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Charged-current neutrino-nucleus scattering off Xe isotopes
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Xenon detectors are used in the search for dark matter and neutrinoless double-beta decay (0νββ ). As
the next-generation detectors reach masses in the ton scale, neutrinos from astrophysical sources are soon
predicted to become background in such detectors. Theoretical predictions of neutrino scattering cross sections
and information of nuclear structure effects therein are crucial in accounting for the background. We perform
calculations for differential and total cross sections of charged-current neutrino scattering off the most abundant
xenon isotopes. The nuclear-structure calculations are made in the proton-neutron quasiparticle random-phase
approximation and the microscopic quasiparticle phonon model for even-mass and odd-mass nuclei, respectively.
We compute total cross sections as a function of the neutrino energy, and also give estimates of total averaged
cross sections for 8B solar neutrinos and supernova neutrinos using realistic energy distributions.
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I. INTRODUCTION

Neutrinos provide a fruitful research area for modern
physics. The observation of neutrino oscillations has offered a
hint of beyond-standard-model physics, and the experimental
efforts going into detecting weakly interacting particles are
stronger than ever. The opportunities to study the behavior
of neutrinos are plentiful, as the Earth is constantly bom-
barded with neutrinos from astrophysical sources. The Sun,
for example, provides a good source of a sizable flux of
electron neutrinos. On a rarer occasion, a supernova going
off in our galactic neighborhood would result in a huge burst
of neutrinos and antineutrinos of all flavors. It has been sug-
gested that observation of the neutrino signal of a supernova
burst could be used to solve the neutrino mass hierarchy
problem [1,2].

136Xe is known to decay via two-neutrino double-beta
decay (2νββ ) [3] and is actively searched for a signal of
the elusive neutrinoless double-beta decay (0νββ) [4]. The
EXO-200 detector consists roughly of 80% 136Xe, and close
to 20% 134Xe [3,4]. The proposed ton scale successor nEXO
[5], enriched to 90% in 136Xe, presents opportunities also for
neutrino physics. Although detecting double-beta decay is its
main purpose, it should in addition be able to detect neutrinos
of astrophysical origin. Such neutrinos are also expected to be
observed as a background in the next-generation dark matter
detectors [6,7]. Liquid xenon is used in many dark matter
detectors due to its easy scalability, making it possible to
expand to larger and larger detector masses. Although the
main observed background will be from neutrinos scattering
coherently off Xe nuclei, the study of charged-current re-
actions should also be useful. Our results may therefore be
of interest to the XENON [8], LZ [9], and DARWIN [10]
collaborations.

Earlier calculations of charged-current neutrino-nucleus
scattering cross sections have been carried out for various
nuclei in the nuclear shell model [11–16], proton-neutron
quasiparticle random-phase approximation (pnQRPA) with
realistic effective interactions [17–21], pnQRPA based on
Skyrme forces [12,22–24], pnQRPA with neutron-proton pair-
ing [25–27], a consistent relativistic mean-field approach [28],
a hybrid model combining shell model for the allowed transi-
tions and pnQRPA for forbidden transitions [29–31], and the
microscopic quasiparticle-phonon model (MQPM) [21,32]. In
the present work we compute cross sections of neutrinos and
antineutrinos scattering off 128Xe, 129Xe, 130Xe, 131Xe, 132Xe,
134Xe, and 136Xe via charged-current processes in the mi-
croscopic nuclear frameworks of pnQRPA for the even-mass
nuclei and MQPM for the odd-mass nuclei. The calculations
are performed using realistic effective interactions.

This paper is an extension of Ref. [20], where the neutral-
current and charged-current scattering off 136Xe was stud-
ied, and of Ref. [33] where we computed cross sections
for neutral-current scattering off the same Xe targets as in
the present work. Charged-current scattering of neutrinos off
132Xe was also previously calculated in a similar formalism in
Ref. [19]. Similar calculations for Cd and Mo nuclei have been
carried out in Refs. [21] and [17], respectively. In this work
we perform calculations of cross sections as a function of
the incoming neutrino energy, and also give estimates of total
averaged cross sections for energy distributions representing
supernova neutrinos as well as neutrinos from solar 8B decay.

This paper is organized as follows. In Sec. II we outline the
formalism used to compute charged-current neutrino-nucleus
scattering. In Sec. III we discuss the essentials of the pnQRPA
and MQPM calculations for the involved nuclei. In Sec. IV
we discuss details of the obtained cross sections and in Sec. V
conclusions are drawn.
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II. CHARGED-CURRENT NEUTRINO-NUCLEUS
SCATTERING

In this section we outline the ingredients entering the
charged-current neutrino-nucleus scattering cross section. Our
focus is on processes of the form

νl + (A, Z ) → l− + (A, Z + 1), (1)

ν̄l + (A, Z ) → l+ + (A, Z − 1), (2)

where the lepton flavor is labeled by l = e, μ, τ . We label the
four-momenta of the incoming and outgoing leptons as kμ and
k′
μ. The momentum transfer to the nucleus is qμ = k′

μ − kμ =
pμ − p′

μ, where pμ and p′
μ are the momenta of the nucleus

in its initial and final state. The energies of the incoming and
outgoing lepton are Ek and Ek′

The charged-current neutrino-nucleus scattering differen-
tial cross section to a final state of energy Eexc with respect to
the initial nuclear state can be written as [17,34]

d2σ

d�dEexc
= G2

F cos2 θC|k′|Ek′

π (2Ji + 1)
F (±Z f , Ek′ )

×
(∑

J�0

σ J
CL +

∑
J�1

σ J
T

)
, (3)

where F (±Z, Ek′ ) is a Fermi function and θC the Cabibbo
angle. Adopting the modified effective-momentum approxi-
mation of Ref. [35] we define an effective momentum as

keff =
√

E2
eff − m2

l , (4)

where ml is the mass of the outgoing lepton, and its effective
energy is

Eeff = Ek′ − VC(0). (5)

Here VC(0) is the Coulomb potential produced by the final-
state nucleus at the origin. The Fermi function in Eq. (3) is
used only for small effective momenta keff R � 1, where R
is the nuclear radius. For higher effective momenta we set
F (±Z f , Ek′ ) = 1 in Eq. (3), and replace the absolute values
of the three-momentum and energy of the outgoing lepton by
the effective values of Eqs. (4) and (5).

