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Thermonuclear fusion rates for tritium + deuterium using Bayesian methods
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The 3H(d, n) 4He reaction has a large low-energy cross section and will likely be utilized in future commercial
fusion reactors. This reaction also takes place during Big Bang nucleosynthesis. Studies of both scenarios require
accurate and precise fusion rates. To this end, we implement a one-level, two-channel R-matrix approximation
into a Bayesian model. Our main goals are to predict reliable astrophysical S-factors and to estimate R-matrix
parameters using the Bayesian approach. All relevant parameters are sampled in our study, including the channel
radii, boundary condition parameters, and data set normalization factors. In addition, we take uncertainties in
both measured bombarding energies and S-factors rigorously into account. Thermonuclear rates and reactivities
of the 3H(d, n) 4He reaction are derived by numerically integrating the Bayesian S-factor samples. The present
reaction rate uncertainties at temperatures between 1.0 MK and 1.0 GK are in the range of 0.2% to 0.6%. Our
reaction rates differ from previous results by 2.9% near 1.0 GK. Our reactivities are smaller than previous results,
with a maximum deviation of 2.9% near a thermal energy of 4 keV. The present rate or reactivity uncertainties are
more reliable compared to previous studies that did not include the channel radii, boundary condition parameters,
and data set normalization factors in the fitting. Finally, we investigate previous claims of electron screening
effects in the published 3H(d, n) 4He data. No such effects are evident and only an upper limit for the electron
screening potential can be obtained.
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I. INTRODUCTION

The cross section of the 3H(d, n) 4He reaction has a large
Q value of 17.6 MeV and a large cross section that peaks at
≈5 b near a deuteron (triton) bombarding energy of 105 keV
(164 keV). For these reasons, the 3H(d, n) 4He reaction will
most likely fuel the first magnetic and inertial confinement
fusion reactors for commercial energy production [1,2]. The
reactors are expected to operate in the thermal energy range
of kT = 1–30 keV, corresponding to temperatures of T =
12–350 MK. These values translate to kinetic energies be-
tween 4 and 120 keV in the 3H + d center-of-mass system,
which can be compared with a Coulomb barrier height of
≈280 keV. Accurate knowledge of the 3H(d, n) 4He ther-
monuclear rate is of crucial importance for the design of
fusion reactors, plasma diagnostics, fusion ignition determi-
nation, and break-even analysis. The 3H(d, n) 4He reaction
also occurs during Big Bang nucleosynthesis, at temperatures
between 0.5 and 1.0 GK, corresponding to center-of-mass
Gamow peak energies in the range of 13–252 keV.

The 3H + d low-energy cross section is dominated by an
s-wave resonance with a spin-parity of Jπ = 3/2+, corre-
sponding to the second excited level near Ex ≈ 16.7 MeV
excitation energy in the 5He compound nucleus [3]. This level
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decays via emission of d-wave neutrons. It has mainly a 3H +
d structure, corresponding to a large deuteron spectroscopic
factor [4], while shell-model calculations predict a relatively
small neutron spectrocopic factor [5]. However, the neutron
penetrability is much larger than the deuteron penetrability
at these low energies, so that incidentally the partial widths
for the deuteron and neutron channel (�d, �n), given by
the product of spectroscopic factor and penetrability, become
similar in magnitude. This near equality of the deuteron
and neutron partial widths causes the large low-energy cross
section of the 3H(d, n) 4He reaction [6,7] since, considering a
simple Breit-Wigner expression, the cross-section maximum
is proportional to �d�n/(�d + �n)2, which peaks for the
condition �d ≈ �n.

Different strategies to analyze the data have been adopted
previously. Fits of the available 3H(d, n) 4He data using Breit-
Wigner expressions were reported by Duane [8] and Angulo
et al. [9], while a Padé expansion was used by Peres [10].
Single-level and multilevel R-matrix fits to 3H(d, n) 4He data
were discussed by Jarmie et al. [11], Brown et al. [12],
Barker [4], and Descouvemont et al. [13]. A comprehensive
R-matrix approach that included elastic and inelastic cross
sections of the 3H + d and 4He + n systems in addition
to the 3H(d, n) 4He data, incorporating 2664 data points and
117 free parameters, was presented by Hale et al. [14] and
Bosch and Hale [15,16]. An analysis of 3H(d, n) 4He data
using effective field theory, with only three fitting parameters,
can be found in Brown and Hale [17].
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Our first goal is to quantify the uncertainties in the ther-
monuclear rates and reactivities for the 3H(d, n) 4He reaction.
All previous works employed χ2 fitting in the data analysis,
assuming Gaussian likelihoods throughout, and disregarding
any uncertainties in the center-of-mass energies. Here, we will
discuss an analysis using Bayesian techniques. This approach
has major advantages, as discussed by Iliadis et al. [18] and
Gómez Iñesta et al. [19], because it is not confined to the use
of Gaussian likelihoods and instead allows for implementing
those likelihoods into the model that best apply to the problem
at hand. Also, all previous R-matrix analyses kept the channel
radii and boundary condition parameters constant during the
fitting. In reality, these quantities are not rigidly constrained,
and their variation will impact the uncertainties of the derived
S-factors and fusion rates. Furthermore, uncertainties affect
not only the measured S-factors but also the experimental
center-of-mass energies. Uncertainties in both independent
and dependent variables can be easily implemented into a
Bayesian model, whereas no simple prescription for such a
procedure exists in χ2 fitting. Our second goal is to investigate
the usefulness of the Bayesian approach for estimating R-
matrix parameters. The results will prove useful in future
studies that involve multiple channels and resonances.

In Sec. II, we briefly present the S-factor data adopted
in the present analysis. Section III summarizes the reaction
formalism. Bayesian hierarchical models are discussed in
Sec. IV, including likelihoods, model parameters, and priors.
Section V considers some preliminary ideas. Our Bayesian
model for the 3H(d, n) 4He reaction is presented in Sec. VI.
Results are presented in Sec. VII. In Sec. VIII, we present
Bayesian reaction rates and reactivities. A summary and
conclusions are given in Sec. IX. An evaluation of the data
adopted in our analysis is presented in the Appendix.

II. DATA SELECTION

Several previous works have used all available 3H + d
cross-section data in the fitting. A rigorous data analysis re-
quires a careful distinction between statistical and systematic
uncertainties (Sec. IV B), because we aim to implement these
effects separately in our Bayesian model. For this reason, we
will consider only those experiments for which we can quan-
tify the two contributions independently. Detailed information
regarding the experimental uncertainties is provided in the
Appendix.

The 3H(d, n) 4He low-energy cross section represents a
steep function of energy. For example, at 20 keV in the center
of mass, an energy variation of only 0.1 keV causes a 2%
change in cross section, while at 10 keV a variation of 0.1 keV
causes a 6% change in the cross section. Therefore, accurate
knowledge of the incident beam energy becomes crucial for
predicting cross sections and thermonuclear rates. Experi-
ments that employed thin targets will be less prone to systemic
effects than those using thick targets. For example, consider
the data measured by Argo et al. [7], which were adopted at
face value in previous fusion rate determinations. Argo et al.
[7] employed 1.5 mg/cm2 thick aluminum entrance foils for
their deuterium gas target. Under such conditions, tritons that
slowed down to a laboratory energy of 183 keV after passing
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FIG. 1. The data used in our analysis: (red circles) Jarmie et al.
[11]; (black diamonds) Brown et al. [12]; (green squares) Kobzev
et al. [21]; (blue triangles) Arnold et al. [22]; and (purple triangles)
Conner et al. [6]. Absolute cross sections were not determined in
Ref. [12] and their data were normalized to those of Ref. [11]. Only
statistical uncertainties are shown, but for many of the data points
they are smaller than the symbol sizes. Details regarding the data
evaluation are given in the Appendix. The energy ranges important
for fusion reactors and Big Bang nucleosynthesis are 4–120 keV and
13–252 keV, respectively.

the entrance foil would have lost 568 keV in the foil, giving
rise to an overall beam straggling of about 31 keV. In this
case, it is difficult to reliably correct the cross section for the
beam energy loss. Compare this situation to the measurement
by Jarmie and collaborators [11,20], where the triton beam
lost an energy less than 200 eV while traversing a windowless
deuterium gas target. A detailed discussion of all data sets that
have been adopted or disregarded in the present analysis is
given in the Appendix.

All of our adopted data are shown in Fig. 1. They originated
from the experiments by Jarmie et al. [11], Brown et al. [12],
Kobzev et al. [21], Arnold et al. [22], and Conner et al.
[6], and contain 191 data points in the center-of-mass energy
region between 5 and 270 keV. Notice that the results of
Ref. [12] have been used at face value in previous fusion
rate estimations, although these authors did not determine any
absolute cross sections. In Sec. VI, we will discuss how to
implement such data into a Bayesian model.

III. REACTION FORMALISM

Since we are mainly interested in the low-energy region,
where the 3/2+ s-wave resonance dominates the cross section,
we will describe the theoretical energy dependence of the
cross section using a one-level, two-channel R-matrix approx-
imation. This assumption is justified by previous works that
found that the measured S-factor data are about equally well
reproduced by single-level and multilevel R-matrix analyses
at center-of-mass energies below ≈100 keV (see, e.g., Fig. 4
in Ref. [23]).

