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Investigation of the cross section for dd elastic scattering and dd → n 3He reactions at 160 MeV
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Differential cross sections of 2H(d, d )2H elastic scattering and proton transfer 2H(d, 3He)n reactions at
160 MeV beam energy have been obtained. They have been normalized relative to the existing cross-section data
for the 2H(d, d )2H elastic scattering at 180 and 130 MeV, benefitting from the negligible energy dependence
of this observable at certain range of the four-momentum transfer. The experiment was performed at KVI in
Groningen, the Netherlands, using the BINA detector. The elastic scattering data are compared to theoretical
predictions based on the lowest-order term in the Neumann series expansion for four-nucleon transition
operators. The calculations underpredict the data. The data presented in this paper can be used to validate the
future theoretical findings.
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I. INTRODUCTION

Nuclear forces have been well studied in the past two
decades. According to our present knowledge, the nuclear
force is due to residual strong interactions between the col-
orless hadrons, similar to the van der Waals force between
neutral atoms. The first idea for describing the nuclear force
was developed by Yukawa, who suggested that the force is
generated via exchange of massive particles (namely pions,
which were later discovered) between the nucleons [1], in
analogy to the electromagnetic interaction where the exchange
of a massless photon creates a force of infinite range. On
the basis of this theory, models of nucleon-nucleon (NN)
forces were created. Nowadays, they are still in use in the
sophisticated form of so-called realistic potentials, since the
theory of strong interactions, QCD, cannot yet be solved in
the nonperturbative regime in the energy domain where stable
nuclei exist. These potentials can include �-isobar degrees
of freedom in the coupled-channels formalism [2]. There is
also a more fundamental way of describing nuclear forces
within chiral perturbation theory (ChPT) [3,4]: effective field
theory based on the symmetries of QCD. All these approaches
constitute a rich theoretical basis for description of the NN in-
teraction. To investigate the nature of the nuclear interactions,
few-nucleon systems were chosen as a basic experimental lab-
oratory. As a consequence of internal structure of the nucleon,
the so-called three-nucleon force (3NF) plays an important
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role in three-nucleon (3N) systems. Exact calculations for
such systems are performed with various NN potentials and
3NF models and are directly compared to experimental data,
providing information on the quality of the interaction. In
general, the bulk of p-d scattering data are well described by
the predictions. Remaining discrepancies are observed at low
energies (e.g., the Ay anomaly or the symmetric star anomaly
[5]) and at intermediate energies [6]. The latter ones might be
partially caused by still nonrelativistic treatment of 2N and 3N
scattering problems.

In heavier systems composed of four nucleons (4N), larger
sensitivity to the 3NF effects is expected. This makes the
experimental studies attractive; however, the theoretical treat-
ment of 4N scattering at intermediate energies (well above the
breakup threshold) is much more complicated and challenging
than for 3N systems [7]. Such 4N ensembles reveal the com-
plexity of heavier systems [8], e.g., a variety of entrance and
exit channels, various total isospin states, etc. The neutron-3H
(n-3H) and proton-3He (p-3He) scatterings are dominated by
the total isospin T = 1 states while d-d scattering has only
T = 0 component; the reactions n-3He and p-3H involve both
T = 0 and T = 1 and are coupled to d-d in T = 0; also a
small admixture of T = 2 states is present due to the charge
dependence of the interactions. The Coulomb force results
in not only the repulsion but also the splitting of n-3He and
p-3H thresholds. Another important aspect of calculations
involving 4N is the possibility to probe states in the continuum
associated with specific resonances. Such states may possess
higher angular momentum than corresponding bound states.
All these features make the 4N scattering problem a perfect
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theoretical and experimental laboratory to test various nuclear
potentials. It is also important to perform ab initio calculations
of 4N systems because of the long and extensive work on 3N
scattering. The calculations involving 4N are mainly devel-
oped by three groups: Pisa [9,10] and Grenoble-Strasbourg
[11,12], working in the coordinate space representation, and
the Lisbon-Vilnius group, using the momentum space equa-
tions of Alt, Grassberger, and Sandhas (AGS) for transition
operators [7]. All these methods include the Coulomb force
but only the Lisbon-Vilnius group calculates observables for
multichannel reactions above the breakup threshold.