Expression (3) is comprised of the Coulomb-longitudinal
(σ J

CL) and transverse (σ J
T ) parts. For charged-current reactions

they are defined as

σ J
CL = (1 + a cos θ )|〈Jf ||MJ (q)||Ji〉|2

+ (1 + a cos θ − 2b sin2 θ )|〈Jf ||LJ (q)||Ji〉|2

+ Ek − Ek′

q
(1 + a cos θ + c)

× 2Re{〈Jf ||MJ (q)||Ji〉∗〈Jf ||LJ (q)||Ji〉}, (6)

and

σ J
T = (1 − a cos θ + b sin2 θ )

× [|〈Jf ||T mag
J (q)||Ji〉|2+|〈Jf ||T el

J (q)||Ji〉|2
]

∓ Ek + Ek′

q
(1 − a cos θ − c)

× 2Re
{〈Jf |

∣∣T mag
J (q)

∣∣|Ji〉〈Jf |
∣∣T el

J (q)
∣∣|Ji〉∗

}
, (7)

where the minus sign is taken for neutrino scattering and
the plus sign for antineutrino scattering. Ji and Jf are the
initial- and final-state angular momenta of the nucleus and q
is the magnitude of the three-momentum transfer. We use the
abbreviations

a =
√

1 − (ml/Ek′ )2, (8)

b = a2EkEk′

q2
, (9)

and

c = m2
l

qEk′
. (10)

The formalism and various different operators involved are
discussed in detail in Refs. [17,34,36,37].

For the computation of averaged total cross sections, we
take the supernova neutrino spectrum to be of a two-parameter
Fermi-Dirac character

fFD(Ek ) = 1

F2(αν )Tν

(Ek/Tν )2

1 + eEk/Tν−αν
, (11)

where αν is the so-called pinching parameter, and Tν the neu-
trino temperature. The normalization factor F2(αν ) is defined
by the formula

Fk (αν ) =
∫

xkdx

1 + ex−αν
, (12)

and the temperature and mean energy of neutrinos are related
by

〈Eν〉
Tν

= F3(αν )

F2(αν )
. (13)

Only electron neutrinos partake in charged-current scatter-
ing at typical supernova neutrino energies due to the high
rest mass of the muon and τ leptons. However, the super-
nova environment is suitable for neutrino flavor conversions
[38]. The energy distribution of electron neutrinos hitting the
earthbound detector can be affected by this neutrino mixing.
It should be noted that the behavior of neutrinos inside dense
stellar matter is not yet very well understood. In some earlier
works the neutrino mixing has been modeled based on the
assumption that muon and τ neutrinos have similar charac-
teristics in supernovae, allowing the problem to be reduced
to an effective two-flavor mixing problem [39,40]. One such
model has been presented and used in earlier similar calcu-
lations in Refs. [15,20,21]. Modeling neutrino mixing in this
manner leads to a difference in antineutrino-nucleus scattering
cross sections between normal and inverted neutrino mass
hierarchies, and this result could potentially be used to solve
the neutrino mass hierarchy problem. For the xenon nuclei in
this work, following the model presented in Refs. [15,20,21]
we find that the total cross sections for antineutrino-nucleus
scattering are roughly a factor of two higher for normal
hierarchy than for inverted hierarchy. However, this is a very
simplified model, and the matter should be investigated further
elsewhere using neutrino fluxes from most recent supernova
simulations and flavor conversion studies. We will focus
solely on nonoscillating neutrinos in this work.
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Solar neutrinos from 8B decay are also of interest for
this work. This reaction produces electron neutrinos, which
reach the Earth with a flux of roughly 5 × 106 cm2s−1 [41]
and large enough energies to be involved in charged-current
reactions. The solar neutrino spectrum is better known than
the supernova neutrino spectrum. In our calculations we use
the 8B neutrino energy profile from Ref. [42].

III. NUCLEAR STRUCTURE OF THE TARGET NUCLEI

In this section we briefly describe the formalism used to
compute the nuclear structure of the involved nuclei. We have
performed computations in the proton-neutron quasiparticle
random-phase approximation (pnQRPA), and microscopic
quasiparticle-phonon model (MQPM). The charge conserv-
ing QRPA results needed for the MQPM calculations were
described in Ref. [33], where we computed neutral-current
neutrino-nucleus scattering off the same Xe isotopes as in the
present work.