The angle-integrated cross section of the 3He(d, n) 4He
reaction is given by

σdn(E) = π

k2

2J + 1

(2j1 + 1)(2j2 + 1)
|Sdn|2, (1)
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where k and E are the wave number and energy, respec-
tively, in the 3H + d center-of-mass system, J = 3/2 is
the resonance spin, j1 = 1/2 and j2 = 1 are the spins of
the triton and deuteron, respectively, and Sdn is the scattering
matrix element. The corresponding astrophysical S-factor is
defined by

Sbare(E) ≡ Ee2πησdn(E), (2)

where η is the Sommerfeld parameter. The scattering matrix
element for a single level can be expressed as [24]

|Sdn|2 = �d�n

(E0 + � − E)2 + (�/2)2
, (3)

where E0 denotes the level eigenenergy. The partial widths of
the 3H + d and 4He + n channels (�d, �n), the total width
(�), and total level shift (�), which are all energy dependent,
are given by

� =
∑

c

�c = �d + �n , �c = 2γ 2
c Pc, (4)

� =
∑

c

�c = �d + �n , �c = −γ 2
c (Sc − Bc ), (5)

where γ 2
c is the reduced width1 and Bc is the boundary con-

dition parameter. The energy-dependent quantities Pc and Sc

denote the penetration factor and shift factor, respectively, for
channel c (either 3H + d or 4He + n). They are computed
numerically from the Coulomb wave functions, F� and G�,
according to

Pc = kac

F 2
� + G2

�

, Sc = kac(F�F
′
� + G�G

′
�)

F 2
� + G2

�

. (6)

The Coulomb wave functions and their radial derivatives are
evaluated at the channel radius, ac, and the quantity � denotes
the orbital angular momentum for a given channel.

In some cases, the fit to the data can be improved by
adding a distant level in the analysis, located at a fixed energy
outside the range of interest. However, such “background
poles” have no physical meaning. As will become apparent
below, the single-level, two-channel approximation represents
a satisfactory model for the low-energy data of interest here.

Teichmann and Wigner [26] showed that the reduced
width, γ 2

λc, of an eigenstate λ cannot exceed, on average, the
single-particle limit, given by

〈
γ 2

λc

〉
� 3

2

h̄2

mca2
c

, (7)

where mc is the reduced mass of the interacting particle pair
in channel c. In this original formulation, Eq. (7) only holds
for a reduced width that is averaged over many eigenstates, λ.

1In this work, we are not using the Thomas approximation [25].
Therefore, our partial and reduced widths are “formal” R-matrix pa-
rameters. Use of the Thomas approximation necessitates the defini-
tion of “observed” R-matrix parameters, which has led to significant
confusion in the literature.

Using the actual strength of the residual interaction in nuclei,
Dover et al. [27] found a single-particle limit of

γ 2
λc �

h̄2

mca2
c

, (8)

for an individual resonance in a nucleon channel. The quantity
γ 2

WL ≡ h̄2/(mca
2
c ) is often referred to as the Wigner limit.

Considering the various assumptions made in deriving the
above expressions, the Wigner limit provides only an ap-
proximation for the maximum value of a reduced width. The
Wigner limit can also be used to define a “dimensionless
reduced width,” θ2

λc, according to

γ 2
λc ≡ h̄2

mca2
c

θ2
λc. (9)

We perform the S-factor fit to the data using the expression
[28,29]

S(E) ≈ Sbare(E)eπη(Ue/E), (10)

where Ue is the energy-independent electron screening poten-
tial. The latter quantity has a positive value and depends on the
identities of target and projectile; i.e., it differs for forward and
inverse kinematics experiments.

R-matrix parameters and cross sections derived from data
have a well-known dependence on the channel (or interaction)
radius, which is usually expressed as

ac = r0
(
A

1/3
1 + A

1/3
2

)
, (11)

where Ai are the mass numbers of the interacting nuclei and r0

is the radius parameter, with a value usually chosen between
1.4 and 1.5 fm. The channel radius dependence arises from the
truncation of the R matrix to a restricted number of poles (i.e.,
a finite set of eigenenergies). The radius of a given channel has
no rigorous physical meaning, except that the chosen value
should exceed the sum of the radii of the colliding nuclei (see,
e.g., the work of Descouvemont and Baye [30] and references
therein). The radius dependence can likely be reduced by
including more levels (including background poles) in the data
analysis, but only at the cost of increasing the number of fitting
parameters. In any case, it is important to include the effects
of varying the channel radius in the data analysis. We will
address this issue in Sec. VI.

Another point that needs investigating is the effect of the
arbitrary choice of the boundary condition parameter, Bc. It
can be seen from Eqs. (3) and (5) that changing Bc will
result in a corresponding change of the eigenenergy, E0, to
reproduce the measured location of the cross-section maxi-
mum. Lane and Thomas [24] recommended choosing Bc in
the one-level approximation such that the eigenvalue E0 lies
within the width of the measured resonance.

For a relatively narrow resonance, one can assume that the
measured location of the cross section (or S-factor) maximum,
Er , coincides with the maximum of the scattering matrix
element, which occurs when the first term in the denominator
of Eq. (3) is set equal to zero. In that case, the resonance
energy, Er , can be defined by

E0 + �(Er ) − Er = 0. (12)
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One (but not the only) choice for the boundary condition pa-
rameter is then Bc = Sc(Er ). This choice results in �(Er ) =
0, or Er = E0, in agreement with the recommendation of
Lane and Thomas [24]. This procedure, which represents the
standard assumption in the literature, cannot be easily applied
in the case of the exceptionally broad low-energy resonance
in 3H(d, n) 4He, as will be discussed in Sec. V.

IV. BAYESIAN INFERENCE

A. General aspects

We analyze the S-factor data using Bayesian statistics
and Markov chain Monte Carlo (MCMC) algorithms. The
application of this method to nuclear astrophysics is discussed
by Iliadis et al. [18] and Gómez Iñesta et al. [19]. Bayes’s
theorem is given by [31]

p(θ |y) = L(y|θ )π (θ )∫ L(y|θ )π (θ )dθ
, (13)

where the data are denoted by y and the complete set of model
parameters is described by the vector θ . All factors entering
in Eq. (13) represent probability densities: L(y|θ ) is the
likelihood, i.e., the probability that the data, y, were obtained
assuming given values of the model parameters; π (θ ) is called
the prior, which represents our state of knowledge about each
parameter before seeing the data; the product of likelihood
and prior defines the posterior, p(θ |y), i.e., the probability of
the values of a specific set of model parameters given the data;
the denominator, called the evidence, is a normalization factor
and is not important in the context of the present work. It can
be seen from Eq. (13) that the posterior represents an update
of our prior state of knowledge about the model parameters
once new data become available.

The random sampling of the posterior is usually performed
numerically over many parameter dimensions using MCMC
algorithms [32–34]. A Markov chain is a random walk, where
a transition from state i to state j is independent (memoryless)
of how state i was populated. The fundamental theorem of
Markov chains states that for a very long random walk the
proportion of time (i.e., the probability) the chain spends in
some state j is independent of the initial state it started from.
This set of limiting, long random walk probabilities is called
the stationary (or equilibrium) distribution of the Markov
chain. When a Markov chain is constructed with a stationary
distribution equal to the posterior, p(θ |y), the samples drawn
at every step during a sufficiently long random walk will
closely approximate the posterior density. Several related
algorithms (e.g., Metropolis, Metropolis-Hastings, Gibbs) are
known to solve this problem numerically. The combination of
Bayes theorem and MCMC algorithms allows for computing
models that are too difficult to estimate using χ2 fitting.

In this work, we use a MCMC sampler based on the dif-
ferential evolution adaptive Metropolis (DREAM) algorithm
[35,36]. This method employs multiple Markov chains in
parallel and uses a discrete proposal distribution to evolve the
sampler to the posterior density. It has been shown to perform
well in solving complex high-dimensional search problems.
This sampler is implemented in the “BayesianTools” package,

which can be installed within the R language [37]. Running
a Bayesian model refers to generating random samples from
the posterior distribution of model parameters. This involves
the definition of the model, likelihood, and priors, as well
as the initialization, adaptation, and monitoring of the Markov
chains.

B. Types of uncertainties

Of particular interest for the present work is the concept of
a hierarchical Bayesian model (see the work of Hilbe et al.
[38], and references therein). It allows us to take all relevant
effects and processes into account that affect the measured
data, which is often not possible with χ2 fitting. We first
need to define the different types of uncertainties impacting
both the measured energy and S-factor in a nuclear physics
experiment.

Statistical (or random) uncertainties usually follow a
known probability distribution. When a series of independent
experiments is performed, statistical uncertainties will give
rise to different results in each individual measurement. Sta-
tistical uncertainties can frequently be reduced by improving
the data collection procedure or by collecting more data.
They have a number of different causes. For example, for the
S-factor, one source is the Poisson uncertainty, which derives
from measuring N counts with an associated uncertainty of√

N . Another source is caused by the background that needs
to be subtracted from the measured total intensity to find the
net intensity of the signal. A third source is introduced by the
detector, which is subject to additional random uncertainties
(e.g., corrections for detection efficiencies). The cumulative
effect causes the measured number of signal counts to fluctu-
ate randomly from data point to data point.

Systematic uncertainties originate from sources that sys-
tematically shift the signal of interest either too high or too
low. They do not usually signal their existence by a larger
fluctuation of the data, and they are not reduced by combin-
ing the results from different measurements or by collecting
more data. When the experiment is repeated, the presence
of systematic effects may not produce different answers. Re-
ported systematic uncertainties are at least partially based on
assumptions made by the experimenter, are model dependent,
and follow vaguely known probability distributions [39]. In
a nuclear physics experiment, systematic effects impact the
overall normalization by shifting all points of a given data set
into the same direction. They are correlated from data point to
data point, in the sense that if one happened to know how to
correct such an uncertainty for one data point, then one could
calculate the correction for the other data points as well.

