
In the leading order pQCD assumption, where the t channel
is the main contribution for the energy loss, the relationship
between the drag ηD and transverse momentum coefficients
κT is approximately close to the Einstein’s relationship κT ≈
2ET ηD [33]. In this scenario, there is no surprise that the
green and orange lines collide with each other. However,
with the consideration of higher-order contribution, mass
effects, different choices of regulators, the relationship is not
guaranteed. In an extreme scenario as shown on the right
panel of Fig. 13, where κT is quite different from 2ET ηD ,
the average energy evolution approaching to equilibrium
shows significant deviation between ηD = ER(κT ) and κT =
ER(ηD ) implementations. Such extreme case is achieved here
by including only the s-channel contribution in the 2 → 2

scatterings, which is not intended to describe the reality but
used for demonstration purpose. In general, while focusing
on the study of average energy loss, the implementation with
drag coefficient ηD would result in more similarity between
Langevin and Boltzmann dynamics.

The average energy is not the only criterion to compare
the different implementation. To compare the influence of
Einstein’s relationship implementation on heavy quark evo-
lution in a realistic medium, we demonstrate the following
three cases: (i) anisotropic case: (κL, κT ) are known while
ηD is calculated from Einstein’s relationship; (ii) isotropic
case: κT is known and κL = κT and ηD is calculated from
Einstein’s relationship; (iii) isotropic case: ηD is known while
κL = κT are calculated from Einstein’s relationship. Addition-
ally, Einstein’s relationship Eq. (4) holds for the traditional
Langevin equation. The detailed balance naturally included
in the traditional Langevin dynamics breaks down in the im-
proved Langevin equation as a consequence of not including
gluon absorption. In the improved Langevin implementation,
a cutoff for the emitted gluon energy as ω = πT is induced,
such that the Boltzmann distribution is still achieved yet with
a slightly smaller effective equilibrium temperature [28].

The RAA and v2 with Einstein’s relationship imposed are
shown in Fig. 14. Just as in the previous subsection, the charm
quarks propagate in a (2+1)D hydrodynamical medium and

014902-12



RESOLVING DISCREPANCIES IN THE ESTIMATION OF … PHYSICAL REVIEW C 99, 014902 (2019)

the observables are calculated at the end of the QGP phase.
Surprisingly, after imposing the Einstein’s relationship, the
charm quark RAA is significantly smaller compared to the one
without imposing Einstein’s relationship (Fig. 11). Since the
Duke coefficients obey the isotropic Einstein’s relationship by
default, their results are not affected.

When one selects case (ii) or (iii), the isotropic versions
of Einstein’s relationship (in those two cases, κT or ηD ,
respectively, is the only coefficient that controls the interaction
strength between charm quarks and the medium), RAA and
v2 faithfully reflect the magnitude of κT (ηD). A consistently
larger Catania-QPM κT than PHSD κT results in a consistently
stronger suppression in RAA and a larger v2, and vice versa.
When one selects case (i) (the anisotropic version of Einstein’s
relationship), the charm quarks develop the strongest momen-
tum anisotropy, and the peak of v2 has shifted from the lower-
momentum region pT ∼ 2.5 GeV to a higher momentum of
around 5 GeV.

Given the ambiguities laid out above, one can question
whether the Fokker-Planck approach, although very useful
to compare different transport approaches, is the right tool
for quantitative predictions, which can be compared to ex-
perimental results. The results for the case that the three
transport coefficients are taken as independent, as obtained
from the Boltzmann collision integral, and for the case that
one imposes the Einstein’s relationship differ substantially. In
addition the results depend on the arbitrary choice of which
of the three transport coefficients is taken over from the
Boltzmann collision integral and serves to determine the other
two via the Einstein’s relationship. These results reinforce the
first findings discussed in Ref. [50] within only a pQCD-like
approach.