A. pnQRPA calculations

We computed the nuclear structure of the odd-odd isotopes
in the charge-changing pnQRPA framework. In the calcula-
tions an even-even Xe nucleus is taken as a reference nucleus,
from which the states of the neighboring odd-odd Cs and I
nuclei are obtained as simple phonon excitations. The basic
excitations with respect to the pnQRPA vacuum are created
with the phonon creation operator

Q†
ω =

∑
pn

(
X ω

pn[a†
pa†

n]JωMω
+ Y ω

pn[ãpãn]JωMω

)
(14)

for an excited state ω = (Jω, Mω, πω, kω ), where kω is a
number labeling the excited states of given Jπ . X ω

ab, and Y ω
ab

are amplitudes obtained by solving the eigenvalue problem of
the pnQRPA equations[

A B

−B∗ −A∗

][
Xω

Yω

]
= Eω

[
Xω

Yω

]
, (15)

where the matrices A and B are defined in detail in Ref. [43].
We perform the pnQRPA calculations using the same large

model space as in Ref. [33]. The valence space consists of the
entire 0s-0d , 1p-0 f -0g, 2s-1d-0h, and 1 f -2p major shells, and
we also add the 0i13/2 and 0i11/2 orbitals. The single-particle
bases are constructed by solving the Schrödinger equation for
a Coulomb-corrected Woods-Saxon potential. The Bonn A
one-boson exchange potential [46] was used to estimate the
residual two-body interaction. The Woods-Saxon parameters
used are those of Ref. [44], which have been fitted to work
quite well for nuclei close to the line of stability. Using
this parametrization, the computed quasiparticle energies with
respect to the BCS vacuum for the orbitals near the Fermi
level are also in reasonable agreement with experimental
energy levels of the odd-mass neighbors of the reference nu-
cleus. However, the agreement gets slightly worse for xenon
isotopes with increasing mass number, and for 136Xe we
were forced to adjust the single-particle levels to maintain
reliability in our calculations. We adopt the set of adjusted
single-particle energies from Ref. [20]. For these the RMS

deviation from the Woods-Saxon single-particle energies is
1.04 MeV. Single-particle energies have also been produced
by using self-consistent mean-field approaches, like the one
of Ref. [45] using several different parametrizations of the
Skyrme interactions. In Ref. [45] single-particle energies were
computed near the Fermi surface of nuclei of various masses
and the results were compared with data. The mean deviation
from the experimental values was found to be 2.11–3.66 MeV,
which is much more than the necessary adjustments for the
A = 136 case in the present work. Overall, with our presently
used single-particle energies we reproduce reasonably well
the low-energy spectra of the neutron-odd and proton-odd
nuclei next to the even Xe isotopes discussed in this work.

Several model parameters in the quasiparticle framework
need to be fixed by fitting computed observables to experi-
mental values. In the BCS calculation we fit the proton and
neutron pairing strengths Ap

pair and An
pair so that the lowest

quasiparticle energy matches the empirical pairing gap given
by the three-point formula [47]:

�p(A, Z ) = 1
4 (−1)Z+1[Sp(A + 1, Z + 1)

− 2Sp(A, Z ) + Sp(A − 1, Z − 1)], (16)

�n(A, Z ) = 1
4 (−1)A−Z+1[Sn(A + 1, Z )

− 2Sn(A, Z ) + Sn(A − 1, Z )]. (17)

It should be noted that for the neutron-magic 136Xe this
procedure cannot be applied to the neutron pairing strength.
We have instead used a bare value of An

pair = 1.0 for 136Xe,
i.e., the orbitals below the neutron Fermi surface have BCS
occupation amplitudes u = 0, v = 1, and those above the
Fermi surface have u = 1, v = 0.

Neutrino-nucleus scattering calculations suffer from the
ambiguity of the weak axial-vector coupling constant gA.
While the free-nucleon value of gA is approximately 1.27,
sizable quenching of gA has been observed in pnQRPA cal-
culations of single- and double-beta decays, see Ref. [48] for
a review. In the mass range of A = 100–134 an average value
as low as gA ≈ 0.60 was observed in Ref. [49] by studying
single-beta decays. The studies of quenching of gA usually ex-
amine ground-state-to-ground-state transitions. However, the
transitions in neutrino-nucleus scattering often involve high-
lying states and the quenching of gA could well be different in
the transitions to these states. The quenching of gA can also be
different for different multipole transitions [48]. Thus we use
the value gA = 1.00 as a conservative estimate, but we also
show results for gA = 0.7 to give a realistic interval of the
effect of this quenching in total neutrino-nucleus scattering

TABLE I. The values of the pinching parameter α, average neu-
trino energy 〈Ek〉, and neutrino temperature entering the Fermi-Dirac
distribution. Parameter values are given for electron neutrinos and
antineutrinos νe, ν̄e.

Flavor αν 〈Ek〉 (MeV) Tν (MeV)

νe 3.0 11.5 2.88
ν̄e 3.0 13.6 3.41
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TABLE II. Total charged-current scattering cross section for electron neutrinos scattering off xenon targets as a function of neutrino energy.
The cross sections are given in units of cm2. We show results with gA = 1.0, and also for gA = 0.7 in parentheses.