In many cases, the scatter about the best-fit model is larger
than can be explained by the reported measurement uncertain-
ties. It its useful in such situations to introduce an extrinsic
uncertainty, which describes additional sources of uncertainty
in the data that were not properly accounted for by the ex-
perimenter. For example, the reported statistical uncertainties
may have been too optimistic because target thickness or
ion beam straggling effects were underestimated; or perhaps
systematic effects that impact data points differently in a given
experiment were unknown to the experimenter.
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To summarize, we assume that three independent effects
impact the measured energies and S-factors: (i) statistical
uncertainties, which perturb the true (but unknown) energy
or S-factor by an amount of εstat; (ii) systematic uncertainties,
which perturb the energy or S-factor by an amount of εsyst; and
(iii) extrinsic scatter, which perturbs the energy or S-factor by
an amount of εextr. The overall goal is to estimate credible
values for the true energy and S-factor based on the measured
data.

C. Likelihoods and priors

For illustrative purposes, we will explain in this section
how to construct a hierarchical Bayesian model by focusing
on uncertainties in the dependent variable, i.e., the S-factor.
Our full Bayesian model, including uncertainties in both
energy and S-factor, will be discussed in a later section.

Suppose first that the experimental S-factor, Sexp, is subject
to experimental statistical uncertainties only (εextr = εsyst =
0; εstat �= 0). Then the likelihood is given by

L(Sexp|θ ) =
N∏

i=1

1

σstat,i

√
2π

e
− [S

exp
i

−S(θ )i]2

2σ2
stat,i , (14)

where S(θ )i is the model S-factor (e.g., obtained from R-
matrix theory); the product runs over all data points, labeled
by i. The likelihood represents a product of normal distribu-
tions, each with a mean of S(θ )i and a standard deviation
of σstat,i , given by the experimental statistical uncertainty of
datum i. In symbolic notation, the above expression can be
abbreviated by

S
exp
i ∼ N

(
S(θ )i , σ

2
stat,i

)
, (15)

where N denotes a normal probability density, and the symbol
“∼” stands for “sampled from.” If, on the other hand, only ex-
trinsic uncertainties impact the S-factor data (εsyst = εstat =
0; εextr �= 0), and we assume that these follow a normal
probability distribution with a standard deviation of σextr, the
likelihood can be written as

L(Sexp|θ ) =
N∏

i=1

1

σextr

√
2π

e
− [S

exp
i

−S(θ )i]2

2σ2
extr , (16)

In symbolic notation, we obtain

S
exp
i ∼ N

(
S(θ )i , σ

2
extr

)
. (17)

When both effects are taken simultaneously into account
(εextr �= 0; εstat �= 0), the overall likelihood is given by a
nested (and cumbersome explicit) expression. In the conve-
nient symbolic notation, we can write

S ′
i ∼ N

(
S(θ )i , σ

2
stat,i

)
, (18)

S
exp
i ∼ N

(
S ′

i , σ
2
extr

)
. (19)

The last two expressions show in an intuitive manner how the
overall likelihood is constructed: First, statistical uncertain-
ties, quantified by the standard deviation σstat,i of a normal
probability density, perturb the true (but unknown) value of
the S-factor at energy i, S(θ )i , to produce a value of S ′

i ;
second, the latter value is perturbed, in turn, by the extrinsic

uncertainty, quantified by the standard deviation σextr of a
normal probability density, to produce the measured value of
S

exp
i .

The above discussion demonstrates how any effect impact-
ing the data can be implemented in a straightforward manner
into a Bayesian hierarchical model. There is nothing special
about adopting normal distributions in the example above,
which we only chose to explain a complex problem in simple
words. As will be seen below, some of the likelihood functions
used in the present work are non-normal.

Each of the model parameters, contained in the vector θ ,
requires a prior distribution. It contains the information on the
probability density of a given parameter prior to analyzing the
data under consideration. For example, if our model has only
one parameter, θ , and if all we know is that the value of the
parameter lies somewhere in a region from zero to θmax, we
can write in symbolical notation for the prior

θ ∼ U (0, θmax), (20)

where U denotes a uniform probability density.
Normalization factors related to systematic uncertainties

represent a special case. For example, a systematic uncertainty
of, say, ±5%, implies that the systematic factor uncertainty
is 1.05. The true value of the normalization factor, f , is un-
known at this stage; otherwise, there would be no systematic
uncertainty. However, we do have one piece of information:
The expectation value of the normalization factor is unity. If
this would not be the case, we would have corrected the data
for the systematic effect.

A useful distribution for normalization factors is the log-
normal probability density, which is characterized by two
quantities, the location parameter, μ, and the spread param-
eter, σ . The median value of the log-normal distribution
is given by xmed = eμ, while the factor uncertainty, for a
coverage probability of 68%, is f.u. = eσ . We will include
in our Bayesian model a systematic effect on the S-factor as
an informative, log-normal prior with a median of xmed = 1.0
(or μ = ln xmed = 0), and a factor uncertainty given by the
systematic uncertainty, i.e., in the above example, f.u. =
1.05 [or σ = ln f.u. = ln(1.05)]. The prior is explicitly
given by

π (fn) = 1

ln(f.u.)n
√

2πfn

e
− (ln fn )2

2[ln(f.u.)n ]2 , (21)

where the subscript n labels the different data sets. We write
in symbolic notation

fn ∼ LN (0, [ln(f.u.)n]2), (22)

where LN denotes a log-normal probability density. For more
information on this choice of prior, see Iliadis et al. [18].

Notice that in χ2 fitting, normalization factors are viewed
as a systematic shift in the data (see, for example, Brown
and Hale [17]). In the Bayesian model, the reported data
are not modified. Instead, during the fitting, each data set
“pulls” on the true S-factor curve with a strength inversely
proportional to the systematic uncertainty: A data set with a
small systematic uncertainty will pull the true S-factor curve
more strongly toward it compared to a data set with a large
systematic uncertainty.
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In the present work, we employ priors that best reflect
the physics involved. Depending on the parameter, we use as
priors uniform distributions, broad normal densities truncated
at zero, narrow normal densities, and log-normal densities.

V. PRELIMINARY CONSIDERATIONS

Although the 3H(d, n) 4He cross section is dominated at
low energies by only a single resonance, any fitting procedure
will face a number of interesting problems.

First, Argo et al. [7] noted that an equally good fit is
obtained for two possible solutions of the partial width ratio
(�d/�n > 1 or <1), and that it is not possible to chose
between them without additional information about the mag-
nitude of the reduced widths γ 2

d and γ 2
n . They also note,

however, that the two solutions do not give widely different
parameter values since the �d/�n ratio is of order unity.

Second, in addition to the ambiguity introduced by the ratio
of partial widths, there is another complication related to their
absolute magnitude. Consider the two S-factor parametriza-
tions shown in Fig. 2, where the data are the same as in
Fig. 1. The blue curve was obtained using the best-fit values
of Barker [4] for the eigenenergy and the reduced widths
(E0 = 0.0912 MeV, γ 2

d = 2.93 MeV, γ 2
n = 0.0794 MeV);

Barker’s fixed values for the channel radii and boundary
condition parameters were ad = 6.0 fm, an = 5.0 fm, Bd =
−0.285, and Bn = −0.197. Barker’s derived deuteron re-
duced width exceeds the Wigner limit by a factor of 3, which
hints at the exceptional character of the low-energy resonance.
Although the data analyzed by Barker and the data evaluated
in the present work (see the Appendix) are not identical,
it can be seen that his best-fit curve (blue) describes the
observations well. The red curve was computed by arbitrar-
ily multiplying Barker’s reduced width values by a factor
of 10 (γ 2

d = 29.3 MeV, γ 2
n = 0.794 MeV) and slightly ad-

justing the eigenenergy and boundary condition parameter
(E0 = 0.102 MeV, Bd = −0.267). Notice that the red curve
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FIG. 2. Astrophysical S-factors computed using the single-level,
two-channel approximation [see Eqs. (1)–(3)]. The data are the same
as in Fig. 1. The blue curve is computed with the best-fit param-
eter values of Barker [4]. The red curve is obtained by arbitrarily
multiplying Barker’s reduced widths by a factor of 10 and adjusting
the eigenenergy and boundary condition parameters slightly. The red
curve does not represent any best-fit result and serves for illustrative
purposes only.

does not represent any best-fit result, but its sole purpose
is to demonstrate that similar S-factors can be obtained for
vastly different values of the partial widths. However, the red
curve represents an unphysical result if we consider additional
constraints: a deuteron reduced width of γ 2

d = 29.3 MeV,
obtained with a channel radius of ad = 6.0 fm, exceeds the
Wigner limit [see Eq. (8)] by a factor of 30 and is thus highly
unlikely.

The latter ambiguity is caused by the structure of Eq. (3).
The large reduced width of the deuteron channel dominates
the level shift [see Eq. (5)] and also the factor (E0 + � − E)
in Eq. (3). Therefore, if the reduced or partial widths for
both channels are multiplied by a similar factor, the shape
and magnitude of the S-factor is only slightly changed. This
ambiguity in the parameter selection cannot be removed even
when 3H + d elastic scattering data are simultaneously an-
alyzed together with the reaction data, as noted by Barit and
Sergeev [40].

