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In this work, the Coulomb mixing and the isospin mixing in the ground states of even-even nuclei are evaluated
in perturbation theory. The calculation of the isospin mixing is performed by using the connection to isovector
monopole resonance properties. The uncertainty in the results that depends on different choices of the Skyrme
interactions is shown. While Coulomb mixing turns out to be large in the ground states of heavy nuclei, isospin
mixing is very small.

DOI: 10.1103/PhysRevC.99.014311

I. INTRODUCTION

The best known part of the nuclear Hamiltonian is the
Coulomb interaction between protons. The Coulomb interac-
tion is charge asymmetric. As a consequence, isospin breaking
is dominated by the Coulomb interaction. The parent state
|π〉 of the nucleus with isospin T and Tz = T contains the
admixtures of states with isospin T + 1,

|π〉 =
(

1 −
∑

α

ε2
α

)1/2

|T , T ; 0〉 +
∑

α

εα|T + 1, T ; α〉.

(1)

The total probability ε2 = ∑
α ε2

α is the isospin mixing. In
first-order perturbation theory, the expression for isospin mix-
ing is defined as

ε2
T +1 =

∑
α �=0

∣∣〈T , T ; 0|V (IV)
C |T + 1, T ; α〉∣∣2

(Eα − E0)2
, (2)

where |T , T ; 0〉 denotes the ground state (g.s.) at the energy
E0, and α are the various quantum numbers needed to specify
the states |α〉 at their energy Eα . The Coulomb interaction VC

can be rewritten in terms of isoscalar, isovector, and isotensor
parts, but only the isovector part V

(IV)
C is kept because the

isoscalar part does not contribute to (2) and the isotensor part
is small because of the long-range nature of the Coulomb
interaction. Note that one needs to indicate T + 1 because
an isovector operator excites not only |T + 1, T ; α〉, but also
|T , T ; α〉. If the |T , T ; α〉 are also taken into account, the
admixture is usually much larger. This kind of mixing was
defined as the Coulomb mixing [1]:

ε2
C =

∑
α �=0

∣∣〈0|V (IV)
C |α〉∣∣2

(Eα − E0)2
, (3)
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where the states |α〉 now include both T and T + 1 exci-
tations. Therefore, the Coulomb mixing represents the total
change induced by the Coulomb force in the wave function
of the ground state. This mixing is more general than just
isospin mixing because in many instances the effects of the
Coulomb force do not lead necessarily to large components
that differ in the isospin quantum numbers. In nuclei with
N = Z, the isospin mixing and the Coulomb mixing are the
same, ε2

C = ε2
T +1, as in these nuclei the isovector excitations

have isospin T = 1 only. In a N > Z nucleus, ε2
C > ε2

T +1 as
now there are |T , T ; α〉 and |T + 1, T ; α〉 contributing.

In Refs. [1–5] and references therein, it was shown how
the isospin mixing is connected to the notion of the isovector
monopole (IVM) resonance that is defined by the operator

Q
(IV)
0 =

∑
i

r2
i tz(i), (4)

where tz is the z component of the isospin operator. Attempts
were made to observe the IVM resonance experimentally by
using different probes [6–9] because it plays an important
role in many isospin processes (see Ref. [1] and references
therein). Isospin mixing, that is the nonconservation of isospin
quantum number, is a good example.

In the past, there have been a few calculations of the isospin
mixing, performed just after the Skyrme interactions had
become a widely used tool. The old SIII and SIV interactions
[10] have been employed in Ref. [1]. The subject has been
left aside for a while, and it has become popular again after
the start of the new discoveries of exotic nuclei. Proton-rich
(or neutron-deficient) isotopes have been either speculated,
or shown to be, ideal cases in which the isospin mixing
can become quite large: see, e.g., Ref. [11], or Ref. [12] in
which also deformed systems have been considered. In these
works, typically one or two Skyrme parameter sets have been
considered.