Theoretical calculations of the bound states show very
weak influence of the 4N force, so its contribution can be
neglected [2,13]. Nevertheless, one should verify this claim
in the case of nuclear reactions. Recent years have brought
tremendous progress in precise calculations of the cross sec-
tion and polarization observables. The very first 4N scatter-
ing results with realistic 2N forces were obtained for single
channel n-3H, p-3He [9–11], and p-3H [12] reactions below
inelastic threshold. Then, the observables were calculated at
energies below the three-body breakup threshold, for n-3H [8],
p-3He [14], n-3He, p-3H, and d-d [15]. So far, rigorous pre-
dictions have been limited to a domain of the lowest energies.
The p-3He is the simplest, since it involves three protons and
one neutron, therefore only elastic and breakup channels exist.
On the other hand, the most serious complication for p-3He
is due to the Coulomb interaction between protons, which
is treated using the method of screening and renormalization
[16].

Recently, the calculations were extended to energies above
the four-cluster breakup threshold, up to 35 MeV. The system
dynamics is modeled with various potentials enabling studies
of the sensitivity to the dynamics. The following potentials
were utilized in the calculations: CD Bonn [17] and Argonne
V18 (AV18) [18] potentials, INOY04 (the inside-nonlocal
outside-Yukawa) potential by Doleschall [19], a potential
derived from ChPT at next-to-next-to-next-to-leading order
(N3LO) [3], and the two-baryon coupled-channel potential
CD Bonn + � [20]. The last potential yields effective three-
and four-nucleon forces [2]. The sensitivity to the force model
is rather small at the energy range studied. The predictions
have been made for observables in p-3He [16], n-3He [21]
elastic scattering and transfer reactions. The 3N and 4N dy-
namical components were modeled separately via the explicit
treatment of a single � isobar for p-3He elastic scattering at
30 MeV. The observables for p-3He elastic scattering have
also been calculated at a proton beam energy of 70 MeV [22].
Recent progress in calculations for d-d systems is presented
in Refs. [23–26] and in the review article [7].

Calculations for the d-d system at higher energies are
currently feasible and were performed in the so-called single-
scattering approximation (SSA) for the three-cluster breakup
and elastic scattering [25]. In this approximation, instead
of solving full AGS equations [27] the 4N operators are
expanded in Neumann series in terms of 3N transition op-
erators and only the first-order contribution is retained. This
simplification is expected to be reasonable only at higher
energies. Similar approximation was already used to calculate
d-d elastic scattering at 230 MeV [28]. In the calculations

three different 2N potentials were used: AV18 [18], CD Bonn
[17], and CD Bonn + � [20]. To demonstrate the reliability
of the SSA calculations for the 4N system, the same kind
of approximation was applied to the p-d breakup [25]. The
exact calculations for the 3N breakup were compared to ones
obtained within SSA. The total p-d breakup cross section
calculated in an exact way is lower than the one obtained in
SSA by 30% at 95 MeV and by 20% at 200 MeV.

The recent SSA calculations for the elastic scattering [25]
use more refined NN potentials [17,18,20] and take into
account more partial waves than in the previous calculations
[28], therefore the 4N results are well converged. Moreover,
the interaction part was improved by adding external Coulomb
correction to the elastic scattering amplitude. As the authors
of Ref. [25] conclude, the recent theoretical predictions should
give correct orders of magnitude for total and differential cross
sections for d-d and p-d breakup (near the quasifree region)
and elastic scattering.

The world database on 4N scattering at medium energies is
still very poor. The data are often measured in very narrow
angular ranges. Since n-3He experiments are difficult, the
p-3He and d-d reactions are more often used to study 4N
system.

With the two deuterons in the initial state, in addition to the
simple elastic scattering process, several reactions with a pure
hadronic signature can occur:

(1) neutron-transfer: d + d → p + 3H,
(2) proton-transfer: d + d → n + 3He,
(3) three-body breakup: d + d → d + p + n,
(4) four-body breakup: d + d → p + p + n + n.

For these reactions only a few data sets exist at intermediate
energies (50–230 MeV) [28–34].