Third, the large total width of the resonance is similar in
magnitude to the resonance energy. The resonance is so broad
that the experimental values of the scattering matrix element,
|Sdn|2, the cross section, σ , and the S-factor, Sbare(E), peak at
markedly different center-of-mass energies (≈80, ≈65, and
≈50 keV, respectively). The differences are caused by the
energy dependences of the wave number (k2 ∼ E) in Eq. (1)
and the Gamow factor (e2πη) in Eq. (2) over the width of the
resonance. Furthermore, for given values of E0 and �, the
location of the |Sdn|2 maximum does not coincide anymore
with the energy at which the factor (E0 + � − E) in Eq. (3)
is equal to zero, because of the energy dependence of the
penetration factors over the width of the resonance. Therefore,
there is no unique procedure for defining an energy, Er , “at
the center of the resonance” [24], and there is no obvious
advantage of adopting the definition of Eq. (12). In other
words, for the exceptionally broad low-energy resonance in
3H(d, n) 4He, one cannot chose the boundary condition pa-
rameter, Bc = Sc(Er ), so that the level shift is zero at the
location of the maximum of |Sdn|2, σ , or Sbare(E), and at the
same time expect the “center of the resonance,” Er , to equal
the eigenvalue E0 (see Sec. III).2

For example, consider again the blue curve shown in
Fig. 2, which was obtained with E0 = 0.0912 MeV and
Bd = Sd (Er ) = −0.285 [4], where the latter value cor-
responds to an energy of Er = 0.0912 MeV. Barker used
Eq. (12) and assumed Er = E0 in the fitting, but the fitted
energies (Er, E0) do not coincide with the measured peak
location of the scattering matrix element, or cross section,
or S-factor. If we chose instead to set the level shift equal

2Jarmie et al. [11] state that they “chose Bc so that the level
shifts �c are zero near the peak of the S function, which results
in the level energy Eλ being close to the c.m. energy at which the
S function peaks.” [p. 2042] Their Table VII lists the values of
ad = 5.0 fm, an = 3.0 fm and Bd = −0.27864, Bn = −0.557 for
the channel radii and boundary conditions, respectively. However,
the latter values correspond to an energy of Er = 90 keV, which,
contrary to their statement, is not near the peak of the astrophysical
S-factor (50 keV).

014619-6



THERMONUCLEAR FUSION RATES FOR TRITIUM + … PHYSICAL REVIEW C 99, 014619 (2019)

to zero at the location of the |Sdn|2 maximum (i.e., Er =
80 keV), the eigenenergy needs to be chosen near 152 keV
to achieve a good fit to the data, while keeping all other
parameters constant. In other words, the eigenenergy is not
located near the |Sdn|2 maximum anymore. Conversely, if we
set the eigenenergy equal to the location of the maximum of
|Sdn|2, σ , or Sbare(E), good fits to the data require a level shift
of zero near energies of Er = 0.093, 0.097, and 0.100 MeV,
respectively. We will explore the impact of boundary condi-
tion parameter variations on the fit results in Sec. V.

VI. BAYESIAN MODEL FOR 3H(d, n) 4He

All previous analyses of the 3H(d, n) 4He reaction cross
section were performed assuming fixed values for the channel
radii and boundary condition parameters. However, as ex-
plained in Sec. III, there is considerable freedom in the choice
of these parameters, which, therefore, should be included in
the sampling.

Our model includes the following parameters: (i) R-matrix
parameters, i.e., the eigenenergy (E0), reduced deuteron and
neutron widths (γ 2

d , γ 2
n ), deuteron and neutron channel radii

(ad, an), and the boundary condition parameters, Bc. (ii) The
electron screening potential (Ue). (iii) For each of the five
data sets, the extrinsic scatter for both energy (σE,extr) and
S-factor (σS,extr), the systematic energy shift (fE), and the
S-factor normalization (fS). Overall, our model contains 27
parameters.3

Normal likelihoods are used for the statistical and extrinsic
uncertainties [see also Eqs. (14) and (16)], because their
magnitudes are relatively small. We consider five data sets
(Sec. II), consisting of 191 data points total. Experimental
mean values for the measured energies and S-factors, together
with estimates of statistical and systematic uncertainties, are
given in the Appendix. The priors are discussed next.

In previous analyses of the 3H(d, n) 4He reaction cross
section, the energy Er has either been fixed at some arbi-
trarily value, or the condition Er = E0 has been arbitrarily
imposed in the fitting [4,41]. Neither of these assumptions
is justified on fundamental grounds. In Sec. V, we discussed
the complications that arise when choosing the arbitrary value
of the boundary condition parameter in the case of a broad
resonance. Instead of providing the boundary condition pa-
rameters, Bc, directly, we find it more useful to report the
equivalent results for the energy, EB , at which the level shift is
zero according to Bc = Sc(EB ) [see Eq. (5)]. We use the no-
tation EB instead of Er to emphasize that the value of EB does
not correspond to any measured “resonance energy,” since

3Of these 27 parameters, only 7 describe uncertainties in the phys-
ical model [Eqs. (2), (3), and (10)]. The remaining 20 parameters
describe measurement uncertainties, which we introduced for treat-
ing the data in our Bayesian model. The large number of the latter
parameters does not result in “overfitting,” because these parameters
are independent of the physical model. In other words, no matter
how many measurement uncertainty parameters are introduced in
the fitting, our two-channel, single-level R-matrix model will never
produce, for example, a double-humped S-factor curve.
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FIG. 3. Astrophysical S-factors obtained from the Bayesian R-
matrix fit. The data are the same as in Fig. 1. The red lines represent
credible S-factors computed using 500 sampled parameter sets that
were chosen at random from the complete set of samples. The inset
shows a magnified view of the credible S-factor samples.

such a quantity cannot be determined unambiguously in the
present case. Lane and Thomas [24] recommended to chose
Bc in the one-level approximation such that the eigenvalue E0

lies within the width of the measured resonance. Therefore,
we will chose for E0 a uniform prior between 20 and 80 keV
(see Fig. 3). For the energy EB , at which the level shift is zero,
we adopt a normal density of zero mean value and 1.0-MeV
standard deviation, which is restricted to positive energies
only (i.e., a truncated normal density).

Truncated normal densities are also assumed for the re-
duced widths (γ 2

d and γ 2
n ), with standard deviations given

by the Wigner limits (γ 2
WL,d and γ 2

WL,n) for the deuteron and
neutron [see Eq. (8)]. This choice of prior takes into account
the approximate character of the Wigner limit concept. For
the electron screening potential, we chose a truncated normal
density with a standard deviation of 1.0 keV.

Descouvemont and Baye [30] recommended choosing the
channel radius so that its value exceeds the sum of the radii
of the colliding nuclei. In a given reaction, the radii of the dif-
ferent channels do usually not have the same value. Previous
studies either adopted ad hoc values, or derived the channel
radii from data. Argo et al. [7] and Hale et al. [23] assumed
equal neutron and deuteron channel radii, and find best-fit val-
ues of 7.0 fm from analyzing 3H(d, n) 4He data. Woods et al.
[42] measured the 4He(7Li, 6Li) 5He and 4He(7Li, 6He) 5Li
stripping reactions and found a value of an = 5.5 ± 1.0 fm
from fitting the experimental line shapes. Jarmie et al. [11] and
Brown et al. [12] assumed radii of ad = 5.0 fm and an = 3.0
fm. The latter value presumably originated from Adair [43]
and Dodder and Gammel [44], who adopted an = 2.9 fm to
fit the low-energy 4He + nucleon phase shifts. In the present
work, we will chose for the channel radii uniform priors
between 2.5 and 8.0 fm.

The systematic uncertainty of the measured energies is
treated as a (positive or negative) offset (fE). The original
works report total energy uncertainties only but do not pro-
vide specific information about the relative contributions of
statistical and systematic effects. We will assume that the
prior, for each data set, j , is given by a normal density with
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a mean value of zero and a standard deviation equal to the
average reported total energy uncertainty in that experiment
(Appendix).

The systematic S-factor uncertainties for the data of Jarmie
et al. [11], Kobzev et al. [21], Arnold et al. [22], and
Conner et al. [6] amount to 1.26%, 2.5%, 2.0%, and 1.8%,
respectively (Appendix). These correspond to factor uncer-
tainties of (f.u.)1 = 1.0126, (f.u.)3 = 1.025, (f.u.)4 =
1.020, and (f.u.)5 = 1.018, respectively. As explained in
Sec. IV C, we will use these values as shape parameters of
log-normal priors for the systematic normalization factors,
fS , of each experiment. We already mentioned in Sec. II that
Brown et al. [12] did not determine absolute cross sections,
but normalized their data to the results of Ref. [11]. We will
include this data set in our analysis by choosing a weakly
informative prior for the factor uncertainty, i.e., (f.u.)2 = 10.

Finally, the extrinsic uncertainties for both energy and
S-factor are inherently unknown to the experimenter. Thus,
we will assume very broad truncated normal priors, with
standard deviations of 10 keV for the energy and 2 MeVb for
the S-factor.

Our complete Bayesian model is summarized below in
symbolic notation as follows:

Parameters:

θ ≡ (
E0, EB, γ 2

d , γ 2
n , ad, an, Ue,

σE,extr,j , σS,extr,j , fE,j , fS,j

)
. (23)

Likelihoods for energy:

E′
i ∼ N

(
Ei, σ

2
E,extr,j

)
, (24)

E′′
i,j = fE,j + E′

i , (25)

E
exp
i,j ∼ N

(
E′′

i,j , σ
2
E,stat,i

)
. (26)

Likelihoods for S-factor:

S ′
i ∼ N

(
Si, σ

2
S,extr,j

)
, (27)

S ′′
i,j = fS,j × S ′

i , (28)

S
exp
i,j ∼ N

(
S ′′

i,j , σ
2
S,stat,i

)
. (29)

Priors:

E0 ∼ U (0.02, 0.08), (30)

EB ∼ N (0.0, 1.02)T (0,), (31)(
γ 2

d , γ 2
n

) ∼ N
(
0.0,

(
γ 2

WL

)2)
T (0,), (32)

(ad, an) ∼ U (2.5, 8.0), (33)

Ue ∼ N (0.0, 0.0012)T (0,), (34)

Ei ∼ U (0.001, 0.3), (35)

σE,extr,j ∼ N (0.0, 0.012)T (0,), (36)

fE,j ∼ N
(
0.0, ξ 2

j

)
, (37)

σS,extr,j ∼ N (0.0, 2.02)T (0,), (38)

fS,j ∼ LN (0, [ln(f.u.)j ]2), (39)

where the indices j = 1, . . . , 5 and i = 1, . . . , 191 label
the data set and the data points, respectively. The sym-

bols have the following meanings: measured energy (Eexp)
and measured S-factor (Sexp); true energy (E); the true S-
factor (S) calculated from the R-matrix expressions [see
Eqs. (1)−(3)] using the R-matrix parameters; N, U , and
LN denoting normal, uniform, and log-normal probability
densities, respectively; T (0, ), the distribution only defined
for positive random variables; and “∼” for “sampled from.”
The numerical values of energies, S-factors, and radii are in
units of MeV, MeVb, and fm, respectively. For the standard
deviation, ξj , of the prior for the systematic energy offset,
fE,j , we adopted the average value of the reported energy
uncertainties for a given experiment, j (see the Appendix).

