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Beyond Wigner’s isobaric multiplet mass equation: Effect of charge-symmetry-breaking
interaction and Coulomb polarization
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The quadratic form of the isobaric multiplet mass equation (IMME), which was originally suggested by
Wigner and has been generally regarded as valid, is seriously questioned by recent high-precision nuclear mass
measurements. The usual resolution to this problem is to add empirically the cubic and quartic Tz terms to
characterize the deviations from the IMME, but finding the origin of these terms remains an unsolved difficulty.
Based on a strategy beyond Wigner’s first-order perturbation, we derive explicitly the cubic and quartic Tz terms.
These terms are shown to be generated by the effective charge-symmetry-breaking and charge-independence-
breaking interactions in the nuclear medium combined with the Coulomb polarization effect. Calculations for
the sd and lower fp shells explore a systematic emergence of the cubic Tz term, suggesting a general deviation
from the original IMME. Intriguingly, the magnitude of the deviation exhibits an oscillation-like behavior with
mass number, modulated by the shell effect.
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I. INTRODUCTION

Shortly after the discovery of the neutron, Heisenberg
introduced isospin to describe different charge states of the
nucleon [1]. In this concept, the proton (p) and neutron (n)
are treated as an isospin T = 1/2 doublet distinguished by
different projections Tz(p) = −1/2 and Tz(n) = +1/2. As
one of the most important predictions in nuclear physics, the
isobaric multiplet mass equation (IMME) proposed later by
Wigner [2,3] suggests that the mass excesses ME(A, T , Tz) of
the nuclei belonging to an isospin multiplet of mass number
A and total isospin T follow a simple quadratic equation,

ME(A, T , Tz) = a + bTz + cT 2
z , (1)

where Tz = (N − Z)/2 is the isospin projection, and the
parameters a, b, and c are constants for a given multiplet. The
elegant IMME, though derived by using the first-order pertur-
bation approximation, has been widely employed to predict
the unknown masses of unstable neutron-deficient nuclei.

Since its establishment, the IMME is believed to be gen-
erally valid [4]. With recent advances in radioactive beam
facilities, a wealth of exotic masses with increasing preci-
sion became available [5]. Unexpectedly large discrepancies
between the measured masses and the ones given by the
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quadratic form of the IMME were observed [6–8]. This calls
for an addition of a cubic term dT 3

z or even a quartic term
eT 4

z to Eq. (1) [9–11]. The origin of these higher-order terms,
which clearly lies beyond the original IMME of Eq. (1),
requires explanation.

Various mechanisms have been proposed to explain the
deviations found in individual cases, including the isospin
mixing, the high-order Coulomb effect, and the charge-
dependent nucleon-nucleon interaction [12–15]. However, to
date there is no consensus as to the origin of the observed
large dT 3

z terms. In current shell-model calculations, isospin-
nonconversing (INC) interactions are determined through fit-
ting to available experimental data [16–20], which are, how-
ever, insufficient to explain the experimental dT 3

z terms.
In a recent work [21], we have laid out a theoret-

ical framework which considers the contributions of the
charge-symmetry-breaking (CSB) and charge-independence-
breaking (CIB) components in the nuclear medium to the
effective nucleon-nucleon force. We have found that such
effective INC interactions are density dependent, and thus can
no longer be expressed as irreducible tensors as was done by
Wigner [2,3]. This leads us to propose a generalized IMME
(GIMME) [21] to study the Nolen-Schiffer anomaly, which is
expressed as [21]

ME(A, T , Tz) = a + (
bc + �nH + 2a

(CSB)
sym,1 (A, Tz)

)
Tz

+
(

cc + 4

A
a

(CIB)
sym,2(A, Tz)

)
T 2

z , (2)
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where �nH = 0.782 MeV is the neutron-hydrogen mass dif-
ference. In Eq. (2), the two anticipated isospin-symmetry
breaking sources, the Coulomb and the nuclear interactions,
are clearly separated. The Tz-independent bc and cc coef-
ficients are produced solely by the Coulomb interaction,
whereas the first (second)-order symmetry energy a

(CSB)
sym,1

(a(CIB)
sym,2) originates from the CSB (CIB) interaction in the

nuclear medium [21].
In this paper we apply the GIMME [21] to explore the

physics beyond the first-order perturbation in the IMME. We
show that the appearance of the high-order Tz terms is a more
general phenomenon, and that the degree of the deviation to
Eq. (1), measured by the coefficient of the T 3

z term, is totally
governed by shell effects with a remarkable A dependence.

II. T = 3/2 ISOBARIC QUARTETS

Within the first-order perturbation calculation, |αT Tz〉
is assumed to be an eigenstate of the charge-independent
Hamiltonian H0, with α for all additional quantum num-
bers to label this state. The energy produced by the CSB
and CIB interactions is given by 〈αT Tz|HCSB+CIB|αT Tz〉 =
2a

(CSB)
sym,1(A, Tz)Tz + 4

A
a

(CIB)
sym,2 (A, Tz)T 2

z in the absence of the

Coulomb force [21]. In this case, the a
(CSB)
sym,1 (A, Tz) [and

also a
(CIB)
sym,2(A, Tz)] is identical for all members of an iso-

baric multiplet, as seen in the Appendix. Thus, the GIMME
is reduced to the quadratic form of the IMME. However,
if we go beyond the first-order perturbation to calculate
〈αTz|HCSB+CIB|αTz〉 with inclusion of the Coulomb polariza-
tion effect, a(CSB)

sym,1 (A, Tz) [and also a
(CIB)
sym,2(A, Tz)] is no longer a

constant for a given isobaric multiplet. One may formally ex-
pand them to be a

(CSB)
sym,1 (A, Tz)Tz = a1 + b1Tz + c1T

2
z + d1T

3
z

and a
(CIB)
sym,2(A, Tz)T 2

z = a2 + b2Tz + c2T
2
z + d2T

3
z for the T =

3/2 quartets. Equation (2) can then be rearranged as

ME(A, T , Tz) = a + bTz + cT 2
z + dT 3

z , (3)

where the d coefficient is explicitly expressed as

d = −8π

9

∫ ∞

0
r2S

(CSB)
1 (ρ)(δρ3/2 − δρ−3/2)dr

− 8π

9

∫ ∞

0

r2

ρ(r )
S

(CIB)
2 (ρ)