IV. CONCLUSION

The heavy-ion experiments at RHIC and the LHC have
provided the community with a rich set of heavy flavor
measurements. The main mechanisms driving the strong sup-
pression of high-pT heavy flavor hadrons and their significant
elliptic flow are in general understood, as heavy quarks lose
a substantial amount of energy while propagating through the
QGP medium. In the low-momentum region, the energy loss
is dominated by collisional energy loss while in the high-
momentum region, radiative energy loss plays significant role
[51–53]. However, the precise determination of the energy
loss and the related transport coefficients still lags behind. To
advance, an improvement of current experimental precision
(statistically and systematically) as well as a thorough un-
derstanding of the discrepancies observed among theoretical
calculations are of crucial importance.

In this paper, we have investigated a number of components
in the modeling of the heavy quark evolution in heavy-ion
collisions in order to evaluate their possible contribution to
the determination of the heavy quark transport coefficients in
a QGP medium. Key observations we have found include:

(i) Charm quarks are sensitive to the history of the QGP
evolution and retain information on the entire time
evolution from initial condition up to the late stage

of the reaction. The calculations confirm that heavy
quarks are a very suitable probe to study the QGP
properties.

(ii) Different initial conditions could cause up to a 20%
discrepancy for the final observables v2. This result is
obtained using an averaged TRENTo initial condition
and a PHSD initial condition for the same approach
for the time evolution.

(iii) The results for the v2 observable depend on the
medium through which the heavy quarks travel. If
the expanding plasma is in local equilibrium (hydro-
dynamics) we obtain, for the same initial condition,
higher values for v2 as compared to the nonequilib-
rium PHSD approach. This observation suggests to
study whether other observables give additional infor-
mation on the equilibrium/nonequilibrium expansion
of the QGP. In addition, a 15% of difference in v2 has
been shown between heavy quarks propagating in a
2D hydrodynamical medium vs. a 3D hydrodynam-
ical medium. The rapidity distribution is much less
dependent on the medium.

(iv) The inclusion of radiative energy loss has a large
effect on the estimation of leading-order transport
coefficients, particularly to the determination of q̂ co-
efficients (which omit higher-order radiative process).
In order to make a meaning comparison, one should
include all contributions from all processes.

(v) The transport coefficient κL, κT , and ηD , calculated
from the pQCD cross sections used in the mod-
els presented here, do not obey the Einstein’s re-
lationship. Thus the Boltzmann equation, used in
these approaches, cannot be consistently reduced to
a Langevin equation because the angular distribution
of the cross sections cannot be well approximated
by retaining only the first two terms of the Taylor
expansion. Since for any approach, which brings the
system asymptotically to a thermal equilibrium the
Einstein’s relationship has to be fulfilled, one has to
make the arbitrary choice of which of the three coeffi-
cients should be considered as fundamental. The other
two are then obtained by the Einstein’s relationship.
Our results show that the final observables depend
strongly on this choice.

(vi) Different sources of uncertainties, such as different
expansion scenarios, different initial conditions, and
different elementary heavy quark-QGP interactions
influence RAA and v2 in a similar way.

To ensure progress in the future, one has to reduce the
uncertainties laid out in this paper, either by theoretical con-
siderations or by adding new observables into the analysis.
Including light hadron observables may help to limit the
variance of the expansion scenarios. Replacing the Langevin
approach by a Boltzmann approach helps to eliminate the
theoretical uncertainties, which are unavoidable if one wants
to replace a Boltzmann equation by a Langevin equation, even
though care has to be taken regarding heavy quark interactions
at small momenta.
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FIG. 15. Charm quark RAA as a function of y (left), and pT

(middle), elliptic flow v2 as a function of pT (right) at the end of the
QGP phase. The charm quarks are propagating in a hydrodynamical
medium simulation for AuAu collisions at 200 GeV with b = 6 fm/c

(top), and “tune2” assumption for each set of transport coefficients.

In the future we plan to extend our study to a detailed
comparison of the different interaction mechanisms that are
implemented in each microscopic model, the effect of the
hadronization process, as well as other modeling components
such as the dynamics of the preequilibrium stage for hydrody-
namic models and hadronic final-state interaction.
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APPENDIX: T, p DEPENDENCE OF THE TRANSPORT
COEFFICIENTS

In this section, we will show that it is important for each
model to describe the RAA and v2 momentum dependence
simultaneously in all the momentum regions to which the
model can be applied. In other words, we will first adjust
the coefficients by multiplying each set by a constant K
factor, such that we obtain a charm quark RAA = 0.3 at pT =
10 GeV using a Langevin dynamics in a (2+1)D hydrodynam-
ical medium. It is to some extend the analogy to the “tune2”
test in Ref. [15] despite the major difference is that now
charm quarks propagate in a dynamical medium instead in a
static one.