VII. RESULTS

The MCMC sampling will provide the posteriors of all 27
parameters. We computed three MCMC chains, where each
chain had a length of 5 × 106 steps after the burn-in samples
(106 steps for each chain) were completed. The autocorre-
lation approached zero for a lag of ≈3000. Therefore, the
effective sample size, i.e., the number of independent Monte
Carlo samples necessary to give the same precision as the ac-
tual MCMC samples, amounted to ≈5000. This ensured that
the chains reached equilibrium and Monte Carlo fluctuations
were negligible compared to the statistical, systematic, and
extrinsic uncertainties.

A. S-factors and R-matrix parameters

The results for the S-factor are displayed in Fig. 3. For
better visualization, the red lines represent only 500 S-factor
samples that were chosen at random from the complete
set of 15 × 106 samples. The marginalized posterior of the
S-factor at a representative energy of 40 keV, near the center
of the energy range important for fusion reactors and Big Bang
nucleosynthesis, is shown in Fig. 4. At this energy, we find
a value of S

pres
0.04 = 25.438+0.080

−0.089 MeVb (Table I), where the
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FIG. 4. Marginalized posterior of the S-factor at a representative
center-of-mass energy of 40 keV. Percentiles of the distribution are
listed in Table I.
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TABLE I. Results of Bayesian fits (I) and comparison to litera-
ture. More results are listed in Table II.

Parameter Presenta Previous

E0 (MeV) 0.0420+0.0051
−0.0047 0.0912b

EB (MeV) 0.09654+0.00084
−0.00090 0.0912b

γ 2
d (MeV) 3.23+0.39

−0.32 2.93f

γ 2
n (MeV) 0.133+0.016

−0.013 0.0794f

ad (fm) 5.56+0.11
−0.15 7.0c

an (fm) 3.633+0.072
−0.084 7.0c, 5.5 ± 1.0d, 2.9e

�d (MeV) 0.897+0.095
−0.068

g

�n (MeV) 0.549+0.055
−0.041

g

Ue (eV) �14.7 41 or 27h

S0.04 (MeVb)i 25.438+0.080
−0.089 25.87 ± 0.49j

aUncertainties represent 16th, 50th, and 84th percentiles, while upper
limits correspond to 97.5% credibility.
bFrom Ref. [4]; his fit was performed with the condition E0 =
Er and with fixed channel radii (ad = 6.0 fm, an = 5.0 fm). No
uncertainty estimates were provided.
cFrom Refs. [7,23]. No uncertainty estimates were provided, and
both works assumed ad = an.
dFrom Ref. [42], who assumed ad = an.
eFrom Refs. [43,44]; no uncertainty estimates were provided.
fFrom Ref. [4]; no uncertainty estimates were provided.
gCalculated from the sampled reduced width values, γ 2

d and γ 2
n , at

the sampled energy values, EB .
hFrom Ref. [45]; the first and second values are obtained from the
Thomas-Fermi model and the Hartree-Fock model, respectively.
iS-factor at 40 keV.
jFrom Table V of Ref. [15]; the uncertainty of 1.9% provided in
their Table IV has no rigorous statistical meaning, but signifies
the “maximum deviation of the approximations from the original
R-matrix cross-sections.”

uncertainties are derived from the 16, 50, and 84 percentiles.
This uncertainty amounts to 0.4%. Our result can be compared
to the previous value of S

prev
0.04 = 25.87 ± 0.49 MeVb from

Bosch and Hale [15], which was obtained using different
methods and data selection. The present and previous recom-
mended values differ by 1.7% and our uncertainty is smaller
by a factor of 5.5.

Our results for the R-matrix parameters are listed in
Table I, together with previously obtained values. The top
panels in Fig. 5 present the marginalized posterior densi-
ties of the eigenenergy (E0) and the energy at which the
shift factor is equal to zero (EB). We find values of E0 =
0.0420+0.0051

−0.0047 MeV and EB = 0.09654+0.00084
−0.00090 MeV. These

cannot be directly compared to the result of Barker [4],
0.0912 MeV, who assumed E0 = Er and fixed channel radii
(ad = 6 fm, an = 5 fm) in the fit. The middle panels in
Fig. 5 show the posteriors of the deuteron and neutron reduced
widths. We obtain values of γ 2

d = 3.23+0.39
−0.32 MeV and γ 2

n =
0.133+0.016

−0.013 MeV. Our deuteron reduced width agrees with
Barker’s result, but our neutron reduced width is larger by a
factor of 1.7. A more quantitative comparison between present
and previous results is difficult, because no uncertainties are
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FIG. 5. Marginalized posterior densities of the eigenenergy (E0),
the energy at which the level shift is set to zero (EB ), the deuteron
and neutron reduced widths (γ 2

d , γ 2
n ), and the deuteron and neutron

channel radii (ad, an). Percentiles of the distributions are listed in
Table I.

presented in Ref. [4]. The bottom panels in Fig. 5 display
the posteriors of the deuteron and neutron channel radii. The
present results are ad = 5.56+0.11

−0.15 fm and an = 3.633+0.072
−0.084

fm. Our deuteron channel radius is lower than the value
obtained in previous fittings [7,23] (see Sec. VI). Our neu-
tron channel radius is larger than the value found previously
by Refs. [43,44], but smaller than the results obtained in
Refs. [7,23,42]. Again, no uncertainties are provided in the
previous works.

For completion, we also list in Table I the values of the
deuteron and neutron partial widths that are obtained from
our reduced widths according to Eq. (4). We obtain best-fit
values of �d = 0.897+0.095

−0.068 MeV and �n = 0.549+0.055
−0.041 MeV

(Table I). Therefore, we confirm the relation �d ≈ �n, which
explains the large cross section of the 3H(d, n) 4He reaction at
low energies, as explained in Sec. I.
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FIG. 6. Marginalized posterior density for the electron screening
potential, Ue. No evidence for electron screening in the 3H(d, n) 4He
reaction can be extracted from the available data, contrary to the
claims of Langanke and Rolfs [45], and only an upper limit, Ue �
14.7 eV, can be obtained (Table I).

B. Electron screening

Motivated by electron screening effects observed in
3He(d, p) 4He S-factor data, Langanke and Rolfs [45] in-
vestigated the data of Jarmie et al. [11] and Brown et al.
[12] of the analog 3H(d, n) 4He reaction. Based on a one-
level R-matrix expression, Langanke and Rolfs [45] report
evidence of “electron screening effects caused by the electrons
present in the target” [p. 2101] at the lowest center-of-mass
energies (�16 keV). Since their R-matrix fit underpredicts the
six lowest data points (see Fig. 3), they claim much better
agreement if a screening potential of 41 eV (Thomas-Fermi
model) or 27 eV (Hartree-Fock model) is included in the data
fitting.

Figure 6 shows our marginalized posterior density for
the electron screening potential, Ue. It clearly demonstrates
that there is no evidence of electron screening effects in the
3H(d, n) 4He data, and only an upper limit can be extracted
from the measurements. Integration of the posterior from
zero to a percentile of 97.5% results in an upper limit of
Ue � 14.7 eV (Table I). We suspect that the erroneous claim
of electron screening effects in the 3H(d, n) 4He reaction by
Langanke and Rolfs [45] is most likely caused by the wrong
sign of the level shift in the denominator of their one-level
R-matrix expression [see their Eq. (4)].

C. Normalization and extrinsic scatter

Apart from the physical parameters discussed above,
our Bayesian model also provides interesting information
about systematic and extrinsic uncertainties in the data. The
marginalized posteriors of the S-factor normalization factors,
fS , are displayed in Fig. 7. Values for the percentiles of the
distribution for each data set are listed in Table II. The median
values of fS are equal to unity within ≈2.4%. They are also
similar in magnitude to the factor uncertainties, f.u. (Sec. VI),
indicating that reliable systematic S-factor uncertainties were
adopted in our analysis (Appendix). Brown and Hale [17]
find “normalization factors” of 1.017 and 1.025 for the data
of Jarmie et al. [11] and Brown et al. [12], respectively,
where the inverse of their value corresponds to our value
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FIG. 7. Marginalized posteriors of the S-factor normalization
factors, fS . The labels refer to the same data sets as shown in Fig. 1.
Percentiles of the distributions are listed in Table II.

of fS , as explained in Sec. IV C. Our derived value, fS =
0.9998+0.0030

−0.0037, for the data of Ref. [11] is larger than the
value of 1.017−1 = 0.983 from Brown and Hale [17], but our
results for the data of Ref. [12] are in agreement.

Table II also lists the extrinsic S-factor uncertainty for each
data set. The derived values can be compared with the magni-
tude of the statistical S-factor uncertainties, presented in the
Appendix. It can be seen that for the data of Refs. [11,12,21]
the extrinsic scatter is smaller, or of similar magnitude, com-
pared to the reported statistical uncertainties. However, our
derived extrinsic scatter for the data of Arnold et al. [22],
σS,extr = 0.471+0.043

−0.038 MeVb, exceeds their reported statistical
uncertainties by more than an order of magnitude (Table VIII).
This indicates that the latter authors underestimated their
statistical uncertainties. A similar problem, but less severe,
persists for the data set of Conner et al. [6].