Eν σνe (cm2)

(MeV) 128Xe 129Xe 130Xe 131Xe 132Xe 134Xe 136Xe

5 3.16 × 10−45 5.48 × 10−43 3.90 × 10−44 2.05 × 10−42 2.15 × 10−43 8.08 × 10−43 2.73 × 10−42

(1.56 × 10−45) (2.73 × 10−43) (1.92 × 10−44) (1.04 × 10−42) (1.14 × 10−43) (4.74 × 10−43) (1.54 × 10−42)
10 3.10 × 10−42 5.54 × 10−41 5.39 × 10−42 7.86 × 10−41 8.90 × 10−42 1.43 × 10−41 2.81 × 10−41

(1.76 × 10−42) (3.21 × 10−41) (3.17 × 10−42) (4.69 × 10−41) (5.33 × 10−42) (8.66 × 10−42) (1.58 × 10−41)
15 2.75 × 10−41 2.84 × 10−40 3.79 × 10−41 3.42 × 10−40 5.05 × 10−41 6.51 × 10−41 1.21 × 10−40

(1.66 × 10−41) (1.74 × 10−40 ) (2.26 × 10−41) (2.12 × 10−40 ) (3.01 × 10−41) (3.89 × 10−41) (6.73 × 10−41)
20 1.15 × 10−40 7.09 × 10−40 1.48 × 10−40 7.88 × 10−40 1.91 × 10−40 2.42 × 10−40 4.28 × 10−40

(7.42 × 10−41) (4.42 × 10−40 ) (9.32 × 10−41) (4.94 × 10−40 ) (1.18 × 10−40 ) (1.47 × 10−40 ) (2.42 × 10−40 )
30 8.72 × 10−40 1.70 × 10−39 1.02 × 10−39 1.74 × 10−39 1.19 × 10−39 1.36 × 10−39 1.68 × 10−39

(5.46 × 10−40) (1.09 × 10−39) (6.36 × 10−40 ) (1.12 × 10−39) (7.35 × 10−40 ) (8.40 × 10−40 ) (1.02 × 10−39)
40 2.13 × 10−39 2.94 × 10−39 2.40 × 10−39 2.97 × 10−39 2.68 × 10−39 2.98 × 10−39 3.37 × 10−39

(1.34 × 10−39) (1.89 × 10−39) (1.52 × 10−39) (1.92 × 10−39) (1.69 × 10−39) (1.88 × 10−39) (2.12 × 10−39)
50 3.74 × 10−39 4.34 × 10−39 4.14 × 10−39 4.35 × 10−39 4.56 × 10−39 5.00 × 10−39 5.52 × 10−39

(2.40 × 10−39) (2.83 × 10−39) (2.67 × 10−39) (2.84 × 10−39) (2.93 × 10−39) (3.22 × 10−39) (3.56 × 10−39)
60 5.68 × 10−39 5.79 × 10−39 6.22 × 10−39 5.79 × 10−39 6.78 × 10−39 7.37 × 10−39 8.05 × 10−39

(3.70 × 10−39) (3.82 × 10−39) (4.06 × 10−39) (3.82 × 10−39) (4.42 × 10−39) (4.81 × 10−39) (5.25 × 10−39)
70 7.91 × 10−39 7.18 × 10−39 8.56 × 10−39 7.18 × 10−39 9.23 × 10−39 9.94 × 10−39 1.08 × 10−38

(5.20 × 10−39) (4.79 × 10−39) (5.63 × 10−39) (4.79 × 10−39) (6.07 × 10−39) (6.54 × 10−39) (7.10 × 10−39)
80 1.04 × 10−38 8.45 × 10−39 1.11 × 10−38 8.49 × 10−39 1.19 × 10−38 1.27 × 10−38 1.37 × 10−38

(6.87 × 10−39) (5.68 × 10−39) (7.39 × 10−39) (5.71 × 10−39) (7.91 × 10−38) (8.46 × 10−39) (9.11 × 10−39)

cross sections. This value is justified by the single-beta-decay
studies of Refs. [49,50] that show gA ≈ 0.7 to be a realistic
choice for nuclei in the mass range A = 128–134.

The particle-particle and particle-hole parts of the matrices
A and B in Eq. (15) for the 1+ states are scaled by strength

parameters gpp and gph, respectively. The log f t value of
the Gamow-Teller β decay from the first 1+ state is heavily
dependent on gpp, while the energy of the Gamow-Teller giant
resonance (GTGR) is determined by the value of gph [43].
To fix the value of gph we fit the energy of the centroid

TABLE III. Same as Table II but for antineutrinos.

Eν̄ σν̄e (cm2)

(MeV) 128Xe 129Xe 130Xe 131Xe 132Xe 134Xe 136Xe

5 1.38 × 10−48 2.47 × 10−45 4.40 × 10−50 1.76 × 10−44 9.12 × 10−51 0.0 0.0
(6.61 × 10−49) (1.30 × 10−45) (2.09 × 10−50 ) (8.60 × 10−45) (4.53 × 10−51) (0.0) (0.0)

10 1.60 × 10−44 1.78 × 10−43 8.55 × 10−45 1.63 × 10−43 6.38 × 10−45 4.88 × 10−45 9.51 × 10−46

(1.03 × 10−44) (9.85 × 10−44) (5.75 × 10−45) (8.31 × 10−44) (4.39 × 10−45) (3.41 × 10−45) (5.84 × 10−46)
15 3.05 × 10−43 1.15 × 10−42 2.24 × 10−43 8.22 × 10−43 1.73 × 10−43 1.27 × 10−43 4.93 × 10−44

(1.98 × 10−43) (6.59 × 10−43) (1.48 × 10−43) (4.46 × 10−43) (1.16 × 10−43) (8.60 × 10−44) (3.46 × 10−44)
20 1.30 × 10−42 3.74 × 10−42 1.03 × 10−42 2.70 × 10−42 8.38 × 10−43 6.44 × 10−43 3.66 × 10−43

(8.22 × 10−43) (2.13 × 10−42) (6.53 × 10−43) (1.47 × 10−42) (5.30 × 10−43) (4.07 × 10−43) (2.25 × 10−43)
30 7.81 × 10−42 1.69 × 10−41 6.62 × 10−42 1.29 × 10−41 5.68 × 10−42 4.75 × 10−42 3.53 × 10−42