As shown in Fig. 15, fixing RAA(pT = 10) = 0.3 makes
the variance of the RAA considerably smaller compared to
Fig. 11, the variance of v2, however, has not improved. This
shows the complexity of the dynamics and the independence
of both observables.

[1] Y. Akiba et al., arXiv:1502.02730 [nucl-ex].
[2] A. Andronic et al., Eur. Phys. J. C 76, 107 (2016).
[3] R. Rapp and H. van Hees, Quark-Gluon Plasma 4, 111 (2010).
[4] B. G. Zakharov, JETP Lett. 73, 49 (2001); [ Pisma Zh. Eksp.

Teor. Fiz. 73, 55 (2001)].
[5] M. Gyulassy, P. Levai, and I. Vitev, Phys. Rev. D 66, 014005

(2002).
[6] R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigne, and D.

Schiff, Nucl. Phys. B 484, 265 (1997).
[7] X. N. Wang, and X. F. Guo, Nucl. Phys. A 696, 788 (2001).
[8] D. Banerjee, S. Datta, R. Gavai, and P. Majumdar, Phys. Rev. D

85, 014510 (2012).
[9] F. Prino and R. Rapp, J. Phys. G 43, 093002 (2016).

[10] P. M. Chesler, M. Lekaveckas, and K. Rajagopal, J. High
Energy Phys. 10 (2013) 013.

[11] E. Braaten, Y. Jia, and T. Mehen, Phys. Rev. Lett. 89, 122002
(2002).

[12] Z.-W. Lin and D. Molnár, Phys. Rev. C 68, 044901 (2003).
[13] M. Laine, J. High Energy Phys. 04 (2011) 124.
[14] M. He, R. J. Fries, and R. Rapp, Phys. Lett. B 701, 445 (2011).
[15] S. Cao et al., arXiv:1809.07894 [nucl-th].
[16] R. Rapp et al., Nucl. Phys. A 979, 21 (2018).
[17] T. Song, H. Berrehrah, D. Cabrera, J. M. Torres-Rincon, L.

Tolos, W. Cassing, and E. Bratkovskaya, Phys. Rev. C 92,
014910 (2015).

[18] H. Song and U. W. Heinz, Phys. Lett. B 658, 279 (2008).

[19] S. Plumari, A. Puglisi, F. Scardina, and V. Greco, Phys. Rev. C
86, 054902 (2012).

[20] S. K. Das, F. Scardina, S. Plumari, and V. Greco, Phys. Lett. B
747, 260 (2015).

[21] S. Plumari, W. M. Alberico, V. Greco, and C. Ratti, Phys. Rev.
D 84, 094004 (2011).

[22] F. Scardina, S. K. Das, V. Minissale, S. Plumari, and V. Greco,
Phys. Rev. C 96, 044905 (2017); arXiv:1707.05452 [nucl-th].

[23] P. B. Gossiaux and J. Aichelin, Phys. Rev. C 78, 014904 (2008).
[24] M. Nahrgang, J. Aichelin, P. B. Gossiaux, and K. Werner, Phys.

Rev. C 90, 024907 (2014).
[25] P. B. Gossiaux and J. Aichelin, Nucl. Phys. A 830,

203C (2009).
[26] S. Cao, T. Luo, G. Y. Qin, and X. N. Wang, Phys. Rev. C 94,

014909 (2016).
[27] S. Cao, T. Luo, G. Y. Qin, and X. N. Wang, Phys. Lett. B 777,

255 (2018).
[28] S. Cao, G. Y. Qin, and S. A. Bass, Phys. Rev. C 88, 044907

(2013).
[29] S. Cao, G. Y. Qin, and S. A. Bass, Phys. Rev. C 92, 024907

(2015).
[30] Y. Xu, M. Nahrgang, J. E. Bernhard, S. Cao, and S. A. Bass,

Nucl. Phys. A 967, 668 (2017).
[31] M. He, H. van Hees, P. B. Gossiaux, R. J. Fries, and R. Rapp,

Phys. Rev. E 88, 032138 (2013).
[32] H. van Hees and R. Rapp, Phys. Rev. C 71, 034907 (2005).