The 2H(d, 3He) reaction implies high momentum transfer.
In such reactions, energy, momentum, and angular momentum
are exchanged by the projectile and target nucleus, as in the
case of inelastic scattering. However, in the transfer reaction
there is also transfer of mass. Reactions of this type have been
a very important tool for the study of nuclear structure and
have helped to validate the nuclear shell model by identifying
the single-particle states.

In this article, measurements of the differential cross sec-
tion at 160 MeV beam energy for the two channels of d-d
collisions—elastic scattering and proton transfer—will be
presented.

II. DETECTION SYSTEM AND EXPERIMENT

The experiment was carried out at Kernfysisch Versneller
Instituut (KVI) in Groningen, the Netherlands. The deuteron
beam was provided by the superconducting cyclotron AGOR
(Accelerator Groningen Orsay) at a kinetic energy of
160 MeV and was impinged on a liquid deuterium target. The
nominal thickness of the target cell was 6.0 mm. In addition,
the thickness was increased by about 0.6 mm due to bulging of
the cell, which leads to the effective target surface density of
107.2 ± 3.3 mg/cm2 [35]. Low beam currents (about 5 pA)
were used in order to keep the level of accidental coinci-
dences as low as possible. The reaction products were detected
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FIG. 1. A schematic view of the BINA detector.

using BINA, Big Instrument for Nuclear Polarization Analysis
[34,36,37], which inherits a number of its features predeces-
sor, the Small-Angle Large-Acceptance Detector (SALAD)
[38]. The BINA detector was designed to study few-body
scattering reactions at medium energies. It allows registering
coincidences of two-charged particles in a nearly 4π solid
angle, making it possible to study breakup and elastic scat-
tering reactions. The detector is divided into two main parts:
the forward Wall and the backward Ball. A schematic view of
the detection system is presented in Fig. 1.

A. Forward Wall

The forward Wall is composed of a three-plane multi-wire
proportional chamber (MWPC) and an almost-square-shaped
array of �E-E telescopes formed by two crossed layers of
scintillator hodoscopes (vertically placed thin transmission-
�E strips and horizontally placed thick stopping-E bars). The
forward Wall covers polar angles θ in the range of 10◦–35◦
with the full range of azimuthal angles ϕ. The MWPC is used
to determine the position of the passing particle. The energy
detectors �E and E are used for measuring the energies of the
charged reaction products and for particle identification. The
accuracy of the angle reconstruction is 0.3◦ for θ and between
0.6◦ and 3◦ for ϕ. The energy resolution is about 2%. The
MWPC and the hodoscopes have a central hole to allow for
the passage of beam particles to the beam dump.

B. Backward Ball

The backward part of the detector is ball-shaped and con-
sists of 149 scintillators; see Fig. 2. The Ball plays roles of

FIG. 2. Ball part of the BINA detector.

both a particle detector and a scattering chamber. It registers
charged particles scattered at polar angles in the range of 40◦
to 165◦ with almost full azimuthal angle coverage. The shape
and the construction of the inner surface of the Ball can be
compared to the surface of a soccer ball: it is composed of
20 identical hexagon and 12 identical pentagon structures.
These polygons are further divided into isosceles triangles,
thus splitting the pentagon into five triangles and the hexagon
into six triangles. Each triangle represents here a single Ball
detector. Ball elements placed at backward angles (larger than
90◦) are 3 cm thick, while those placed at more forward
angles are 9 cm thick, allowing them to stop protons up
to 64 and 120 MeV, respectively. The angular resolution of
the Ball is set by its granularity, thus it is worse than the
one of the Wall. Depending on its orientation, one single
element covers an angular range up to ±10◦, in both θ and
ϕ directions. Moreover, as the walls between single elements
are not completely light tight, the scintillation light escapes
to neighboring elements. Therefore, in order to fully exploit
information about the energy deposited and the position of
a detected particle, it is necessary to consider a cluster as a
“basic element” instead of one single scintillator in the track
reconstruction procedure.

III. DATA ANALYSIS

The particles of interest in the analysis presented here
are elastically scattered deuterons and 3He ions from the
proton-transfer reaction. The events which can be distin-
guished within the acceptance of the BINA detector are the
Wall-Ball coincidences of the two deuterons from the elastic
scattering, and the 3He single tracks (neutrons have not been
reconstructed so far). The elastic scattering events have also
been registered as single particles in the Wall (with minimum
bias trigger).