(
δρ2

3/2 − δρ2
−3/2

)
dr. (4)

In Eq. (4), δρTz
= [ρn(r ) − ρp(r )]core

Tz
is the neutron- and

proton-density difference in the core of the nucleus with Tz.
For T = Tz (−Tz) nuclei, where there are |N − Z| excess
neutrons (protons), we call the remaining nucleons (with
an equal number of protons and neutrons) the “core” in
the discussion. The terms S

(CSB)
1 and S

(CIB)
2 in Eq. (4) are

density-dependent symmetry energies characterizing the INC
interactions, defined as

S
(CSB)
1 (ρ) = ∂E(CSB)(ρ, β )

∂β

∣∣∣∣
β=0

, (5)

S
(CIB)
2 (ρ) = 1

2

∂2E(CIB)(ρ, β )

∂β2

∣∣∣∣
β=0

. (6)

FIG. 1. d values for T = 3/2 quartets calculated with Eq. (4).
The presented experimental data are from Refs. [11,23] for A = 19,
[8] for 21, [11,24] for 29, [25,26] for 31, [27,28] for 33, [29] for 35,
[30] for 37, [7] for 41 − 49, [7,31] for 53, and the remaining data are
taken from Ref. [11]. The numbers in brackets refer to the years of
publication.

The above results are achieved based on the microscopic
Brueckner-Hartree-Fock approach with the AV18 (together
with AV14) interaction [21], in which E(CSB) (E(CIB)) is
the energy associated with the CSB (CIB) interaction. The
CIB interaction contribution is about one order of magnitude
smaller than that of the CSB interaction. From Eq. (4), the
nonzero d originates primarily from the first-order symmetry
energy difference between the Tz = 3/2 core and Tz = −3/2
core. The nucleonic density distributions inside the nucleus
are calculated within a Skyrme energy-density functional
approach. Detailed derivations of Eqs. (3) and (4) are given
in the Appendix. We note that the dT 3

z term is usually added
empirically to account for deviations from the quadratic form
of the IMME, but here it is derived microscopically. The
occurrence of the nonzero d coefficient is due to a combined
effect of the CSB interaction in the nuclear medium together
with the treatment of the beyond-first-order perturbation cal-
culation (i.e., by including the core polarization induced by
the Coulomb force). Both of them are indispensable. We thus
conclude that although the high-order Coulomb contribution
to the d value is generally believed to be small [22], it is
necessarily included because without it, as we discussed in
detail before Eq. (3), the d term would not appear.

In Fig. 1, we show the d values calculated with Eq. (4)
for T = 3/2 isobaric quartets. The SLy4 interaction [32] that
satisfies specific constraints defined in our previous work [33]
is employed to compute the nucleonic density distributions.
Remarkably, the results for the d coefficients exhibit a clear
A dependence. It is striking that, across the sd and lower
fp shells, the d values show an oscillation-like behavior
with a minimum ∼ − 6 keV and maximum ∼7 keV. The
crossing points of the curve with the d = 0 line correspond
to the multiplets involving the magic numbers 8, 20, and 28,
implying the underlying shell effect.

Experimental data seem to support the above predic-
tion. In Fig. 1, we also plot the experimentally extracted
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d values for the isobaric quartets from the measured
mass excesses via d = [ME(Tz = 3/2) − ME(Tz = −3/2) −
3 ME(Tz = 1/2) + 3 ME(Tz = −1/2)]/6. These experimen-
tal d values follow the predicted pattern well.

As one can see from Fig. 1, the experimental d values for
A = 31 [25,26], 33 [27,28], and 35 [29] multiplets have small
uncertainties. Our calculations reproduce these data. With the
new mass of 29S measured recently with the isochronous mass
spectrometry technique in the experimental cooler storage
ring (CSRe) at the Heavy Ion Research Facility in Lanzhou
[24], the IMME is shown to be revalidated for A = 29,
which is supported by our calculation. However, the validity
of the IMME represents only special cases of our general
conclusion.

For the Tz = 3/2 isobaric quartets, the first test in the
fp shell with A = 45, 49, and 53 indicated systematical
deviations from the IMME [7]. Calculations based on two
INC Hamiltonians, the f7/2 model space [34] and the full pf
model space with the GPFX1A interaction [35,36] plus the
Ormand-Brown INC Hamiltonian [16], could not reproduce
the experimental data [7]. Our calculated d values for A = 41,
45, and 49 shown in Fig. 1 agree qualitatively with experi-
ment. For A = 53, Ref. [7] initially reported a very large d =
39(11) keV. With a later remeasurement of the IAS of 53Co
[31], it was reduced and agrees now well with our prediction
(see Fig. 1). From our calculations, significant d values are
expected in the pf shell. Precision mass measurements of
the relevant nuclei are required. Especially interesting would
be the confirmation of the maximum d value at A = 43,
for which the identification and mass determination of the
T = 3/2 IAS in 43Ti are needed.