(4.73 × 10−42) (9.51 × 10−42 ) (3.98 × 10−42) (7.05 × 10−42) (3.39 × 10−42) (2.79 × 10−42) (2.00 × 10−42)
40 2.40 × 10−41 4.50 × 10−41 2.11 × 10−41 3.58 × 10−41 1.87 × 10−41 1.63 × 10−41 1.35 × 10−41

(1.43 × 10−41) (2.52 × 10−41) (1.24 × 10−41) (1.96 × 10−41) (1.09 × 10−41) (9.35 × 10−42 ) (7.57 × 10−42)
50 5.63 × 10−41 9.68 × 10−41 5.03 × 10−41 7.82 × 10−41 4.54 × 10−41 4.06 × 10−41 3.55 × 10−41

(3.31 × 10−41) (5.40 × 10−41) (2.92 × 10−41) (4.27 × 10−41) (2.61 × 10−41) (2.30 × 10−41) (1.97 × 10−41)
60 1.22 × 10−40 1.97 × 10−40 1.10 × 10−40 1.61 × 10−40 1.01 × 10−40 9.12 × 10−41 8.18 × 10−41

(7.20 × 10−41) (1.11 × 10−40 ) (6.43 × 10−41) (8.87 × 10−41) (5.80 × 10−41) (5.18 × 10−41) (4.55 × 10−41)
70 2.34 × 10−40 3.53 × 10−40 2.14 × 10−40 2.94 × 10−40 1.97 × 10−40 1.81 × 10−40 1.68 × 10−40

(1.37 × 10−40 ) (1.99 × 10−40 ) (1.24 × 10−40 ) (1.63 × 10−40 ) (1.13 × 10−40 ) (1.02 × 10−40) (9.30 × 10−41)
80 4.02 × 10−40 5.55 × 10−40 3.72 × 10−40 4.69 × 10−40 3.47 × 10−40 3.22 × 10−40 3.03 × 10−40

(2.36 × 10−40 ) (3.17 × 10−40) (2.16 × 10−40 ) (2.62 × 10−40 ) (1.99 × 10−40 ) (1.82 × 10−40) (1.69 × 10−40 )
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FIG. 1. Contributions of different multipole channels to the total folded cross section for supernova electron neutrinos scattering off a
representative sample of Xe targets. Cross sections are given in units of 10−41 cm2 in all panels. Results are shown for 128Xe (top left), 129Xe
(top right), 134Xe (bottom left), and 131Xe (bottom right). The calculations were made using gA = 1.0.

of the GTGR to an empirical value following the procedure
described in detail in Ref. [43]. For 136Xe we have used
the experimental GTGR location of EGTGR(136Xe) ≈ 15 MeV
given in Ref. [51].

In the analysis of Refs. [52,53] an average value of
gpp = 0.63 ± 0.17 was obtained for a range of medium-heavy

TABLE IV. Total folded cross section in units of cm2 for super-
nova neutrinos and antineutrinos scattering off xenon targets. The
results are shown for neutrinos in columns 2 and 3 for gA = 1.0 and
gA = 0.7, respectively, and similarly for antineutrinos in columns 4
and 5.

Target σνe (cm2) σν̄e (cm2)

gA = 1.0 gA = 0.7 gA = 1.0 gA = 0.7

128Xe 3.56 × 10−41 2.23 × 10−41 7.72 × 10−43 4.77 × 10−43

129Xe 1.95 × 10−40 1.20 × 10−40 2.00 × 10−42 1.13 × 10−42

130Xe 4.52 × 10−41 2.79 × 10−41 6.31 × 10−43 3.89 × 10−43

131Xe 2.29 × 10−40 1.42 × 10−40 1.50 × 10−42 8.16 × 10−43

132Xe 5.71 × 10−41 3.49 × 10−41 5.29 × 10−43 3.24 × 10−43

134Xe 7.12 × 10−41 4.33 × 10−41 4.29 × 10−43 2.60 × 10−43

136Xe 1.16 × 10−40 6.67 × 10−41 2.89 × 10−43 1.69 × 10−43

nuclei. In Ref. [49] values of 0.6 � gpp � 0.8 were deemed
suitable for mass A = 100–134 isotopes by examining β-
decay properties. In this work we choose to use the value
of gpp = 0.60, which reproduces very well the known log f t
value of the β− decay of 128I in our pnQRPA calculation.
It should be noted, however, that the average cross sections
computed in this work are not very sensitive to the value
of gpp.

Most of the transition strength in the case of the Fermi
operator is carried by a transition from a 0+ ground state of an
even-even nucleus to the 0+ isobaric analog state (IAS). In the
pnQRPA the IAS is always predicted too low in energy [54].
If left uncorrected, this leads to overestimations in neutrino-
scattering cross sections. Therefore we have set the energy
of the IAS in the final-state Cs nuclei by hand to match the
empirical value given by Ref. [55]. The empirical energy for
the IAS was set only for the calculation of cross sections.
For 136Cs we use the experimental value of EIAS(136Cs) =
13.38 MeV, taken from Ref. [51]. For 136Cs the empirical
formula of Ref. [55] gives an energy of 12.89 MeV, giving
an estimate of its accuracy. The total averaged cross section is
not very sensitive to the energy of the IAS if EIAS � 10 MeV.
After the corrections this inequality holds for all the examined
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FIG. 2. Same as Fig. 1 but for supernova electron antineutrinos.

cases but 128Xe, where the IAS is predicted to be at EIAS =
9.30 MeV.