The very first step of the data analysis was event selection.
The �E-E method was used for particle identification (PID).
A banana-shaped cut for each individual �E-E telescope is

014620-3



I. CIEPAŁ et al. PHYSICAL REVIEW C 99, 014620 (2019)

E [adc channel]
0 500 1000 1500

E
 [

ad
c 

ch
an

ne
l]

Δ

0

200

400

600

800

1000

1

10

210

310

410

E [adc channel]
0 500 1000 1500

E
 [

ad
c 

ch
an

ne
l]

Δ

0

100

200

300

400

1

10

210

310

410

FIG. 3. Upper panel: Sample of �E-E distribution with 3σ

limits on 3He ions. Bottom panel: The same as in the upper panel
but with zoomed-in dE scale to show the fit quality for protons and
deuterons, presented as solid and dashed lines, respectively.

sufficient to separate protons and deuterons branches. The cuts
were defined wide enough to avoid significant losses of the
particles.

Alternatively, the so-called linearization method [39,40]
was applied. It relies on the introduction of a new variable:

L = (dE + E)γ − Eγ , (1)

where dE and E are energy losses in the thin and thick
detectors, respectively. L is approximately independent of
particle energy losses, and the parameter γ is specific for
each virtual telescope (however, it is close to 1.76). γ is
adjusted to get a constant value for L, which leads to the best
separation between protons and deuterons. Then a Gaussian
function has been fitted to the peaks in the distribution of
L corresponding to each particle. Center values and widths
obtained from the fit were subsequently used for particle
selection (see Fig. 3). A given value of L transforms to a
bent line in the �E-E spectrum. The events within ±2σ in
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FIG. 4. Missing mass spectrum of the d + d → 3He + X reac-
tion at 160 MeV. A prominent peak corresponds to the mass of a
neutron. A signal (Gaussian) + background function (an eighth-order
polynomial) was fitted to the distribution, resulting in a Gaussian
with a mean of 939.4 ± 0.1 MeV and σ = 5.7 ± 0.1 MeV.

the L distribution were accepted for further analysis (see also
Sec. III C, where systematic uncertainties are discussed). Al-
though, since this method is based on protons and deuterons,
much more abundant in PID spectra than 3He ions, it has
turned to be a very useful tool for consistent selection of 3He
ions registered in various telescopes. To check the correctness
of the data selection procedure, the missing-mass spectrum of
the d + d → 3He + X reaction was drawn; see Fig. 4.

After introducing PID into the analysis, the energy calibra-
tion was performed for each type of particle. The proton en-
ergy calibration was based on elastically scattered protons reg-
istered in dedicated measurements utilizing energy degraders
of a few precisely controlled thicknesses and compared to
GEANT4 simulations [41,42]. Then, the position-dependent
information on average proton energy losses (Ep

dep) was used
to obtain the proton energy at the reaction point (Ep

T). Due
to different scintillation light output for protons and heavier
particles (deuterons and 3He ions), additional corrections have
been applied in order to obtain energy deposited in the thick E

scintillator (E
3He
dep ). To calculate the energy of 3He/deuterons at

the reaction point, the energy losses of 3He/deuterons on the
way from the target point to the E detector were calculated
based on the known relation E

p
T(Ep

dep) for protons [42]. Fi-
nally, the accuracy of the calibration was tested by checking
how well the kinematical relation between the energy and the
polar angle of 3He ions is reconstructed; see Fig. 5. Equally
good agreement was found in the case of the d-d elastic
scattering kinematics.

To calculate the cross section, it is necessary to take into
account the inefficiency of the detection system and to correct
accordingly the numbers of deuterons and 3He ions registered
at a given polar angle θ . In the case of the BINA setup, the
largest inefficiency is related to detection of particles in the
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FIG. 5. Distribution of the reconstructed energy versus the polar
angle for 3He ions. The solid black line represents the calculated
kinematics. The dashed line indicates the energy threshold.