The A = 21 multiplet has been taken in Ref. [8] as an
example to show violations of the IMME in the sd shell
nuclei. The universal sd USDA and USDB isospin-conserving
Hamiltonians supplemented with an INC part yield too small
d values (d = −0.3 keV (USDA) and 0.3 keV (USDB)
for the A = 21, Jπ = 5/2+ quartet [8]). The valence-space
calculations based on the low-momentum two-nucleon and
three-nucleon forces derived from the chiral effective field
theory [37] give d = −38 keV for the A = 21 quartet [8],
which disagrees with the experimental value 6.7(13) keV. Our
result d = 3.4 keV is close to the experimental data.

We stress that the occurrence of nonzero d’s, which marks
deviations from the original IMME, is fundamental. The
variation of the d coefficient is driven by the shell effect.
We find that once the excess neutrons in the Tz = 3/2 of
a multiplet fill a level below (above) a large shell gap, as
schematically illustrated in the left (right) panel of Fig. 2(a),
the smallest (largest) d value appears (see Fig. 1). For in-
stance, the Tz = T member of the A = 37 (A = 43) multiplet,
37Cl (43Ca), has three excess neutrons filling below (above)
the N = 20 shell gap. When A changes from 37 to 43, the
excess neutrons (protons) for Tz = 3/2 (Tz = −3/2) member
gradually occupy the upper 1f7/2 orbit. The neutrons (protons)
in the core tend to be more loosely (tightly) bound if they and
the excess neutrons (protons) fill the same (different) orbit(s),
leading to the A-dependent differences in neutron (proton)
density of the core. As seen in Fig. 2(b), when A changes
from 37 to 43, δρ3/2 − δρ−3/2 = [ρcore

n (r ) − ρp(r )]Tz=3/2 +

FIG. 2. (a) Schematic illustration highlighting the filling pattern
of excess neutrons for the Tz = T nucleus. (b) The core density
difference δρ3/2 − δρ−3/2 for T = 3/2 isobaric quartets. The case for
A = 37 (A = 43) corresponds to the left (right) shell-filling pattern
in (a).

[ρcore
p (r ) − ρn(r )]Tz=−3/2 increases significantly, particularly

in the region of r = 1–3 fm. This shell effect is brought
into the d coefficient via the integral in Eq. (4). In the T =
3/2 multiplets, the excess neutrons (protons) in the Tz = 3/2
(Tz = −3/2) nuclei occupy a level above the 1p1/2 – 1d5/2 or
1d3/2 – 1f7/2 shell gap for the A = 21 or A = 45–53 quar-
tets, respectively, leading to a relatively large violation of
the IMME. This mechanism holds also true for the strong
breakdown of the A = 9 quartet since the excess neutrons
(protons) in the Tz = 3/2 (Tz = −3/2) nuclei occupy a level
above the 1s1/2 – 1p3/2 shell gap. However, the A = 9 quartet
is excluded from Fig. 1 for discussion because, generally, the
Skyrme functional does not quantitatively apply to such light
nuclei. We conclude that the magnitude of the d coefficient,
which measures the degree of deviation from the original
IMME, depends on the shell filling.

As shown in Fig. 1, we predict a local maximum of d for
the A = 19 quartet. The existing experimental measurements
are divergent for the excitation energy of the IAS in 19Ne
[11,23], leading to completely different conclusions regarding
the IMME. An experimental confirmation of this energy is
necessary.

III. T = 2 ISOBARIC QUINTETS

With the similar derivation for T = 3/2 quartets, the
GIMME of Eq. (2) is rewritten for T = 2 quintets as

ME(A, T , Tz) = a + bTz + cT 2
z + dT 3

z + eT 4
z , (7)

with the d and e coefficients given as

d = −π

4

∫ ∞

0
r2S

(CSB)
1 (ρ)(δρ2 − δρ−2)dr

−π

4

∫ ∞

0

r2

ρ(r )
S

(CIB)
2 (ρ)

(
δρ2

2 − δρ2
−2

)
dr, (8)

e = − π

64

∫ ∞

0
dr

r2

ρ(r )
S

(CIB)
2 (ρ)(δρ2 − δρ−2)

× [
11(δρ2 − δρ−2) + 8

(
ρexc

n |Tz=2 + ρexc
p |Tz=−2

)]
, (9)
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FIG. 3. d and e values for T = 2 quintets calculated with
Eqs. (8) and (9). The presented experimental data are taken from
Refs. [8,38] for A = 20, and the remaining data are from Ref. [11].
The numbers in brackets refer to the years of publication.

where ρexc
n |Tz=2 (ρexc

p |Tz=−2) is the density of the |N − Z|
excess neutrons (protons) in the Tz = T (Tz = −T ) nucleus.
The e coefficient just originates from the CIB interaction, and
the detailed derivation is presented in the Appendix.

In Fig. 3, we compare the calculated d and e values for
T = 2 quintets with the available experimental data. The
calculations suggest that the d values are overall small, and
the magnitude does not exceed 2 keV. The calculated d values
for A = 12–36 in Fig. 3(a) show a similar pattern as the
one for T = 3/2 quartets with a maximum at A = 20. The
occurrence of this variation shares the same physical origin as
that in the T = 3/2 quartets, namely the excess neutrons in the
Tz = T = 2 member occupy a level above the 1p1/2 – 1d5/2

shell gap, resulting in a relatively larger d value as compared
with those of its neighbors.

In 2014, a significant violation of the IMME for the A = 20
quintet was reported [8]. However, with a later measurement
of the excitation energy of the lowest T = 2 state in 20Na,
the IMME was revalidated [38]. Our calculated value of
d = 1.7 keV is in agreement with the later experimental
measurement [see Fig. 3(a)]. The calculation presented in
Ref. [8] deviates substantially from both measurements.