014902-14

http://arxiv.org/abs/arXiv:1502.02730
https://doi.org/10.1140/epjc/s10052-015-3819-5
https://doi.org/10.1140/epjc/s10052-015-3819-5
https://doi.org/10.1140/epjc/s10052-015-3819-5
https://doi.org/10.1140/epjc/s10052-015-3819-5
https://doi.org/10.1142/97898142932970003
https://doi.org/10.1142/97898142932970003
https://doi.org/10.1142/97898142932970003
https://doi.org/10.1142/97898142932970003
https://doi.org/10.1134/1.1358417
https://doi.org/10.1134/1.1358417
https://doi.org/10.1134/1.1358417
https://doi.org/10.1134/1.1358417
https://doi.org/10.1103/PhysRevD.66.014005
https://doi.org/10.1103/PhysRevD.66.014005
https://doi.org/10.1103/PhysRevD.66.014005
https://doi.org/10.1103/PhysRevD.66.014005
https://doi.org/10.1016/S0550-3213(96)00581-0
https://doi.org/10.1016/S0550-3213(96)00581-0
https://doi.org/10.1016/S0550-3213(96)00581-0
https://doi.org/10.1016/S0550-3213(96)00581-0
https://doi.org/10.1016/S0375-9474(01)01130-7
https://doi.org/10.1016/S0375-9474(01)01130-7
https://doi.org/10.1016/S0375-9474(01)01130-7
https://doi.org/10.1016/S0375-9474(01)01130-7
https://doi.org/10.1103/PhysRevD.85.014510
https://doi.org/10.1103/PhysRevD.85.014510
https://doi.org/10.1103/PhysRevD.85.014510
https://doi.org/10.1103/PhysRevD.85.014510
https://doi.org/10.1088/0954-3899/43/9/093002
https://doi.org/10.1088/0954-3899/43/9/093002
https://doi.org/10.1088/0954-3899/43/9/093002
https://doi.org/10.1088/0954-3899/43/9/093002
https://doi.org/10.1007/JHEP10(2013)013
https://doi.org/10.1007/JHEP10(2013)013
https://doi.org/10.1007/JHEP10(2013)013
https://doi.org/10.1007/JHEP10(2013)013
https://doi.org/10.1103/PhysRevLett.89.122002
https://doi.org/10.1103/PhysRevLett.89.122002
https://doi.org/10.1103/PhysRevLett.89.122002
https://doi.org/10.1103/PhysRevLett.89.122002
https://doi.org/10.1103/PhysRevC.68.044901
https://doi.org/10.1103/PhysRevC.68.044901
https://doi.org/10.1103/PhysRevC.68.044901
https://doi.org/10.1103/PhysRevC.68.044901
https://doi.org/10.1007/JHEP04(2011)124
https://doi.org/10.1007/JHEP04(2011)124
https://doi.org/10.1007/JHEP04(2011)124
https://doi.org/10.1007/JHEP04(2011)124
https://doi.org/10.1016/j.physletb.2011.06.019
https://doi.org/10.1016/j.physletb.2011.06.019
https://doi.org/10.1016/j.physletb.2011.06.019
https://doi.org/10.1016/j.physletb.2011.06.019
http://arxiv.org/abs/arXiv:1809.07894
https://doi.org/10.1016/j.nuclphysa.2018.09.002
https://doi.org/10.1016/j.nuclphysa.2018.09.002
https://doi.org/10.1016/j.nuclphysa.2018.09.002
https://doi.org/10.1016/j.nuclphysa.2018.09.002
https://doi.org/10.1103/PhysRevC.92.014910
https://doi.org/10.1103/PhysRevC.92.014910
https://doi.org/10.1103/PhysRevC.92.014910
https://doi.org/10.1103/PhysRevC.92.014910
https://doi.org/10.1016/j.physletb.2007.11.019
https://doi.org/10.1016/j.physletb.2007.11.019