Regarding the energies, all of our predicted systematic
shifts, fE , are consistent with zero. Furthermore, for the
extrinsic scatter we only find upper limits, which are smaller
than the reported statistical energy uncertainties. Thus we
conclude that the energies were reliably estimated in the
original works.

Notice that even when we identify problems with cer-
tain data sets, all effects are naturally accounted for in our
Bayesian model. Specifically, there is no need to arbitrarily
disregard data.

VIII. THERMONUCLEAR REACTION RATES

In the nuclear astrophysics literature, the thermonuclear
reaction rate per particle pair, NA〈σv〉, at a given plasma
temperature, T , is defined by [46]

NA〈σv〉 =
(

8

πm01

)1/2
NA

(kT )3/2

∫ ∞

0
e−2πη S(E) e−E/kT dE,

(40)

where m01 is the reduced mass of projectile and target, NA

is Avogadro’s constant, and k is the Boltzmann constant. In
the fusion research community, the quantity 〈σv〉 is called
thermal reactivity and is usually presented as a function of
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TABLE II. Results of Bayesian fits (II). Results listed
here complement those listed in Table I.

Parametera Valueb

fE,1 (eV) −0.23+0.79
−0.92

fE,2 (eV) 0.5+2.2
−2.3

fE,3 (eV) 81+241
−231

fE,4 (eV) 3.5+9.3
−8.3

fE,5(eV) 6+18
−19

σE,extr,1 (eV) �1.1

σE,extr,2 (eV) �3.0

σE,extr,3 (eV) �153

σE,extr,4 (eV) �2.9

σE,extr,5 (eV) �11

fS,1 0.9998+0.0030
−0.0037

c

fS,2 0.9786+0.0035
−0.0036

c

fS,3 0.9756+0.0032
−0.0031

fS,4 1.0143+0.0040
−0.0038

fS,5 0.9936+0.0035
−0.0034

σS,extr,1 (MeVb) 0.112+0.048
−0.028

σS,extr,2 (MeVb) 0.181+0.069
−0.052

σS,extr,3 (MeVb) 0.0285+0.0102
−0.0066

σS,extr,4 (MeVb) 0.471+0.043
−0.038

σS,extr,5 (MeVb) 0.559+0.050
−0.053

aThe symbols σE,extr, σS,extr, fE , and fS denote the extrinsic
uncertainty in energy and S-factor, the systematic energy
shift, and the S-factor normalization, respectively; the in-
dices j = 1 . . . 5 label the five different data sets: (1) Jarmie
et al. [11]; (2) Brown et al. [12]; (3) Kobzev et al. [21]; (4)
Arnold et al. [22]; and (5) Conner et al. [6].
bUncertainties represent 16th, 50th, and 84th percentiles,
while upper limits correspond to 97.5% credibility.
cReference [17] reports normalization factors of 1.017 and
1.025 for the data of Refs. [11] and [12], respectively, where
their value corresponds to the inverse of our value of fS (see
Sec. IV C).

the thermal energy, kT (i.e., the maximum of the Mawell-
Boltzmann velocity distribution).

We computed reaction rates and reactivities by numerical
integration of Eq. (40). The S-factor is calculated from the
samples of the 27-parameter Bayesian R-matrix fit, discussed
in Sec. VII, and thus our new values of NA〈σv〉 and 〈σv〉
fully contain the effects of varying channel radii, varying
boundary condition parameters, systematic and extrinsic un-
certainties. We base these results on 5000 random MCMC
S-factor samples, which ensures that Monte Carlo fluctuations
are negligible compared to the reaction rate or reactivity
uncertainties. Our lower integration limit was set at 1 eV.
Reaction rates are computed for 46 different temperatures
between 1 MK and 1 GK, and reactivities are calculated for 25
different values of kT between 0.2 and 50 keV. Recommended
rates or reactivities are computed as the 50th percentile of
the probability density, while the factor uncertainty, f.u., is
obtained from the 16th and 84th percentiles [47]. Numerical

TABLE III. Recommended 3H(d, n) 4He thermonuclear reaction
rates, NA〈σv〉.

T (GK) Mediana f.u.a

0.001 1.998 × 10−07 1.0059
0.002 1.445 × 10−03 1.0058
0.003 1.046 × 10−01 1.0058
0.004 1.539 × 10+00 1.0057
0.005 1.034 × 10+01 1.0057
0.006 4.405 × 10+01 1.0056
0.007 1.397 × 10+02 1.0056
0.008 3.614 × 10+02 1.0056
0.009 8.060 × 10+02 1.0056
0.010 1.606 × 10+03 1.0055
0.011 2.934 × 10+03 1.0055
0.012 4.998 × 10+03 1.0055
0.013 8.044 × 10+03 1.0054
0.014 1.235 × 10+04 1.0054
0.015 1.824 × 10+04 1.0054
0.016 2.604 × 10+04 1.0054
0.018 4.891 × 10+04 1.0053
0.020 8.416 × 10+04 1.0053
0.025 2.499 × 10+05 1.0052
0.030 5.743 × 10+05 1.0050
0.040 1.942 × 10+06 1.0048
0.050 4.638 × 10+06 1.0046
0.060 9.013 × 10+06 1.0043
0.070 1.527 × 10+07 1.0041
0.080 2.348 × 10+07 1.0039
0.090 3.356 × 10+07 1.0037
0.100 4.536 × 10+07 1.0035
0.110 5.866 × 10+07 1.0033
0.120 7.320 × 10+07 1.0032
0.130 8.872 × 10+07 1.0031
0.140 1.050 × 10+08 1.0030
0.150 1.217 × 10+08 1.0029
0.160 1.388 × 10+08 1.0028
0.180 1.732 × 10+08 1.0027
0.200 2.069 × 10+08 1.0026
0.250 2.843 × 10+08 1.0025
0.300 3.483 × 10+08 1.0024
0.350 3.988 × 10+08 1.0024
0.400 4.375 × 10+08 1.0024
0.450 4.663 × 10+08 1.0025
0.500 4.873 × 10+08 1.0025
0.600 5.119 × 10+08 1.0026
0.700 5.210 × 10+08 1.0026
0.800 5.206 × 10+08 1.0027
0.900 5.145 × 10+08 1.0028
1.000 5.050 × 10+08 1.0028

aReaction rates in units of cm3 mol−1 s−1, corresponding to the 50th
percentile of the rate probability density function. The rate factor
uncertainty, f.u., is obtained from the 16th and 84th percentiles (see
the text).

values of reaction rates and reactivities are listed in Tables III
and IV, respectively.

Reaction rates are displayed in the top panel of Fig. 8.
Our low (16th percentile) and high (84th percentile) rates,
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TABLE IV. Recommended 3H(d, n) 4He reactivities, 〈σv〉.

kT (keV) Mediana f.u.a

0.2 1.241 × 10−26 1.0058
0.3 7.221 × 10−25 1.0057
0.4 9.257 × 10−24 1.0057
0.5 5.643 × 10−23 1.0056
0.6 2.231 × 10−22 1.0056
0.7 6.671 × 10−22 1.0056
0.8 1.644 × 10−21 1.0055
1.0 6.772 × 10−21 1.0054
1.3 3.126 × 10−20 1.0054
1.5 6.805 × 10−20 1.0053
1.8 1.738 × 10−19 1.0052
2.0 2.913 × 10−19 1.0052
2.5 8.212 × 10−19 1.0050
3.0 1.816 × 10−18 1.0049
4.0 5.803 × 10−18 1.0046
5.0 1.329 × 10−17 1.0043
6.0 2.491 × 10−17 1.0040
8.0 6.101 × 10−17 1.0036
10.0 1.118 × 10−16 1.0032
12.0 1.723 × 10−16 1.0029
15.0 2.707 × 10−16 1.0027
20.0 4.284 × 10−16 1.0025
30.0 6.596 × 10−16 1.0024
40.0 7.854 × 10−16 1.0025
50.0 8.444 × 10−16 1.0026

aReactivities in units of cm3 s−1, corresponding to the 50th percentile
of the rate probability density function. The rate factor uncertainty,
f.u., is obtained from the 16th and 84th percentiles (see the text).

normalized to the present median rates (50th percentile), are
shown as a gray band. The rate uncertainties in the temper-
ature region between 1 MK and 1 GK are between 0.2%
and 0.6%. While a number of previous works have presented
3H(d, n) 4He thermonuclear rates, most do not present uncer-
tainties and, therefore, a direct comparison to our results is not
very meaningful. The only recently published 3H(d, n) 4He
rates with uncertainties can be found in Descouvemont et al.
[13]. Their “lower,” “adopted,” and “upper” rates, normalized
to our median rate, are shown as the purple band in the top
panel of Fig. 8. Present and previous rates agree below a
temperature of 0.1 GK, although the previous rate uncertain-
ties (0.8% to 1.0%), estimated using χ2 fitting, are larger
compared to our results. At higher temperatures, present and
previous rates start to diverge. At a temperature of 1 GK, the
difference amounts to 2.9%.

Reactivities are displayed in the bottom panel of Fig. 8. Our
low (16th percentile) and high (84th percentile) reactivities,
normalized to the present median reactivites (50th percentile),
are shown as a gray band. We compare our results with those
listed in Table VIII of Bosch and Hale [16]. Notice that their
quoted uncertainty of 0.25% (see Table VII in Ref. [15]) has
no rigorous statistical meaning but signifies the “maximum
deviation of the fit from the input data.” The previously
recommended reactivities are higher than our values at all
thermal energies, with the largest deviation of 2.9% occurring
at an energy of kT = 4 keV.