The data point for A = 32 shows a deviation from our
calculated value. The studies of this quintet were carried out
by several collaborations [39–43], and some of the measured
data are controversial [43]. We note that both the experimental
and our predicted values are small. The calculated and ex-
perimental e values are compatible with zero, and they are
in agreement with each other.

IV. SUMMARY

Based on our recently proposed GIMME [21], we have
established an isobaric multiplet mass equation that includes
high-order terms within a new strategy beyond the first-
order perturbation approximation. The explicit expression of
d (and also e) coefficient which quantifies the deviation of
the quadratic form of the original IMME has been derived.
The emergence of the nonzero cubic Tz term, and hence the

violation of the quadratic IMME, have basic roots. We have
found that the charge-symmetry-breaking interaction in the
nuclear medium, characterized in our theory by the first-order
symmetry energy, combined with the core polarization effect
primarily induced by the Coulomb force, are responsible for
the breakdown of the quadratic IMME. The effective charge-
symmetry-breaking and charge-independence-breaking inter-
actions were extracted by employing an ab initio method, i.e.,
the Brueckner theory with bare AV18 and AV14 interactions
without any phenomenological adjustments. Remarkably, we
found that the calculated d values for quartets and quintets
follow an oscillation-like behavior throughout the sd- and
lower fp-shell regions as a consequence of the shell effect,
and the experimental d values extracted from the measured
masses agree with the oscillation pattern qualitatively. If all
excess neutrons in the Tz = T nucleus of a multiplet fill a
level above a large shell gap, the breakdown of the quadratic
IMME tends to be strong. Therefore, it is straightforward
to predict the nuclei where the strong deviations from the
original IMME are expected, which is essential for guiding
future experimental efforts.
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APPENDIX

The 1st-order symmetry energy a
(CSB)
sym,1 (A, Tz) and the 2nd-

order one a
(CIB)
sym,2(A, Tz) for finite nuclei in Eq. (2) originate

from the CSB and CIB interactions in nuclear medium, re-
spectively, which can be expressed as [21]

a
(CSB)
sym,1 (A, Tz) = 1

IA

∫ ∞

0
4πr2ρ(r )S(CSB)

1 (ρ)β(r )dr, (A1)

a
(CIB)
sym,2(A, Tz) = 1

I 2A

∫ ∞

0
4πr2ρ(r )S(CIB)

2 (ρ)β2(r )dr, (A2)

where I = (N − Z)/A = 2Tz/A is the isospin asymmetry
of a given nucleus. β(r ) = (ρn(r ) − ρp(r ))/ρ(r ) is the local
isospin asymmetry in which ρp(r ) and ρn(r ) are the proton
and neutron density distributions inside the nucleus. Here the
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symmetry energy coefficient is called simply as the symmetry
energy. The spherical-nuclei approximation is employed to
achieve a concise result. To achieve the a

(CSB)
sym,1 (A, Tz) and

a
(CIB)
sym,2(A, Tz), we should gain the nucleonic density distribu-

tions ρn and ρp of an isobaric analog state (IAS) whose T is
larger than |Tz|.

We assume |αT Tz〉 is the eigenstate of the charge-
independent Hamiltonian H0, with α for all additional
quantum numbers to label this state. In the first-order pertur-
bation, the energy produced by the CSB and CIB interactions
is given by 〈αT Tz|HCSB+CIB|αT Tz〉 = 2a

(CSB)
sym,1(A, Tz)Tz +

4
A
a

(CIB)
sym,2 (A, Tz)T 2

z in the absence of Coulomb force [21].
In this case, the wave function of the IAS (with Tz =
T − 1) with N − 1 neutrons and Z + 1 protons (N > Z)
is obtained with |IAS〉 = |T , Tz = T − 1〉 = 1√

2T
T−|0〉 [44]

rigidly, where T− = ∑
t−(j ) is the isospin lowering operator,

j ∈ excess neutron orbits in |0〉. |0〉 is the ground state of the
parent nucleus with N neutrons and Z protons belonging to a

multiplet with T = Tz. Thus, (ρn + ρp )IAS = (ρn + ρp )parent

and (ρn − ρp )IAS = (1 − 1
T

)(ρn − ρp )parent are obtained. The
same situation also applies to the IAS with Tz = −(T − 1).
Accordingly, the a

(CSB)
sym,1 (A, Tz) (and also a

(CIB)
sym,2(A, Tz)) is

identical for all members of an isobaric multiplet. Therefore,
they can be merged into the bc and cc, respectively. Namely,
the GIMME is reduced to the quadratic form of the IMME,
and hence the IMME is not breakdown.

Here we treat this energy produced by CSB and CIB
interactions beyond the first-order perturbation approxi-
mation, i.e., calculate the 〈αTz|HCSB+CIB|αTz〉 instead of
〈αT Tz|HCSB+CIB|αT Tz〉, with the inclusion of Coulomb inter-
action. Accordingly, the a

(CSB)
sym,1 (A, Tz) (and also a

(CIB)
sym,2(A, Tz))

is no longer a constant for a given isobaric multiplet. Yet, we
can expand them as a

(CSB)
sym,1 (A, Tz)Tz = a1 + b1Tz + c1T

2
z +

d1T
3
z and a

(CIB)
sym,2(A, Tz)T 2

z = a2 + b2Tz + c2T
2
z + d2T

3
z for

T = 3/2 isobaric quartets, and thus Eq. (2) is written
as

ME(A, T , Tz) = a + (bc + �nH)Tz + 2
(
a1 + b1Tz + c1T

2
z + d1T

3
z

) + ccT
2
z + 4

A

(
a2 + b2Tz + c2T

2
z + d2T

3
z

)
,

=
(

a + 2a1 + 4a2

A

)
+

(
bc + �nH + 2b1 + 4b2

A

)
Tz +

(
cc + 2c1 + 4c2

A

)
T 2

z +
(

2d1 + 4d2

A

)
T 3

z . (A3)