https://doi.org/10.1016/j.physletb.2007.11.019
https://doi.org/10.1016/j.physletb.2007.11.019
https://doi.org/10.1103/PhysRevC.86.054902
https://doi.org/10.1103/PhysRevC.86.054902
https://doi.org/10.1103/PhysRevC.86.054902
https://doi.org/10.1103/PhysRevC.86.054902
https://doi.org/10.1016/j.physletb.2015.06.003
https://doi.org/10.1016/j.physletb.2015.06.003
https://doi.org/10.1016/j.physletb.2015.06.003
https://doi.org/10.1016/j.physletb.2015.06.003
https://doi.org/10.1103/PhysRevD.84.094004
https://doi.org/10.1103/PhysRevD.84.094004
https://doi.org/10.1103/PhysRevD.84.094004
https://doi.org/10.1103/PhysRevD.84.094004
https://doi.org/10.1103/PhysRevC.96.044905
https://doi.org/10.1103/PhysRevC.96.044905
https://doi.org/10.1103/PhysRevC.96.044905
https://doi.org/10.1103/PhysRevC.96.044905
http://arxiv.org/abs/arXiv:1707.05452
https://doi.org/10.1103/PhysRevC.78.014904
https://doi.org/10.1103/PhysRevC.78.014904
https://doi.org/10.1103/PhysRevC.78.014904
https://doi.org/10.1103/PhysRevC.78.014904
https://doi.org/10.1103/PhysRevC.90.024907
https://doi.org/10.1103/PhysRevC.90.024907
https://doi.org/10.1103/PhysRevC.90.024907
https://doi.org/10.1103/PhysRevC.90.024907
https://doi.org/10.1016/j.nuclphysa.2009.10.015
https://doi.org/10.1016/j.nuclphysa.2009.10.015
https://doi.org/10.1016/j.nuclphysa.2009.10.015
https://doi.org/10.1016/j.nuclphysa.2009.10.015
https://doi.org/10.1103/PhysRevC.94.014909
https://doi.org/10.1103/PhysRevC.94.014909
https://doi.org/10.1103/PhysRevC.94.014909
https://doi.org/10.1103/PhysRevC.94.014909
https://doi.org/10.1016/j.physletb.2017.12.023
https://doi.org/10.1016/j.physletb.2017.12.023
https://doi.org/10.1016/j.physletb.2017.12.023
https://doi.org/10.1016/j.physletb.2017.12.023
https://doi.org/10.1103/PhysRevC.88.044907
https://doi.org/10.1103/PhysRevC.88.044907
https://doi.org/10.1103/PhysRevC.88.044907
https://doi.org/10.1103/PhysRevC.88.044907
https://doi.org/10.1103/PhysRevC.92.024907
https://doi.org/10.1103/PhysRevC.92.024907
https://doi.org/10.1103/PhysRevC.92.024907
https://doi.org/10.1103/PhysRevC.92.024907
https://doi.org/10.1016/j.nuclphysa.2017.05.035
https://doi.org/10.1016/j.nuclphysa.2017.05.035
https://doi.org/10.1016/j.nuclphysa.2017.05.035
https://doi.org/10.1016/j.nuclphysa.2017.05.035
https://doi.org/10.1103/PhysRevE.88.032138
https://doi.org/10.1103/PhysRevE.88.032138
https://doi.org/10.1103/PhysRevE.88.032138
https://doi.org/10.1103/PhysRevE.88.032138
https://doi.org/10.1103/PhysRevC.71.034907
https://doi.org/10.1103/PhysRevC.71.034907
https://doi.org/10.1103/PhysRevC.71.034907
https://doi.org/10.1103/PhysRevC.71.034907


RESOLVING DISCREPANCIES IN THE ESTIMATION OF … PHYSICAL REVIEW C 99, 014902 (2019)

[33] G. D. Moore and D. Teaney, Phys. Rev. C 71, 064904
(2005).