B. MQPM calculations

Nuclear structure calculations for odd-mass nuclei were
performed by using the MQPM formalism, in which we
account for three-quasiparticle configurations by coupling a
single quasiparticle with a two-quasiparticle QRPA phonon.
Details of the QRPA calculations used in this work are given
in Ref. [33]. The MQPM basic excitation can be written
as [56]

�
†
k ( jm) =

∑
n

Ck
n a†

n jm +
∑
a,ω

Dk
aω[a†

aQ†
ω] jm, (18)

where Q†
ω is the phonon creation operator of the charge

conserving QRPA. The amplitudes C and D are computed
by solving the MQPM equations of motion. The detailed
description of the process can be found in Ref. [56]. All
QRPA phonons of J � 6 and an energy less than 10 MeV
are selected to be used in the MQPM calculation. We base
our computations of initial and final nuclear scattering
states on the same reference nucleus. For example, in the

129Xe + ν → 129Cs + e− reaction the reference nucleus is
128Xe for both 129Xe and 129Cs.

The first excited 0+ state [18,21] and the first 1− state [43]
in the QRPA calculations are known to be spurious. These
states have therefore been omitted in the MQPM calculations
of this work.

IV. NEUTRINO SCATTERING RESULTS

We have computed total cross sections for charged-current
neutrino-nucleus scattering as a function of the neutrino en-
ergy, and also averaged total cross sections for solar 8B neutri-
nos and supernova neutrinos scattering off the most abundant
xenon isotopes. For the average supernova neutrino energies
〈Ek〉 and pinching parameters α we follow the choices of
Ref. [20] presented in Table I for electron neutrinos and
antineutrinos. These parameters are used in the Fermi-Dirac
distribution of supernova (anti)neutrinos throughout the paper.

We will first examine the cross sections as a function
of the neutrino energy, independent of any specific energy
distribution. The calculated cross sections of the charged-
current processes for neutrinos are presented in Table II and
for antineutrinos in Table III. We show results for gA = 1.0
and gA = 0.7, as discussed in Sec. III A. The cross sections
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FIG. 3. Main contributions to the total averaged cross section arising from different final states of the reaction daughter Cs nuclei in the
reactions AXe + νSN

e → ACs + e−. Results are shown for A = 128 (top left), A = 129 (top right), A = 134 (bottom left), and A = 131 (bottom
right). The calculations were made using gA = 1.0.

increase rapidly with increasing neutrino energy. We also no-
tice an increasing (decreasing) trend in the cross sections for
neutrinos (antineutrinos) with increasing mass number of the
Xe isotopes. This is in part a manifestation of the Q value of
the neutrino (antineutrino) scattering process decreasing (in-
creasing) when moving towards the heaviest stable xenon iso-
tope 136Xe. Moreover, the Gamow-Teller transition strength
in the pnQRPA fulfils the Ikeda sum rule, which states
that S−(1+) − S+(1+) = 3(N − Z ), where S± is the sum
of the β± type, i.e., (p → n) or (n → p) type transition
strength to each possible final state [43]. A similar sum rule
holds for the Fermi transitions as S−(0+) − S+(0+) = N − Z .
As the transition strength to the β+ direction is very small
for the Xe nuclei, it is expected that the important 1+ and
0+ strengths in the neutrino-scattering reactions of Eq. (1)
scale roughly as N − Z for low momentum transfer, which
provides another source for the increase in the cross sections
as N increases for the Xe isotopes. The 1+ and 0+ strengths
in antineutrino-scattering are instead relatively larger for
the lighter Xe isotopes, which contributes to the decreasing

behavior with increasing N . These two effects seem to be
the dominant drivers of the isotopic dependence of the cross
sections.

For the odd-mass isotopes the cross sections are larger
than those for even-mass isotopes for neutrino energies under
roughly 30 MeV but the situation is reversed for higher ener-
gies. This favorable enhancement in the low-neutrino-energy
region is likely to be due to a combination of the low Q value
of the transition and the denser low-lying energy spectra of
the odd-mass nuclei. As the ground-state angular momentum
of the odd-mass nuclei is nonzero, there is also more freedom
of angular-momentum coupling to these numerous low-lying
final states. For antineutrinos the cross sections for odd-mass
nuclei are larger than cross sections for even nuclei across
the entire energy range. Cross sections of monoenergetic
neutrinos and antineutrinos can be read off the tables directly,
but for a distribution of neutrino energies a folding procedure
must be followed.

We can compare our results for the A = 136 case with
those of Ref. [20], where gA = 1.0 was used. The calculations

014320-7



P. PIRINEN, J. SUHONEN, AND E. YDREFORS PHYSICAL REVIEW C 99, 014320 (2019)

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0 1−

1−

1+

1+

128Xe(ν̄SN
e , e+)128I

Eex (MeV)

P
ar

ti
al

σ
(1

0−
4
3
cm

2
)

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
3/2−

3/2+

3/2+

3/2+1/2−

129Xe(ν̄SN
e , e+)129I

Eex (MeV)

P
ar

ti
al

σ
(1

0−
4
3
cm

2
)

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
1−

1−

1−

1− 1+

1−

2−

134Xe(ν̄SN
e , e+)134I

Eex (MeV)

P
ar

ti
al

σ
(1

0−
4
3
cm

2
)

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6 5/2+

5/2+
5/2+

131Xe(ν̄SN
e , e+)131I

Eex (MeV)

P
ar

ti
al

σ
(1

0−
4
3
cm

2
)

FIG. 4. Main contributions to the total averaged cross section arising from different final states of the reaction daughter I nuclei in the
reactions AXe + ν̄SN

e → AI + e+. Results are shown for A = 128 (top left), A = 129 (top right), A = 134 (bottom left), and A = 131 (bottom
right). The calculations were made using gA = 1.0.

were essentially the same, but for the antineutrino scattering
process the Q value used in the calculations of Ref. [20]
was roughly an MeV lower than the experimental value of
Q = 6.930 MeV used in this work. Therefore our cross sec-
tions for neutrinos are exactly the same as in Ref. [20], but
for antineutrinos our results are smaller especially for low
neutrino energies.