Therefore, if we introduce a new a coefficient to replace the
a + 2a1 + 4a2

A
, and define the b, c, d coefficients by

b = bc + �nH + 2b1 + 4b2

A
, c = cc + 2c1 + 4c2

A
,

d = 2d1 + 4d2

A
(A4)

then the GIMME for quartets is rewritten as

ME(A, T , Tz) = a + bTz + cT 2
z + dT 3

z . (A5)

The central task is to calculate the d coefficient. It should
be stressed that, because of the core polarization induced by
the Coulomb force, the state of the T−|0〉/√2T is not the
exact description of the physical analog state (Tz = T − 1).
The excess neutron density ρexc.

n,parent, instead of ρn − ρp should
be used in the transition density, as discussed in Ref. [45].
Therefore, one obtains

(ρn − ρp )
Tz=T −1 =

(
1 − 1

T

)
(ρn − ρp )

Tz=T
+ 1

T
δρTz=T ,

(A6)

where δρ(r ) = ρcore
n (r ) − ρp(r ) is the neutron- and proton-

density difference in the core (with an equal number of pro-
tons and neutrons) in the Tz = T nucleus. The same situation
also applies to the IAS with Tz = −(T − 1). In order to

improve the accuracy, we use the

(ρn − ρp )
Tz=T −1 =

(
1 − 1

T

)
(ρn − ρp )

Tz=T

+ 1

2T
(δρTz=T + δρTz=T −1). (A7)

In Fig. 4, we give two examples for T = 1/2 dou-
blet to show the validity of such a treatment. Eq. (A7)

FIG. 4. The density difference between the neutron and proton,
i.e., ρn − ρp , for A = 37 and A = 43 isobaric doublets as examples.
The Eqs. (A6) and (A7) are employed to calculate the ρn − ρp of
Tz = −1/2 nuclei in the framework of the Skyrme-Hartree-Fock
method, and compared with the direct calculation with the Skyrme-
Hartree-Fock method.
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works rather well, and is much better than Eq. (A6). In a word, for the T = 3/2 isobaric quartets, the density difference ρn − ρp

is summarized as

ρn − ρp =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ρn − ρp )Tz=3/2, Tz = 3
2

1
3 (ρn − ρp )Tz=3/2 + 1

3 (δρ3/2 + δρ1/2), Tz = 1
2

1
3 (ρn − ρp )Tz=−3/2 + 1

3 (δρ−3/2 + δρ−1/2), Tz = − 1
2

(ρn − ρp )Tz=−3/2, Tz = − 3
2

(A8)

with δρ
Tz

= [ρcore
n (r ) − ρp(r )]Tz

= [ρn(r ) − ρp(r )]core
Tz

.
We assume that δρ3/2, δρ1/2, δρ−1/2, δρ−3/2 are equidistant since the proton number is equidistantly increasing from

Tz = 3/2 to Tz = −3/2 nuclei, and hence (δρ3/2 − δρ−3/2) = 3(δρ1/2 − δρ−1/2). Since we expand the first-order and the
second-order symmetry energy produced by the CSB and CIB interactions as a

(CSB)
sym,1 (A, Tz)Tz = a1 + b1Tz + c1T

2
z + d1T

3
z and

a
(CIB)
sym,2(A, Tz)T 2

z = a2 + b2Tz + c2T
2
z + d2T

3
z , the d1 and d2 are given as

2d1 = 1

2

[
a

(CSB)
sym,1

(
A,

3

2

)
+ a

(CSB)
sym,1

(
A,−3

2

)
− a

(CSB)
sym,1

(
A,

1

2

)
− a

(CSB)
sym,1

(
A,−1

2

)]

= 1

2

1

3

∫ ∞

0
4πr2S

(CSB)
1 (ρ)(ρn − ρp )Tz=3/2dr − 1

2

1

3

∫ ∞

0
4πr2S

(CSB)
1 (ρ)(ρn − ρp )Tz=−3/2dr

− 1

2

∫ ∞

0
4πr2S

(CSB)
1 (ρ)

[
1

3
(ρn − ρp )Tz=3/2 + 1

3
(δρ3/2 + δρ1/2)

]
dr

+ 1

2

∫ ∞

0
4πr2S

(CSB)
1 (ρ)

[
1

3
(ρn − ρp )Tz=−3/2 + 1

3
(δρ−3/2 + δρ−1/2)

]
dr

= 1

6

∫ ∞

0
dr4πr2S

(CSB)
1 (ρ) ·

{
(ρn − ρp )Tz=3/2 − (ρn − ρp )Tz=−3/2 − 3

[
1

3
(ρn − ρp )Tz=3/2 + 1

3
(δρ3/2 + δρ1/2)

]

+ 3

[
1

3
(ρn − ρp )Tz=−3/2 + 1

3
(δρ−3/2 + δρ−1/2)

]}

= −1

6

∫ ∞

0
dr4πr2S

(CSB)
1 (ρ)[(δρ3/2 − δρ−3/2) + (δρ1/2 − δρ−1/2)]

= −1

6

∫ ∞

0
dr4πr2S

(CSB)
1 (ρ)

[
(δρ3/2 − δρ−3/2) + 1

3
(δρ3/2 − δρ−3/2)

]

= −8π

9

∫ ∞

0
drr2S

(CSB)
1 (ρ)[(δρ3/2 − δρ−3/2)]. (A9)

4d2 = 1

2

[
3a

(CIB)
sym,2

(
A,

3

2

)
− 3a

(CIB)
sym,2

(
A,−3

2

)
− a

(CIB)
sym,2

(
A,

1

2

)
+ a

(CIB)
sym,2

(
A,−1

2

)]