MWPC. Certain channels were malfunctioning or ceased to
function at all (“dead” wires). To compensate the experimen-
tal counting rates, the detector acceptance was divided into
bins in azimuthal and polar angles and in this representation
the position-dependent efficiency maps were constructed. The
active part of the MWPC contains three planes: with vertical
and horizontal wires and with wires inclined by 45◦. The effi-
ciency map of each plane was obtained using the information
from the remaining two others [40] and combining it with the
information from the scintillator hodoscopes. The cumulative
efficiency of the MWPC for the 3He ions is presented in
Fig. 6. Similar maps were also calculated for deuterons and
protons [40]. Much higher stopping power of 3He ions results
in about 5% larger average the MWPC efficiency, as compared
to deuterons. The difference between protons and deuterons is
much less significant. In the case of the �E and E detectors
the efficiency was established to be close to 100%.
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FIG. 6. The efficiency map of the MWPC for the 3He ions. The
ellipse-like structures illustrate the “dead” and malfunctioning wires.
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FIG. 7. A sample energy distribution of the 3He ions at θ = 22◦

within a range of 1◦. The background is marked as the blue hatched
area. The distribution obtained after the background subtraction
was fitted with a Gaussian function and integrated in the range
corresponding to −3σ and +3σ from the peak position.

For the purpose of clean event selection, cuts were de-
fined and imposed on the energy spectra. The events were
sorted in θ with the integration range of �θ = 1◦ for the
3He ions and �θ = 2◦ for the deuterons. Then the events
were corrected for inefficiency and presented in the form of
energy spectra. The background estimation and subtraction
were performed with the use of the statistics-sensitive nonlin-
ear iterative peak-clipping (SNIP) algorithm [43]. A typical
energy distribution for the 3He ions is shown in Fig. 7. The
main sources of the background are accidental coincidences,
hadronic interactions inside the E scintillators, and reactions
induced by deuterons on passive material of the detector setup.
The increase of the background on the high energy side can
be attributed to the events leaking from the neighboring triton
line (see also Fig. 3). The Gaussian function was fitted to
the final distributions and the events were integrated in the
range corresponding to distances of −3σ and +3σ from the
fitted peak. In the case of the elastically scattered deuterons,
background is due to the deuteron breakup and it was sub-
tracted with an algorithm similar to that for the 3He ions.
A sample distribution is presented in Fig. 8. In this case,
due to non-Gaussian character of the distributions, the events
were integrated around the main peak in the ranges defined
separately for each θ angle. Finally, the number of events
counted at the given polar angles was corrected for losses due
to the hadronic interactions inside the scintillator. The losses
were calculated for the deuterons and 3He ions with the use of
the GEANT4 framework and are presented in Fig. 9.

A. Determination of luminosity and dd elastic cross section

When presenting the d-d elastic scattering cross-section
distribution as a function of four-momentum transfer (q), one
finds a scaling region where the distributions measured at
different beam energies overlap [29]. Such an effect suggests
simplicity of the reaction mechanism in which the dynamical
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FIG. 8. A sample energy distribution of the deuterons registered
at θ = 22◦ in a window of 2◦. The background due to the breakup
reaction is marked as the blue hatched area. The dashed lines
represent the integration region for the events.

part of the scattering cross section predominantly depends
on q regardless of the reaction energy. The four-momentum
transfer q, which is the square root of the absolute value of
the Mandelstam variable (t), is given as follows:

q =
√

|t − tmax|, (2)

t − tmax = ( �p CM
d

)2(
cos θ CM

d − 1
)
, (3)

where �p CM
d (θ CM

d ) is the momentum (scattering angle) of the
deuteron in the center-of-mass frame, tmax is the maximum
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FIG. 9. Relative loss of events due to hadronic interaction of
deuterons (black dots) and 3He ions (red dots) in the plastic scin-
tillator, presented as a function of the scattering angle.
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FIG. 10. The elastic scattering cross-section data measured at
160 MeV (red dots) are presented together with the data measured
in the BBS experiment at 130 (blue squares) and 180 MeV (blue
triangles) [31] (lines connecting points are used to guide the eye).
The band represents systematic errors. Solid, dotted, and dashed
black lines represent the calculations [25] with the use of potentials
specified in the legend. The marked area refers to the region used in
the normalization procedure.