[34] Wuppertal-Budapest Collaboration, S. Borsanyi et al., J. High
Energy Phys. 09 (2010) 073.

[35] T. Bhattacharya, M. I. Buchoff, N. H. Christ, H.-T. Ding,
R. Gupta, C. Jung, F. Karsch, Z. Lin, R. D. Mawhinney, G.
McGlynn, S. Mukherjee, D. Murphy, P. Petreczky, D. Renfrew,
C. Schroeder, R. A. Soltz, P. M. Vranas, and H. Yin (HotQCD
Collaboration), Phys. Rev. Lett. 113, 082001 (2014).

[36] M. Cacciari, M. Greco, and P. Nason, J. High Energy Phys. 05
(1998) 007.

[37] M. Cacciari, S. Frixione, N. Houdeau, M. L. Mangano, P.
Nason, and G. Ridolfi, J. High Energy Phys. 10 (2012) 137.

[38] K. J. Eskola, H. Paukkunen, and C. A. Salgado, J. High Energy
Phys. 04 (2009) 065.

[39] B. Schenke, P. Tribedy, and R. Venugopalan, Phys. Rev. C 89,
024901 (2014).

[40] Y. Xu, P. Moreau, T. Song, M. Nahrgang, S. A. Bass, and E.
Bratkovskaya, Phys. Rev. C 96, 024902 (2017).

[41] Z. Qiu, C. Shen, and U. Heinz, Phys. Lett. B 707, 151 (2012).
[42] J. Uphoff, O. Fochler, Z. Xu, and C. Greiner, Phys. Lett. B 717,

430 (2012).

[43] P. B. Gossiaux, S. Vogel, H. van Hees, J. Aichelin, R. Rapp, M.
He, and M. Bluhm, arXiv:1102.1114 [hep-ph].

[44] W. M. Alberico, A. Beraudo, A. De Pace, A. Molinari, M.
Monteno, M. Nardi, and F. Prino, Eur. Phys. J. C 71, 1666
(2011).

[45] H. Berrehrah, P. B. Gossiaux, J. Aichelin, W. Cassing, J. M.
Torres-Rincon, and E. Bratkovskaya, Phys. Rev. C 90, 051901
(2014).

[46] P. B. Gossiaux, V. Guiho, and J. Aichelin, J. Phys. G 32, S359
(2006).

[47] H. van Hees, V. Greco, and R. Rapp, Phys. Rev. C 73, 034913
(2006).

[48] S. K. Das, Jan-e Alam, and P. Mohanty, Phys. Rev. C 82, 014908
(2010).

[49] J. Aichelin, Nucl. Phys. A 411, 474 (1983).
[50] S. K. Das, F. Scardina, S. Plumari, and V. Greco, Phys. Rev. C

90, 044901 (2014).
[51] N. Armesto, C. A. Salgado, and U. A. Wiedemann, Phys. Rev.

D 69, 114003 (2004).
[52] N. Armesto, A. Dainese, C. A. Salgado, and U. A. Wiedemann,

Phys. Rev. D 71, 054027 (2005).
[53] M. G. Mustafa, Phys. Rev. C 72, 014905 (2005).