= A

8

{
3(
3
2

)2

∫ ∞

0
4πr2 1

ρ(r )
S

(CIB)
2 (ρ)(ρn − ρp )2

Tz=3/2dr − 3(− 3
2

)2

∫ ∞

0
4πr2 1

ρ(r )
S

(CIB)
2 (ρ)(ρn − ρp )2

Tz=−3/2dr

− 1(
1
2

)2

∫ ∞

0
4πr2 1

ρ(r )
S

(CIB)
2 (ρ)

[
1

3
(ρn − ρp )Tz=3/2 + 1

3
(δρ3/2 + δρ1/2)

]2

dr

+ 1(− 1
2

)2

∫ ∞

0
4πr2 1

ρ(r )
S

(CIB)
2 (ρ)

[
1

3
(ρn − ρp )Tz=−3/2 + 1

3
(δρ−3/2 + δρ−1/2)

]2

dr

}

= A

8

∫ ∞

0
dr4πr2 1

ρ(r )
S

(CIB)
2 (ρ) ·

{
4

3
(ρn − ρp )2

Tz=3/2 − 4

3
(ρn − ρp )2

Tz=−3/2

− 4

[
1

3
(ρn − ρp )Tz=3/2 + 1

3
(δρ3/2 + δρ1/2)

]2

+ 4

[
1

3
(ρn − ρp )Tz=−3/2 + 1

3
(δρ−3/2 + δρ−1/2)

]2}

= A

8

∫ ∞

0
dr4πr2 1

ρ(r )
S

(CIB)
2 (ρ) ·

{
8

9
(ρn − ρp )2

Tz=3/2 − 8

9
(ρn − ρp )2

Tz=−3/2

− 4

9
[(δρ3/2 + δρ1/2)2 + 2(ρn − ρp )Tz=3/2(δρ3/2 + δρ1/2)]
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+ 4

9
[(δρ−3/2 + δρ−1/2)2 + 2(ρn − ρp )Tz=−3/2(δρ−3/2 + δρ−1/2)]

}

= A

8

∫ ∞

0
dr4πr2 1

ρ(r )
S

(CIB)
2 (ρ) ·

{
8

9
(ρn − ρp )2

Tz=3/2 − 8

9
(ρn − ρp )2

Tz=−3/2 − 32

27

(
δρ2

3/2 − δρ2
−3/2

)

+ 8

9

[
(ρn − ρp )Tz=−3/2

(
5

3
δρ−3/2 + 1

3
δρ3/2

)
− (ρn − ρp )Tz=3/2

(
5

3
δρ3/2 + 1

3
δρ−3/2

)]}

= A

8

∫ ∞

0
dr4πr2 1

ρ(r )
S

(CIB)
2 (ρ) ·

{
8

9
[δρ3/2 + δρ−3/2][(ρn − ρp )Tz=3/2 − (ρn − ρp )Tz=−3/2] − 32

27

(
δρ2

3/2 − δρ2
−3/2

)

+8

9

[
(ρn − ρp )Tz=−3/2

(
5

3
δρ−3/2 + 1

3
δρ3/2

)
− (ρn − ρp )Tz=3/2

(
5

3
δρ3/2 + 1

3
δρ−3/2

)]}

= A

8

∫ ∞

0
dr4πr2 1

ρ(r )
S

(CIB)
2 (ρ)

{
−32

27

(
δρ2

3/2 − δρ2
−3/2

) − 16

27
(δρ3/2 − δρ−3/2)(δρ3/2 + δρ−3/2)

}

= −2A

9

∫ ∞

0
dr4πr2 1

ρ(r )
S

(CIB)
2 (ρ)

(
δρ2

3/2 − δρ2
−3/2

)
. (A10)

Finally, the d coefficient for the T = 3/2 isobaric quartets takes the form of

d = 2d1 + 4d2

A
= −8π

9

∫ ∞

0
r2S

(CSB)
1 (ρ)(δρ3/2 − δρ−3/2)dr − 8π

9

∫ ∞

0
r2 S

(CIB)
2 (ρ)

ρ(r )

(
δρ2

3/2 − δρ2
−3/2

)
dr. (A11)

For T = 2 isobaric quintets, similarly, the ρn − ρp is summarized as

ρn − ρp =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(ρn − ρp )Tz=2, Tz = 2
1
2 (ρn − ρp )Tz=2 + 1

4 (δρ2 + δρ1), Tz = 1

δρ0, Tz = 0
1
2 (ρn − ρp )Tz=−2 + 1

4 (δρ−2 + δρ−1), Tz = −1

(ρn − ρp )Tz=−2. Tz = −2

We expand the symmetry energy a
(CSB)
sym,1 (A, Tz)Tz and a

(CIB)
sym,2(A, Tz)T 2

z as a
(CSB)
sym,1 (A, Tz)Tz = a1 + b1Tz + c1T

2
z + d1T

3
z + e1T

4
z

and a
(CIB)
sym,2(A, Tz)T 2

z = a2 + b2Tz + c2T
2
z + d2T

3
z + e2T

4
z , and thus Eq. (2) is written as

ME(A, T , Tz) = a + (bc + �nH)Tz + 2
(
a1 + b1Tz + c1T

2
z + d1T

3
z + e1T

4
z

) + ccT
2
z + 4

A

(
a2 + b2Tz + c2T

2
z + d2T

3
z + e2T

4
z

)
,

=
(
a + 2a1 + 4a2

A

)
+

(
bc + �nH + 2b1 + 4b2

A

)
Tz +

(
cc + 2c1 + 4c2

A

)
T 2

z +
(

2d1 + 4d2

A

)
T 3

z +
(

2e1 + 4e2

A

)
T 4

z .