value of t for cos θ CM = 0◦ (see also Sec. III B). Benefiting
from the existence of the scaling region, the data normaliza-
tion was performed in the q range of 200–290 MeV/c, as
shown in Fig. 10, by comparing the shape of elastic scattering
rates measured in this experiment to the cross section obtained
at 180 and 130 MeV [31]. For the optimal scaling factor
the maximum deviation was found to be 3%. As a result,
the normalization factor was found to be κnorm = [41.4 ±
3.3(syst.)] × 106 mb−1. This parameter corresponds to the
luminosity integrated over the time of the experiment. It de-
pends on the beam current, dead time of the data acquisition,
and the density and thickness of the target. The normalized
data are presented in Fig. 10 (red dots) together with the recent
calculations. Outside of the scaling region the cross section
obtained in the present experiment fits well to the trend of pre-
viously measured data at two other energies. The theoretical
predictions based on the single-scattering approximation with
AV18, CD Bonn, and CD Bonn + � potentials underestimate
the data, as expected by the authors [25,44].

B. Differential cross section of d + d → n + 3He
transfer reaction

To compare the differential cross section of d + d → n +
3He at 160 MeV with the existing database, the data are pre-
sented as a function of the square of four-momentum transfer,
q2 = t − tmax. In this case the four-momentum transfer in the
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FIG. 11. Differential cross sections for transfer reactions in d-d
systems measured at various deuteron beam momenta, presented as
a function of q2 [30,45]. The present data from the BINA experiment
at 0.79 GeV/c are shown as red points. The dark band represents
systematic errors.

CM system is given by

t = ( �P3He − �Pbeam )2

= m2
d + m2

3He − 2E CM
beamE CM

3He

+ 2
∣∣ �p CM

beam

∣∣∣∣ �p CM
3He

∣∣ cos θ CM, (4)

where θ CM is the 3He emission angle in the CM system.
Therefore [see also Eqs. (2) and (3)]:

t − tmax = 2
∣∣ �p CM

beam

∣∣∣∣ �p CM
3He

∣∣(cos θ CM − 1). (5)

The 2H(d, 3He)n cross section has been normalized with the
use of the κnorm luminosity factor, and the final distribution
is presented in Fig. 11 together with the previous data from
Refs. [30,45]. The present data follow the general trend of the
distributions measured in the previous experiments.

C. Experimental uncertainties

The main sources of the systematic uncertainties which can
affect the cross-section results are related to the PID method,
background subtraction, and normalization procedure. To
control systematic errors, detailed studies of geometry of the
setup and the detection efficiency were performed [34].

Protons and deuterons were identified via graphical cuts
enclosing the branches/spots in the �E-E spectra. The sys-
tematic uncertainty associated with this process was estimated
by repeating the analysis based on modified cuts and calculat-
ing the relative difference of the resulting cross-section values.
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FIG. 12. Differential cross section obtained for three different
ranges of the linearization function L. See text for details.

The typical uncertainty related to this effect, on the final cross
section, was found to be less than 3%.

In the case of the 3He ions the relative size of the systematic
uncertainty due to PID has been found to be between 2% and
10%, depending on the q2 value. This has been estimated
with the use of the cross-section distributions obtained for
three different ranges of accepted 3He particles, defined as
1σ , 2σ , and 3σ around the center of the corresponding peak
in the linearization variable L [see Eq. (1)], as presented in
Fig. 12. The largest discrepancies appear at the highest q2,
which correspond to the maximal polar angle of detected 3He
ions at which the data are affected the most by the energy
threshold; see Fig. 5.