IX. SUMMARY AND CONCLUSIONS

We presented the first Bayesian R-matrix analysis of
3H(d, n) 4He S-factors, reaction rates, and reactivities. This
approach has major advantages, because it is not confined
to the use of Gaussian likelihoods, and instead allows for
implementing those likelihoods into the model that best ap-
plies to the problem at hand. Also, all previous R-matrix
analyses kept the channel radii and boundary condition pa-
rameters constant during the fitting. In reality, these quan-
tities are not rigidly constrained, and their variation will
impact the uncertainties of the derived S-factors and fusion
rates. Furthermore, uncertainties affect not only the measured
S-factors but also the experimental center-of-mass energies.
Uncertainties in both independent and dependent variables
can be easily implemented into a Bayesian model, whereas no
simple prescription for such a procedure exists in χ2 fitting.

We evaluated the published data and adopted those ex-
periments for which separate estimates of systematic and
statistical uncertainties can be obtained: Jarmie et al. [11];
Brown et al. [12]; Kobzev et al. [21]; Arnold et al. [22]; and
Conner et al. [6]. The difficulties and special circumstances
when studying the exceptionally broad low-energy resonance
in this reaction are discussed in detail. We analyzed the
low-energy S-factor data using a two-channel, single-level
R-matrix approximation that is implemented in a Bayesian
analysis. The model has 27 parameters, including R-matrix
parameters (e.g., energies and reduced widths), systematic
uncertainties, and extrinsic uncertainties. In particular, we in-
cluded in the sampling the channel radii, boundary condition
parameters, and data set normalization factors. Our resulting
S-factor uncertainty amounts to only 0.4% near an energy
of 40 keV. Thermonuclear reaction rates and reactivities are
found by numerically integrating the Bayesian S-factor sam-
ples. Our resulting rate or reactivity uncertainties are between
0.2% and 0.6%. Above 0.1 GK, our reaction rates are larger
than the values of Descouvemont et al. [13]. Our reactivities
are smaller than the results of Bosch and Hale [16] at all
relevant thermal energies. Finally, unlike previous claims, we
find no evidence for the electron screening effect in any of the
published 3H(d, n) 4He reaction data.

The present study demonstrates the usefulness of the
Bayesian approach for estimating R-matrix parameters, S-
factors, reaction rates, and reactivities. The results will prove
useful in future R-matrix studies that involve multiple chan-
nels and resonances.
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APPENDIX: NUCLEAR CROSS SECTION DATA FOR
3H + d → n + 4He

We discuss here the current status of the available data
for the 3H(d, n) 4He reaction. Several works have measured
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FIG. 8. (Top) Present 3H(d, n) 4He thermonuclear rates (gray)
compared to the evaluation of Descouvemont et al. [13] (purple).
(Bottom) Present 3H(d, n) 4He reactivities (gray) compared with the
results of Bosch and Hale [16] (green). The gray bands signify
68% coverage probabilities. For a better comparison, all rates or
reactivities are normalized to our new recommended (i.e., median)
values (see Tables III and IV). The solid lines shows the ratio of
previous and present recommended results.

only differential cross sections at a single angle and assumed
an isotropic angular distribution to derive the total cross
section. Figure 4 in the work of Conner et al. [6] shows that
the integrated cross-section data points agree with the theo-
retical single-level dispersion curve (solid line) at deuteron
bombarding energies of �450 keV. Therefore, at these low
energies, the cross section is determined by the 3/2+ (s-wave)
resonance in 3H + d (see Sec. I), and the angular distribution
can be assumed to be nearly isotropic; see also Bém et al.
[48]. At higher energies, higher lying levels in 5He will impact
the cross section, giving rise to anisotropies in the differential
cross section. In the present work, we only take data in this
low-energy range into account (corresponding to bombarding
triton energies of �680 keV, or center-of-mass energies of
�270 keV), which is of primary interest for 3H + d ther-
monuclear fusion. As noted in Sec. II, we will adopt in our
analysis only those data sets for which we can separately
estimate statistical and systematic uncertainties.

TABLE V. The 2H(t, α)n data of Jarmie et al. [11].

Ec.m.
a S ± �Sstat

b

(keV) (MeVb)

4.992 12.63 ± 0.58
5.990 13.48 ± 0.39
6.990 12.83 ± 0.40
7.990 13.43 ± 0.27
9.989 13.92 ± 0.14
11.989 14.32 ± 0.10
15.990 15.81 ± 0.13
19.992 17.35 ± 0.09
23.994 18.87 ± 0.08
27.996 20.70 ± 0.09
31.998 22.19 ± 0.11
36.001 24.02 ± 0.11
40.004 25.28 ± 0.14
42.005 26.00 ± 0.12
44.007 26.30 ± 0.14
46.009 26.74 ± 0.13
46.809 26.64 ± 0.14

aTotal uncertainty varies from ±2.4 eV at Ec.m. = 5 keV to
±6.4 eV at Ec.m. = 47 keV.
bSystematic uncertainty: 1.26%.

1. The 2H(t, α)n data of Jarmie, Brown and Hardekopf [11]

The measurement of Jarmie et al. [11] was performed
using a triton beam incident on a windowless deuterium
gas target. This technique minimizes systematic beam energy
uncertainties compared to other measurements that used a gas
target contained by foils. Our adopted center-of-mass energies
and astrophysical S-factors are listed in Table V. The energies
(Ec.m. = 5–47 keV) correspond to the center of the gas target
and were calculated from the laboratory energies listed in
column 2 of Table V in Ref. [11]. The total (systematic plus
statistical) uncertainties of the center-of-mass energies are less
than 6 eV. The S-factors are taken from column 3 of their
Table VI. Their statistical uncertainties amount to 0.5–4.6%,
depending on energy (see their Table III). The systematic
S-factor uncertainty is 1.26% (see their Table IV).

TABLE VI. The 3H(d, α)n data of Brown et al. [12].

Ec.m.
a Srel ± �Sstat

b

(keV) (MeVb)

47.948 26.48 ± 0.21
50.947 26.84 ± 0.21
53.942 25.89 ± 0.21
56.942 25.50 ± 0.20
59.941 24.33 ± 0.19
62.941 23.44 ± 0.19
65.941 22.02 ± 0.18
69.541 20.34 ± 0.16

aTotal uncertainty of center-of-mass energy is ±9 eV.
bThe values reported in Ref. [12] were normalized relative
to the data of Ref. [11], listed in Table V.
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TABLE VII. The 2H(t, α)n data of Kobzev et al. [21].

Ec.m. ± �Ec.m.
a S ± �Sstat

b

(keV) (MeVb)

46.0 ± 1.2 25.93 ± 0.52
48.0 ± 1.2 25.96 ± 0.52
52.0 ± 1.3 25.76 ± 0.52
56.0 ± 1.4 25.28 ± 0.51
60.0 ± 1.5 24.77 ± 0.50
64.0 ± 1.3 23.66 ± 0.47
66.0 ± 1.3 22.85 ± 0.46
68.0 ± 1.4 21.89 ± 0.44
72.0 ± 1.4 19.98 ± 0.40
76.0 ± 1.5 18.14 ± 0.36
80.0 ± 1.6 16.53 ± 0.33
84.0 ± 1.7 15.01 ± 0.30
88.0 ± 1.8 13.65 ± 0.27
92.0 ± 1.8 12.50 ± 0.25
96.0 ± 1.9 11.41 ± 0.23
100.0 ± 2.0 10.45 ± 0.21
104.0 ± 2.1 9.59 ± 0.19
108.0 ± 2.2 8.76 ± 0.18
112.0 ± 2.2 7.98 ± 0.16
116.0 ± 2.3 7.28 ± 0.15
120.0 ± 2.4 6.65 ± 0.13
124.0 ± 2.5 6.08 ± 0.12
128.0 ± 2.6 5.61 ± 0.11
132.0 ± 2.6 5.23 ± 0.10
136.0 ± 2.7 4.89 ± 0.10
140.0 ± 2.8 4.60 ± 0.09
144.0 ± 2.9 4.32 ± 0.09
148.0 ± 3.0 4.11 ± 0.08
152.0 ± 3.0 3.88 ± 0.08
156.0 ± 3.1 3.69 ± 0.07
160.0 ± 3.2 3.50 ± 0.07
164.0 ± 3.3 3.32 ± 0.08
168.0 ± 3.4 3.15 ± 0.08
176.0 ± 3.5 2.84 ± 0.07
184.0 ± 3.7 2.62 ± 0.07
192.0 ± 3.8 2.42 ± 0.06
200.0 ± 4.0 2.26 ± 0.06
208.0 ± 4.2 2.13 ± 0.05
216.0 ± 4.3 2.00 ± 0.05
224.0 ± 4.5 1.89 ± 0.05
232.0 ± 4.6 1.79 ± 0.04
240.0 ± 4.8 1.69 ± 0.04
248.2 ± 5.0 1.60 ± 0.04
256.2 ± 5.1 1.51 ± 0.04
264.3 ± 5.3 1.44 ± 0.04

aTriton laboratory energies have a 2.5% accuracy in the
range 115–150 keV and a 2% accuracy in the range
150–1200 keV (see text).
bAssumed systematic uncertainty: 2.5% (see text).

2. The 3H(d, α)n data of Brown et al. [12]

The 3H(d, α)n measurement of Brown et al. [12] was
performed with an apparatus similar to the one described in
Ref. [11], except that a deuteron beam (Ed = 80–116 keV)
was incident on a triton gas target. However, no absolute

TABLE VIII. The 3H(d, n) 4He data of Arnold et al. [22].