(A12)

The GIMME for quintets is reduced as

ME(A, T , Tz) = a + bTz + cT 2
z + dT 3

z + eT 4
z . (A13)

with

d = 2d1 + 4d2

A
, (A14)

e = 2e1 + 4e2

A
. (A15)

The d1, d2, e1, e2 coefficients are given by

2d1 = 1

3

[
a

(CSB)
sym,1 (A, 2) + a

(CSB)
sym,1(A,−2) − a

(CSB)
sym,1 (A, 1) − a

(CSB)
sym,1(A,−1)

]

= 1

12

∫ ∞

0
4πr2S

(CSB)
1 (ρ)(ρn − ρp )Tz=2dr − 1

12

∫ ∞

0
4πr2S

(CSB)
1 (ρ)(ρn − ρp )Tz=−2dr

− 1

6

∫ ∞

0
4πr2S

(CSB)
1 (ρ)

[
1

2
(ρn − ρp )Tz=2 + 1

4
(δρ2 + δρ1)

]
dr
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+ 1

6

∫ ∞

0
4πr2S

(CSB)
1 (ρ)

[
1

2
(ρn − ρp )Tz=−2 + 1

4
(δρ−2 + δρ−1)

]
dr

= 1

12

∫ ∞

0
dr4πr2S

(CSB)
1 (ρ)

{
(ρn − ρp )Tz=2 − (ρn − ρp )Tz=−2

− 2

[
1

2
(ρn − ρp )Tz=2 + 1

4
(δρ2 + δρ1)

]
+ 2

[
1

2
(ρn − ρp )Tz=−2 + 1

4
(δρ−2 + δρ−1)

]}

= − 1

24

∫ ∞

0
dr4πr2S

(CSB)
1 (ρ)[δρ2 + δρ1 − δρ−2 − δρ−1]

= − 1

24

∫ ∞

0
dr4πr2S

(CSB)
1 (ρ)

[
δρ2 − δρ−2 + 1

2
(δρ2 − δρ−2)

]

= − π

4

∫ ∞

0
r2S

(CSB)
1 (ρ)[δρ2 − δρ−2]dr. (A16)

12e1 = a
(CSB)
sym,1 (A, 2) − a

(CSB)
sym,1 (A,−2) − 2a

(CSB)
sym,1 (A, 1) + 2a

(CSB)
sym,1 (A,−1) + 3a

(CSB)
sym,1 (A, Tz)Tz|Tz=0

= 1

4

∫ ∞

0
4πr2S

(CSB)
1 (ρ)(ρn − ρp )Tz=2dr + 1

4

∫ ∞

0
4πr2S

(CSB)
1 (ρ)(ρn − ρp )Tz=−2dr

−
∫ ∞

0
4πr2S

(CSB)
1 (ρ)

[
1

2
(ρn − ρp )Tz=2 + 1

4
(δρ2 + δρ1)

]
dr

−
∫ ∞

0
4πr2S

(CSB)
1 (ρ)

[
1

2
(ρn − ρp )Tz=−2 + 1

4
(δρ−2 + δρ−1)

]
dr + 3

1

2Tz

Tz|Tz=0

∫ ∞

0
4πr2S

(CSB)
1 (ρ)δρ0dr

= 1

4

∫ ∞

0
dr4πr2S

(CSB)
1 (ρ){(ρn − ρp )Tz=2 + (ρn − ρp )Tz=−2

− [2(ρn − ρp )Tz=2 + (δρ2 + δρ1)] − [2(ρn − ρp )Tz=−2 + (δρ−2 + δρ−1)] + 6δρ0}
= − π

∫ ∞

0
drr2S

(CSB)
1 (ρ){[(ρn − ρp )Tz=2 + (δρ2 + δρ1)] + [(ρn − ρp )Tz=−2 + (δρ−2 + δρ−1)] − 6δρ0}

= −π

∫ ∞

0
drr2S

(CSB)
1 (ρ){[(ρn − ρp )Tz=2 + (ρn − ρp )Tz=−2] + [(δρ2 + δρ1) + (δρ−2 + δρ−1)] − 6δρ0}

= −π

∫ ∞

0
drr2S

(CSB)
1 (ρ)[(δρ2 + δρ−2) + (δρ2 + δρ1) + (δρ−2 + δρ−1) − 6δρ0]

= 0. (A17)

6d2 = 2a
(CIB)
sym,2(A, 2) − 2a

(CIB)
sym,2 (A,−2) − a

(CIB)
sym,2(A, 1) + a

(CIB)
sym,2 (A,−1)

= A

4

{
2

4

∫ ∞

0
4πr2 1

ρ(r )
S

(CIB)
2 (ρ)(ρn − ρp )2

Tz=2dr − 2

4

∫ ∞

0
4πr2 1

ρ(r )
S

(CIB)
2 (ρ)(ρn − ρp )2

Tz=−2dr

−
∫ ∞

0
4πr2 1

ρ(r )
S

(CIB)
2 (ρ)

[
1

2
(ρn − ρp )Tz=2 + 1

4
(δρ2 + δρ1)

]2

dr

+
∫ ∞

0
4πr2 1

ρ(r )
S

(CIB)
2 (ρ)

[
1

2
(ρn − ρp )Tz=−2 + 1

4
(δρ−2 + δρ−1)

]2

dr

}

= A

4

∫ ∞

0
dr4πr2 1

ρ(r )
S

(CIB)
2 (ρ) ·

{
1

2
(ρn − ρp )2

Tz=2 − 1

2
(ρn − ρp )2

Tz=−2

−
[

1

2
(ρn − ρp )Tz=2 + 1

4
(δρ2 + δρ1)