014902-15

https://doi.org/10.1103/PhysRevC.71.064904
https://doi.org/10.1103/PhysRevC.71.064904
https://doi.org/10.1103/PhysRevC.71.064904
https://doi.org/10.1103/PhysRevC.71.064904
https://doi.org/10.1007/JHEP09(2010)073
https://doi.org/10.1007/JHEP09(2010)073
https://doi.org/10.1007/JHEP09(2010)073
https://doi.org/10.1007/JHEP09(2010)073
https://doi.org/10.1103/PhysRevLett.113.082001
https://doi.org/10.1103/PhysRevLett.113.082001
https://doi.org/10.1103/PhysRevLett.113.082001
https://doi.org/10.1103/PhysRevLett.113.082001
https://doi.org/10.1088/1126-6708/1998/05/007
https://doi.org/10.1088/1126-6708/1998/05/007
https://doi.org/10.1088/1126-6708/1998/05/007
https://doi.org/10.1088/1126-6708/1998/05/007
https://doi.org/10.1007/JHEP10(2012)137
https://doi.org/10.1007/JHEP10(2012)137
https://doi.org/10.1007/JHEP10(2012)137
https://doi.org/10.1007/JHEP10(2012)137
https://doi.org/10.1088/1126-6708/2009/04/065
https://doi.org/10.1088/1126-6708/2009/04/065
https://doi.org/10.1088/1126-6708/2009/04/065
https://doi.org/10.1088/1126-6708/2009/04/065
https://doi.org/10.1103/PhysRevC.89.024901
https://doi.org/10.1103/PhysRevC.89.024901
https://doi.org/10.1103/PhysRevC.89.024901
https://doi.org/10.1103/PhysRevC.89.024901
https://doi.org/10.1103/PhysRevC.96.024902
https://doi.org/10.1103/PhysRevC.96.024902
https://doi.org/10.1103/PhysRevC.96.024902
https://doi.org/10.1103/PhysRevC.96.024902
https://doi.org/10.1016/j.physletb.2011.12.041
https://doi.org/10.1016/j.physletb.2011.12.041
https://doi.org/10.1016/j.physletb.2011.12.041
https://doi.org/10.1016/j.physletb.2011.12.041
https://doi.org/10.1016/j.physletb.2012.09.069
https://doi.org/10.1016/j.physletb.2012.09.069
https://doi.org/10.1016/j.physletb.2012.09.069
https://doi.org/10.1016/j.physletb.2012.09.069
http://arxiv.org/abs/arXiv:1102.1114
https://doi.org/10.1140/epjc/s10052-011-1666-6
https://doi.org/10.1140/epjc/s10052-011-1666-6
https://doi.org/10.1140/epjc/s10052-011-1666-6
https://doi.org/10.1140/epjc/s10052-011-1666-6
https://doi.org/10.1103/PhysRevC.90.051901
https://doi.org/10.1103/PhysRevC.90.051901
https://doi.org/10.1103/PhysRevC.90.051901
https://doi.org/10.1103/PhysRevC.90.051901
https://doi.org/10.1088/0954-3899/32/12/S44
https://doi.org/10.1088/0954-3899/32/12/S44
https://doi.org/10.1088/0954-3899/32/12/S44
https://doi.org/10.1088/0954-3899/32/12/S44
https://doi.org/10.1103/PhysRevC.73.034913
https://doi.org/10.1103/PhysRevC.73.034913
https://doi.org/10.1103/PhysRevC.73.034913
https://doi.org/10.1103/PhysRevC.73.034913
https://doi.org/10.1103/PhysRevC.82.014908
https://doi.org/10.1103/PhysRevC.82.014908
https://doi.org/10.1103/PhysRevC.82.014908
https://doi.org/10.1103/PhysRevC.82.014908
https://doi.org/10.1016/0375-9474(83)90541-9
https://doi.org/10.1016/0375-9474(83)90541-9
https://doi.org/10.1016/0375-9474(83)90541-9
https://doi.org/10.1016/0375-9474(83)90541-9
https://doi.org/10.1103/PhysRevC.90.044901
https://doi.org/10.1103/PhysRevC.90.044901
https://doi.org/10.1103/PhysRevC.90.044901
https://doi.org/10.1103/PhysRevC.90.044901
https://doi.org/10.1103/PhysRevD.69.114003
https://doi.org/10.1103/PhysRevD.69.114003
https://doi.org/10.1103/PhysRevD.69.114003
https://doi.org/10.1103/PhysRevD.69.114003
https://doi.org/10.1103/PhysRevD.71.054027
https://doi.org/10.1103/PhysRevD.71.054027
https://doi.org/10.1103/PhysRevD.71.054027
https://doi.org/10.1103/PhysRevD.71.054027
https://doi.org/10.1103/PhysRevC.72.014905
https://doi.org/10.1103/PhysRevC.72.014905
https://doi.org/10.1103/PhysRevC.72.014905
https://doi.org/10.1103/PhysRevC.72.014905