Ec.m.
a S ± �Sstat

b

(keV) (MeVb)

8.98 13.340 ± 0.026
9.32 13.703 ± 0.027
9.47 13.508 ± 0.027
9.52 13.600 ± 0.027
11.95 14.068 ± 0.028
11.99 13.849 ± 0.028
12.03 13.680 ± 0.027
12.81 14.302 ± 0.029
12.83 14.957 ± 0.030
14.48 14.939 ± 0.030
14.68 15.753 ± 0.031
14.89 15.448 ± 0.030
18.33 16.921 ± 0.034
18.35 16.989 ± 0.032
19.92 17.249 ± 0.034
20.27 17.721 ± 0.035
23.95 18.969 ± 0.038
23.97 18.366 ± 0.036
25.17 20.718 ± 0.021
25.26 20.755 ± 0.021
25.32 19.969 ± 0.020
25.66 19.920 ± 0.020
25.72 20.596 ± 0.020
26.09 20.277 ± 0.020
26.38 20.525 ± 0.020
29.95 21.766 ± 0.022
31.16 22.749 ± 0.023
31.52 22.695 ± 0.023
35.36 24.314 ± 0.024
35.38 24.589 ± 0.024
37.00 24.967 ± 0.025
37.16 25.184 ± 0.025
41.23 26.600 ± 0.027
41.25 26.514 ± 0.026
43.29 27.067 ± 0.027
42.49 26.847 ± 0.027
46.61 27.466 ± 0.027
46.64 27.365 ± 0.027
46.65 27.489 ± 0.027
47.22 27.505 ± 0.027
47.25 27.542 ± 0.027
52.80 26.975 ± 0.027
52.83 27.085 ± 0.027
58.66 25.621 ± 0.025
58.68 25.669 ± 0.026
61.39 24.593 ± 0.024
61.43 24.492 ± 0.024
64.51 23.071 ± 0.023
64.54 23.157 ± 0.023
67.37 22.002 ± 0.022
67.39 21.951 ± 0.022
70.39 20.445 ± 0.020
70.44 20.227 ± 0.020

aTotal uncertainty of center-of-mass energy is about ±75 eV
(see text).
bAdopted systematic uncertainty: 2.0% (see text).
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TABLE IX. The 3H(d, n) 4He data of Conner et al. [6].

Ec.m.
a S ± �Sstat

b

(keV) (MeVb)

12.42 13.23 ± 0.13
15.48 15.17 ± 0.15
18.60 15.79 ± 0.16
20.70 17.33 ± 0.17
21.78 17.38 ± 0.17
24.90 18.23 ± 0.18
28.02 19.70 ± 0.20
29.10 20.13 ± 0.20
31.20 21.80 ± 0.22
33.24 22.91 ± 0.23
34.26 21.59 ± 0.21
37.38 23.80 ± 0.24
40.50 25.31 ± 0.25
41.58 25.72 ± 0.26
43.68 25.93 ± 0.26
45.72 25.90 ± 0.26
46.80 25.44 ± 0.25
49.98 26.83 ± 0.27
54.18 25.53 ± 0.26
56.22 26.60 ± 0.27
58.26 25.89 ± 0.26
62.40 24.61 ± 0.25
65.40 23.43 ± 0.23
66.60 22.90 ± 0.23
69.00 21.82 ± 0.22
75.00 19.23 ± 0.20
80.40 16.97 ± 0.17
81.60 16.60 ± 0.17
85.80 14.96 ± 0.15
87.60 14.27 ± 0.14
91.80 12.90 ± 0.13
93.60 12.33 ± 0.12
97.20 11.02 ± 0.11
100.2 10.63 ± 0.11
103.8 9.91 ± 0.10
109.8 8.99 ± 0.09
123.0 6.79 ± 0.07
136.2 5.44 ± 0.05
150.6 4.43 ± 0.04
165.6 3.55 ± 0.04
181.2 2.89 ± 0.03
197.4 2.51 ± 0.03
214.2 2.16 ± 0.02

aWe assumed that the uncertainty varies from ±60 eV at
12.4 keV to ±600 eV at 214 keV center-of-mass energy (see
text).
bAdopted systematic uncertainty: 1.8% (see text).

normalization was determined by Brown et al. [12]. For
the purpose of reporting their data, Ref. [12] determined an
approximate scale by matching the cross sections in the over-
lapping energy region to the earlier absolute measurement of
Ref. [11]. The reported astrophysical S-factors versus center-
of-mass energies are listed in Table VI. Since they represent
relative results only, we implemented these data into our anal-

ysis using a weakly informative prior for the normalization
factor (Sec. IV). The statistical S-factor uncertainties amount
to 0.8%.

3. The 2H(t, α)n data of Kobzev et al. [21]

Kobzev et al. [21] measured the 2H(t, α)n cross sec-
tion at 90◦ in the triton bombarding energy range of
Et = 115–1650 keV. They employed mica foils of 0.16
and 0.31 mg/cm2 thickness as entrance windows of their
deuterium gas target. Below a triton bombarding energy of
≈660 keV, the differential cross section is isotropic [6,7] and
therefore we calculated the total cross section by multiplying
the values listed in their table by a factor of 4π . Our adopted
S-factors are given in Table VII. Kobzev et al. [21] state
that “the differential cross section was measured from 115 to
400 keV with 2% accuracy[,] in the range 400–800 keV with
2.5% accuracy.” Although Kobzev et al. [21] do not provide
separate estimates of statistical and systematic uncertanties,
we will assume that the quoted values are of statistical nature.
For the systematic S-factor uncertainty in their measurement,
we assume a value of 2.5%. Regarding the uncertainties in
the bombarding energy, Kobzev et al. [21] write that “the
interaction energy of tritium and deuterium nuclei was deter-
mined with 2.5% accuracy in the range 115–150 keV, with
2% accuracy in the range 150–1200 keV.” We adopted these
uncertainties (see Table VII) and assume that they refer to
statistical effects.

4. The 3H(d, n) 4He data of Arnold et al. [22]

Arnold et al. [22] measured cross sections of the
3H(d, n) 4He reaction between 10 and 120 keV deuteron bom-
barding energy, using thin (5–10 μg/cm2) SiO entrance foils
for their tritium gas target. Their results were later published
in Arnold et al. [49], and Table III in the latter paper served
as the main source for their cross sections in most previous
analyses; see, e.g., Ref. [9]. However, Ref. [49] did not report
the originally measured cross sections of Arnold et al. [22]
in their Table III. What is listed there are energies and cross
sections derived from a “smoothed curve” based on the energy
dependence of the Gamow factor. These values should not
be used in fitting the data. The original data are provided in
Table VI of Ref. [22], which we adopted in our analysis.

We disregarded the data points at the lowest deuteron
bombarding energies of 7–11 keV “because failure of the
counter collimating system and excess production of condens-
able vapor gave good reason to expect that the experimental
value of the cross sections at these energies might be low.”
Furthermore, the listed cross section values at Ed = 24.96,
24.91, and 24.89 keV are certainly affected by a decimal-point
error, since they are too large by one order of magnitude.
Similarly, the listed cross section values at Ed = 49.62 and
49.60 keV are too low by one order of magnitude. Therefore,
we disregarded these five data points.

Arnold et al. [22] provide a detailed list of uncertainties
in their Table VIII. Statistical S-factor uncertainties amount
to 0.2% and 0.1% at deuteron bombarding energies below
and above ≈40 keV, respectively. Our derived center-of-mass
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energies and S-factors are listed in Table VIII. Arnold et al.
[22] quoted systematic S-factor uncertainties (“standard er-
ror”) of 1.8%, 1.5%, and 1.4% at deuteron bombarding en-
ergies of 25, 50, and 100 keV, respectively. In the present
work, we adopted a constant systematic S-factor uncertainty
of 2.0%. The uncertainty in the center-of-mass energy is not
directly stated in Ref. [22], but can be estimated based on the
information provided. They write “at 10 keV, 100 V of change
cause a 6 percent change in cross section.” From their Table II,
considering only the S-factor uncertainties listed under “5.
Energy,” we estimate an uncertainty of about ±75 eV for the
center-of-mass energy. We will adopt this value for all of their
measured energies.

5. The 3H(d, n) 4He data of Conner et al. [6]

The cross-section data of Conner et al. [6] were obtained in
two experiments, using different ion accelerators, for deuteron
bombarding energies between 10 and 1732 keV. We adopted
the differential cross sections measured at 90◦ from their
Tables I and II. We assumed an isotropic angular distribution
at low energies and multiplied their differential cross section
by 4π to find the total reaction cross section. Our adopted
S-factors are given in Table IX. Conner et al. [6] state that the
“statistical probable error of the values from each target was
about 1 percent except for the points at 10.3 and 15.4 keV.”
We disregarded these lowest energy data points because no
other information is provided regarding their cross-section
uncertainty. For the systematic S-factor uncertainty, based on
the effects of the finite solid angle, number of target atoms,
and number of incident beam particles, they quote a combined

uncertainty of 1.8%. The uncertainty in the center-of-mass
energy is not directly stated by Conner et al. [6] but can be
estimated based on the number of significant figures shown
in their Tables I and II. We estimate an energy uncertainty of
±60 eV at 12.4 keV and ±600 eV at 214 keV center-of-mass
energy.

6. Other data

The following data sets were excluded from our analysis.
The data of Bretscher and French [50] are much smaller
in magnitude compared to other data, and do not show the
maximum of the resonance. The S-factor data of Jarvis and
Roaf [51] display an energy dependence that contradicts all
other measurements; see, for example, Fig. 2 in Refs. [15].
The 2H(t, n) 4He measurement of Argo et al. [7] employed
relatively thick (1.5 mg/cm2) aluminum entrance foils for
their deuterium gas target. For example, tritons of 183 keV
laboratory energy, after passing the entrance foil, would have
lost an energy of 568 keV in the foil, giving rise to a beam
straggling of ≈31 keV. Consequently, the uncertainties of the
effective beam energy will be significant. Argo et al. [7] stated
that the beam energy loss was determined “to within ±5 keV,”
but not enough information was provided regarding the total
uncertainty of the effective beam energy. Also, Argo et al. [7]
stated that their cross-section data “have an estimated over-all
accuracy of ±10%; this ±10 percent arises almost entirely
from the straggling and energy correction uncertainties up to
energies of about 300 keV.” However, insufficient information
is provided to disentangle the contributions of statistical and
systematic effects to the total uncertainty.
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