]2

+
[

1

2
(ρn − ρp )Tz=−2 + 1

4
(δρ−2 + δρ−1)

]2}

= A

16

∫ ∞

0
dr4πr2 1

ρ(r )
S

(CIB)
2 (ρ)

{[
(ρn − ρp )2

Tz=2 − (ρn − ρp )2
Tz=−2

]

− 1

4
[(δρ2 + δρ1)2 − (δρ−2 + δρ−1)2] − (ρn − ρp )Tz=2(δρ2 + δρ1) + (ρn − ρp )Tz=−2(δρ−2 + δρ−1)

}

= A

16

∫ ∞

0
dr4πr2 1

ρ(r )
S

(CIB)
2 (ρ)

{
−3

4

(
δρ2

2 − δρ2
−2

) − 3

4
(δρ2 + δρ−2)(δρ2 − δρ−2)

}
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= A

16

∫ ∞

0
dr4πr2 1

ρ(r )
S

(CIB)
2 (ρ)

{
−3

2

(
δρ2

2 − δρ2
−2

)}

= − 3A

32

∫ ∞

0
dr4πr2 1

ρ(r )
S

(CIB)
2 (ρ)

(
δρ2

2 − δρ2
−2

)
. (A18)

6e2 = a
(CIB)
sym,2(A, 2) + a

(CIB)
sym,2(A,−2) − a

(CIB)
sym,2(A, 1) − a

(CIB)
sym,2(A,−1) + 3

2
a

(CIB)
sym,2(A, Tz)T 2

z

∣∣
Tz=0

= A

4

{
1

4

∫ ∞

0
4πr2 1

ρ(r )
S

(CIB)
2 (ρ)(ρn − ρp )2

Tz=2dr + 1

4

∫ ∞

0
4πr2 1

ρ(r )
S

(CIB)
2 (ρ)(ρn − ρp )2

Tz=−2dr

−
∫ ∞

0

4πr2

ρ(r )
S

(CIB)
2 (ρ)

[
1

2
(ρn − ρp )Tz=2 + 1

4
(δρ2 + δρ1)

]2

dr

−
∫ ∞

0

4πr2

ρ(r )
S

(CIB)
2 (ρ)

[
1

2
(ρn − ρp )Tz=−2 + 1

4
(δρ−2 + δρ−1)

]2

dr + 3

2T 2
z

T 2
z

∣∣
Tz=0

∫ ∞

0
4πr2 1

ρ(r )
S

(CIB)
2 (ρ)δρ2

0dr

}

= A

16

∫ ∞

0
dr4πr2 1

ρ(r )
S

(CIB)
2 (ρ) ·

{
(ρn − ρp )2

Tz=2 + (ρn − ρp )2
Tz=−2

−
[

(ρn − ρp )Tz=2 + 1

2
(δρ2 + δρ1)

]2

−
[

(ρn − ρp )Tz=−2 + 1

2
(δρ−2 + δρ−1)

]2

+ 6δρ2
0

}

= − A

16

∫ ∞

0
dr4πr2 1

ρ(r )
S

(CIB)
2 (ρ) ·

{
1

4
(δρ2 + δρ1)2 + (ρn − ρp )Tz=2(δρ2 + δρ1)

+ 1

4
(δρ−2 + δρ−1)2 + (ρn − ρp )Tz=−2(δρ−2 + δρ−1) − 6δρ2

0

}

= − A

64

∫ ∞

0
dr4πr2 1

ρ(r )
S

(CIB)
2 (ρ) ·

{(
2δρ2 − δρ2 − δρ−2

4

)2

+ 4(ρn − ρp )Tz=2

(
2δρ2 − δρ2 − δρ−2

4

)

+
(

2δρ−2 + δρ2 − δρ−2

4

)2

+ 4(ρn − ρp )Tz=−2

(
2δρ−2 + δρ2 − δρ−2

4

)
− 24δρ2

0

}

= − A

64

∫ ∞

0
dr4πr2 1

ρ(r )
S

(CIB)
2 (ρ) ·

{(
25

8
δρ2

2 + 25

8
δρ2

−2 + 7

4
δρ2δρ−2

)

+ 4(ρn − ρp )Tz=2

[
(δρ2 + δρ−2) + 3

4
(δρ2 − δρ−2)

]
+ 4(ρn − ρp )Tz=−2

[
(δρ2 + δρ−2) − 3

4
(δρ2 − δρ−2)

]
− 24δρ2

0

}

= − 3A

64

∫ ∞

0
dr4πr2 1

ρ(r )
S

(CIB)
2 (ρ)

{
3

8
(δρ2 − δρ−2)2 + (δρ2 − δρ−2)[(ρn − ρp )Tz=2 − (ρn − ρp )Tz=−2]

}
. (A19)

Finally, we obtain the d, e coefficients for the T = 2 quintets taking the form of

d = 2d1 + 4d2

A

= −π

4

∫ ∞

0
r2S

(CSB)
1 (ρ)(δρ2 − δρ−2)dr − π

4

∫ ∞

0

r2

ρ(r )
S

(CIB)
2 (ρ)

(
δρ2

2 − δρ2
−2

)
dr, (A20)

e = 2e1 + 4e2

A

= − π

64

∫ ∞

0
dr

r2

ρ(r )
S

(CIB)
2 (ρ)(δρ2 − δρ−2) · [

11(δρ2 − δρ−2) + 8
(
ρ exc

n |Tz=2 + ρexc
p |Tz=−2

)]
, (A21)

where ρexc
n |Tz=2 (ρexc

p |Tz=−2) is the density of the |N − Z| excess neutrons (protons) in the Tz = T (Tz = −T ) nucleus.
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