Cross sections for the A = 132 case have been calculated
in the pnQRPA formalism in Ref. [19]. The cross sections
obtained in Ref. [19] for neutrinos appear to be larger than
the present work for neutrino energies below 40 MeV. For
antineutrinos the cross sections of Ref. [19] are significantly
larger than ours for all energies. In the present work the energy
of the IAS, which is predicted very low by the pnQRPA, has
been corrected to a reasonable empirical value as explained
in Sec. III A. In Ref. [19] no mention of such a procedure
can be found. Similarly we have fixed the parameter gph so
that the energy of the GTGR matches its empirical location.
In Ref. [19] a bare value of gph = 1.00 has been used for the

1+ states, whereas a value of gph = 1.60 was required in the
present work. Therefore the contributions arising from the 0+
IAS and 1+ GTGR may be overestimated in Ref. [19].

TABLE V. Total averaged cross section 〈σ 〉 of charged-current
scattering of solar 8B neutrinos off Xe isotopes. Results are given for
gA = 1.0 and gA = 0.7.

Target 〈σ 〉 (10−42 cm2)

gA = 1.0 gA = 0.7

128Xe 1.22 0.70
129Xe 21.1 12.2
130Xe 2.15 1.26
131Xe 30.9 18.2
132Xe 3.63 2.15
134Xe 5.97 3.60
136Xe 12.1 6.83
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FIG. 5. Contributions of different multipole channels to the total folded cross section for 8B solar neutrinos scattering off a representative
sample of Xe targets. Cross sections are given in units of 10−42 cm2 in all panels. Results are shown for 128Xe (top left), 129Xe (top right), 134Xe
(bottom left), and 131Xe (bottom right). The calculations were made using gA = 1.0.

A. Supernova neutrinos

Using the energy distributions described in Sec. II we
have computed the total averaged cross sections for supernova
(anti)neutrinos scattering off xenon targets. The total cross
sections obtained for supernova neutrinos and antineutrinos
are presented in Table IV. The computations were made using
gA = 1.0 and gA = 0.7. The cross sections for supernova
neutrinos have a rising trend as a function of the mass number
within an isotopic chain of fixed Z due to the behavior of
the transition Q value and the Ikeda sum rule as discussed
earlier. For the odd-mass isotopes the cross sections are sig-
nificantly larger than for their even-mass neighbors as could
be expected for these average neutrino energies in the range
of 10–20 MeV by the analysis of Tables II and III earlier.
In neutral-current processes similar behavior was noted in
Ref. [33]. For antineutrinos the pattern is reversed and the
cross section generally decreases with increasing A as the
behavior of the transition Q value is now the opposite. Similar
enhancement in the antineutrino-nucleus cross section is also
noted for the odd-mass target nuclei.

In Fig. 1 we show the contributions to the total averaged
cross section arising from different multipole channels for

electron neutrinos scattering off a representative sample of
128Xe, 129Xe, 131Xe, and 134Xe. gA = 1.0 was used in the
calculations for this and the rest of the figures in this section.
In all cases the most important contributions come from
the 1+ axial-vector channel. Notable contributions arise also
from the 0+ multipole via vector coupling, and the 2− axial-
vector channel. Figure 2 shows the same for antineutrinos.
For antineutrinos the most important multipole is 1− for the
even-mass isotopes, but 1+ for the odd-mass isotopes. In the
1− multipole there are large contributions from both the vec-
tor and axial-vector channels. Also the interference between
the vector and axial-vector parts gives a noticeable negative
contribution to the antineutrino scattering cross section. The
axial-vector contributions scale as g2

A, so quenching of the
coupling constant could have a significant effect on the results
in Fig. 1. Some change would also be induced to the small
interference part, which has a linear dependence on gA.

It is interesting to see which final states contribute most
to the total cross sections. We show the contributions arising
from different final states of excitation energy Eex with respect
to the Cs nucleus ground state in Fig. 3 in the reactions
Xe + νe → Cs + e−. Very large contributions come from
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FIG. 6. Main contributions to the total averaged cross section arising from different final states of the reaction daughter Cs nuclei in the
reactions AXe + ν

8B
e → ACs + e−. Results are shown for A = 128 (top left), A = 129 (top right), A = 134 (bottom left), and A = 131 (bottom

right). The calculations were made using gA = 1.0.

the Gamow-Teller giant resonance state 1+
GTGR and isobaric

analog state 0+
IAS for the even-mass xenon targets. In the case

of 128Xe the IAS is predicted to be quite low in energy by
the empirical formula, which causes the contribution from the
IAS to be more significant than that for 134Xe. Should the IAS
be 2 MeV higher for 128Xe the effect in the total cross section
would be roughly 5%. For the odd-mass isotopes the main
contributions arise from 1/2+ and 3/2+ states (�J = 0, 1
with respect to the ground state) at roughly 5 MeV.