In the case of the elastic-scattering process the background
contribution due to the breakup reactions is large and its
subtraction procedure is a potential source of significant
systematic uncertainty. The associated errors were estimated
based on the difference in the number of counts obtained
in the two cases: for the single tracks in the Wall (with
no correlation with a signal in the Ball required) and the
Wall-Ball coincidences (with requirement of coplanarity and
correct correlation of θ angles). The Wall-Ball coincidences
are much less affected by background, see Fig. 13, but depend
on the Ball efficiency, which cannot be estimated in an inde-
pendent way (without reference to the Wall). Therefore, the
coincidences were defined for particularly well working Ball
detectors, which were not affected by the energy threshold
effects. For these events the deuteron energy distributions
were checked and the Gaussian function was fitted to energy
distributions for the single events and Wall-Ball coincidences.
The relative difference between corresponding parameters of
the Gaussian functions σsingle(μsingle ) and σWall−Ball(μWall−Ball )
is less than 10%. This proves that the background is subtracted
in a proper way, and the systematic uncertainty was estimated
to be around 4% (the SNIP algorithm [43]). In the case of
the 3He ions, the background was estimated with the SNIP
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FIG. 13. A sample energy distribution of the elastically scattered
deuterons registered as the Wall-Ball coincidences (blue hatched
distribution) for the Ball element 47 and an angular cover in the Wall
of (θ = 22◦ ± 0.5◦, ϕ = −7◦ ± 5◦). The distribution is compared to
one obtained for the single tracks in the Wall at the same polar angle.
The inset shows the same comparison after applying the background
subtraction procedure as described in Sec. III.

algorithm [43] and the systematic error connected to this
procedure was evaluated to be about 4%.

In the scaling procedure, we assume that the cross sections
at different beam energies are equal (as shown in Fig. 10),
showing almost energy-independent behavior of the dynam-
ics. The scaling is not necessarily exact, therefore experiments
with the two beam energies close to each other were chosen
for this purpose. The cross-section distribution for the elastic
scattering was normalized to the 180 MeV Big-Bite spec-
trometer (BBS) data (the closest energy) and to the mixed
data at 180 and 130 MeV in the scaling region (see Fig. 10
and Sec. III A). The systematic uncertainty was estimated as
a deviation between results obtained in these two ways. The
maximum deviation reaches about 3%. This value is further
affected by the uncertainty in the BBS data, which is quoted
to be 5% in Ref. [31].

The other systematic effects are connected with the cor-
rection for the losses due to the hadronic interactions in the
scintillator, which was estimated to be less than 6% and the
losses due to the so-called crossover events [46]. Such events
occur when particles penetrate from one stopping detector
to the adjacent one, and in this case events are lost due
to distorted energy information. In this experiment, due to
improper light tightness between E slabs, uncontrolled light
leakage increased the crossovers. The systematic error was
calculated from the difference between the scaling factors
obtained in the two cases with and without taking into account
the crossovers, and is about 6%.

A summary of the systematic uncertainties is presented in
Table I. The errors are also presented in Figs. 10 and 11 as

TABLE I. Sources of systematic effects and their influence (in
%) on the final results.

Source of uncertainty Size of the effect

p/d 3He

PID 3% 2–10%
Background subtraction 4% 4%
Normalization 5%(BBS)+3% 5%(BBS)+3%
Reconstruction of angles 1% 1%
Energy calibration 1% 1%
Hadronic interactions 6% 6%
Crossover events 6% 6%
Total 13% 13–16%

bands. The experimental points at certain scattering angles,
θLab, have the largest systematic errors due to larger efficiency
corrections at the edge of the detector acceptance. The total
systematic uncertainty, composed of systematic errors added
in quadrature, varies between 13% and 16%.

IV. CONCLUSIONS AND OUTLOOK

The differential cross-section distributions for d-d elastic
scattering (relative) and the dd → n3He proton transfer re-
action have been obtained for deuteron-deuteron collisions at
160 MeV.

The elastic-scattering data have been normalized to the
earlier measurements in the overlapping range of momentum
transfer. Outside of this range the data measured fit well to
the trend observed at different energies. The cross section
for the elastic scattering was compared to the calculations
based on the SSA [25]. Its validity is expected to improve
with increasing energy, but 160 MeV appears to be not high
enough. As expected, the calculations underpredict the data;
however, they provide correct order of magnitude for the cross
section.

In the case of the proton transfer reaction, no calculations
exist. However, the data presented can be used to validate
future theoretical findings. They supplement the existing
database in the poorly known region of intermediate energies
(beam momentum below 1 GeV/c). The q2 distribution fol-
lows the trend observed at higher energies obtained in proton
and neutron transfer reactions.
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