In Fig. 4 we show the total cross section to different final
states for antineutrinos scattering off Xe nuclei in the reactions
Xe + ν̄SN

e → I + e+. Here the most important contributions
come from 1− states for the even-mass targets. The leading
contribution for antineutrinos scattering off 129Xe is from a
3/2− final state at roughly 7 MeV. Interestingly most of the
cross section for the A = 131 process is carried by the 5/2+

MQPM ground state of the resulting I nucleus. Experimen-
tally, however, the ground state of 131I is 7/2+, but there is a
low-lying 5/2+ state at roughly 150 keV.

B. Solar 8B neutrinos

We have also computed total averaged cross sections for
electron neutrinos from 8B decay in the Sun. The 8B neutrino
profile was taken from Ref. [42]. The spectrum of 8B neu-
trinos peaks at around 7 MeV, and thus the average energy
is somewhat lower compared to the supernova neutrinos. The
tail of the spectrum goes up to 16 MeV, so only few if any
neutrinos can excite the important high-lying IAS and GTGR
states.

The computed total averaged cross sections of the pro-
cess AXe + ν

8B
e → ACs + e− are given in Table V. Results

are shown for gA = 1.0 and gA = 0.7. Due to the average
energy of the neutrinos being lower than that of the supernova
neutrinos, the cross sections are systematically an order of
magnitude smaller for solar neutrinos. The contrast between
even-mass and odd-mass isotopes is even more pronounced in
the case of solar neutrinos. This is due to the fact that in the
odd-mass nuclei final states that give large contributions to the
cross sections are at easily accessible an energy even for solar
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neutrinos. Meanwhile for the even-mass nuclei some of the
states that would have a strong transition are at the very end of
the 8B energy spectrum leading to essentially zero probability
of populating those states.

In Fig. 5 we show the contributions to the total averaged
cross section arising from different multipole channels for the
8B solar neutrino case. We used gA = 1.0 in the calculations
for this and the following figures in this section. Figure 5 is
very similar to Fig. 1 for supernova neutrinos, but here the 1−
and 2− contributions are smaller relative to the 1+ contribu-
tion. Typically for low neutrino energies the 1+ axial-vector
channel dominates the cross section, but for high energies
the neighboring multipoles also start to play a large role. The
axial-vector contributions are of course smaller if substantial
quenching of gA is present.

It is interesting to compare the cross sections to different
final states between solar neutrinos and the more energetic
supernova neutrinos. The contributions from different final
states for 8B neutrino scattering are shown in Fig. 6 for
128Xe, 129Xe, 131Xe, and 134Xe targets. Here we notice that
for the even-mass nuclei the major contributions come from
states at much lower energies than for supernova neutrinos. In
odd-mass nuclei the important bunch of states around 5 MeV
is well accessible for solar neutrinos, and many of the leading
contributions arise from those states for both supernova and
solar neutrinos. States above approximately 10 MeV in the
final nuclei have little to no contribution to the total cross
section for solar neutrinos.

V. CONCLUSIONS

We have computed charged-current neutrino nucleus scat-
tering cross sections for neutrinos scattering off 128Xe, 129Xe,
130Xe, 131Xe, 132Xe, 134Xe, and 136Xe. The wave functions of
the involved nuclear states were obtained in the pnQRPA and
MQPM frameworks. We have given the total cross section as
a function of neutrino (antineutrino) energy in Table II (III),
making it possible to obtain an estimate of total cross section
for a desired neutrino energy distribution within the range
of 5–80 MeV. Here we have used realistic energy profiles
describing supernova (anti)neutrinos and neutrinos from 8B
decay in the Sun.

The cross sections we obtained are considerably larger
for scattering off the odd-mass nuclei 129Xe and 131Xe

compared to the neighboring even-mass nuclei in the solar
and supernova neutrino energy range. One contributing factor
is the lower Q value of the transition between odd-mass
nuclei compared to the even-mass neighbors. Also the denser
low-lying energy spectrum of odd-mass nuclei has an effect
that increases the cross section for the average supernova
neutrino energies. In Ref. [33] we noticed an anomalously
large 0+ multipole contribution in neutral current neutrino-
nucleus scattering off odd-mass Xe isotopes in the MQPM
formalism, which might have explained in part the larger cross
sections of odd-mass nuclei. Here, however, the cross sections
are dominated by the 1+ multipole as they should be and if
spurious 0+ contributions exist, they should be small.

The high-lying 0+ isobaric analog state and especially
the 1+ Gamow-Teller giant resonance are very important to
neutrinos scattering off even-mass nuclei. Solar neutrinos are
too low in energy to cause excitation of these states in Xe
nuclei. The odd-mass Xe nuclei, on the other hand, have many
important final states at lower energies, which are accessible
by solar neutrinos. Therefore, the cross sections are an order
of magnitude larger for odd-mass targets rather than even-
mass targets. Most of the solar neutrino scattering events
observed in a natural xenon detector would thus be from
interactions with 129Xe and 131Xe.

Due to the difference in average neutrino energy, the com-
puted total averaged cross sections are an order of magnitude
smaller for solar 8B neutrinos than for supernova neutrinos.
However, the solar neutrinos have a constant flux, which helps
to build up events in a long-term experiment. Given that a
supernova would happen close enough, the neutrino burst
would be very intense but quite short in any case.

As a final note, we would like to return to the problem
of neutrino mixing in the dense supernova environment. The
effects caused by this mixing might be helpful in determining
the neutrino mass hierarchy. A detailed study of neutrino-
mixing effects using recently obtained fluxes from state-of-
the-art supernova simulations would be an interesting contin-
uation of the present study.
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