Our goal is to look more systematically than has done in
the past at the dependence of the values of the isospin mixing
on the chosen Skyrme set, as well as at the variation of the
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IVM properties. Many modern Skyrme sets have been, in
fact, introduced after the works of the 1980s and 1990s that
we have just quoted; nonetheless, the systematic investigation
we plan to illustrate here is not available in the literature.
Meanwhile, attention has been devoted instead to calculating
isospin mixing through projection schemes [13,14] and/or by
including proton-neutron mixing and general isospin breaking
forces (cf. [15] and references therein).

With this main idea in mind, the outline of the paper is
as follows. The next section describes the method of calcu-
lation. We basically connect the isospin mixing to the IVM
resonance. We present results obtained by using 12 Skyrme
parameter sets, including SIII [10], SGII [16], SKM* [17],
SkP, SkI2 [18], SLy4 [19], SkO, SkO’ [20], LNS [21], SK255
[22], BSk17 [23], and SAMi [24]. This demonstrates how
much the results depend on the choice of different Skyrme
interactions. We restrict our discussion to even-even nuclei.
The isospin mixing and Coulomb mixing were calculated for
N = Z including 40Ca, 56Ni, and 100Sn, and N > Z nuclei
including 48Ca, 78Ni, 90Zr, 120Sn, and 208Pb.

II. METHOD OF CALCULATION

The two-body Coulomb potential is given as

VC = 1

2

A∑
i,j

e2

|r i − rj |
(

1

2
− tz(i)

)(
1

2
− tz(j )

)
, (5)

where tz is the z component of the nucleon-isospin operator,
and its eigenvalue is + 1

2 for neutron and − 1
2 for proton.

In the Hartree-Fock (HF) calculation, one has the one-body
Coulomb potential that can be used in Eqs. (2) and (3). A
simplification is to approximate V IV

C using a homogeneous
density distribution,

V
(IV)
C = −Ze2

2R3

A∑
i=1

(
3R2 − r2

i

)
tz(i), (6)

for r � R. In this case, the isospin mixing becomes

ε2
T +1 =

(
Ze2

2R3

)2 ∑
α �=0

∣∣〈0|Q(IV)
0 |T + 1; α〉∣∣2

(Eα − E0)2
, (7)

where Q
(IV)
0 is the z component of the IVM operator and R =

r0A
1/3. It is pointed out that in this approximation, the results

are, of course, affected by the choice of the value r0.
In Eq. (4), the operator Q

(IV)
0 is part of a single-particle

isovector operator Q(IV)
μ with μ = 0,±1

Q(IV)
μ =

∑
i

r2
i tμ(i), (8)

where

t−1 = + tx − ity√
2

; t+1 = − tx + ity√
2

; and t0 = tz. (9)

When the isovector operator Q
(IV)
0 is applied in the parent

nucleus with N > Z, both |T , T ; α〉 and |T + 1, T ; α〉 are
excited and the isospin of these states cannot be determined
when performing complicated HF-RPA calculations involving
many orbits and thus many particle-hole (p-h) states. We
should mention here that the states constructed of 1p-1h

FIG. 1. Isovector states in nuclei with N > Z. A single-particle
isovector operator Q(IV)

μ , has three components, Q
(IV)
−1 , Q

(IV)
0 , and

Q
(IV)
+1 . In the parent nucleus, Q

(IV)
0 excites |T + 1, T ; α〉 and

|T , T ; α〉. In the analog nucleus (N − 1, Z + 1), Q
(IV)
−1 excites |T +

1, T − 1; α〉, |T , T − 1; α〉, and |T − 1, T − 1; α〉. In the nucleus
(N + 1, Z − 1), Q

(IV)
+1 excites |T + 1, T + 1; α〉 only.

component only do not have good isospin, and in order to
have good isospin one has to include certain class of 2p-2h
components [1,5]. These components are small and usually
are not included. Their effect on the calculation of isospin
mixing as performed here is very small.

A technique based on the properties of isovector states in
nuclei with N > Z (see Fig. 1) is used to determine separately
|T + 1, T ; α〉 for the sum in Eq. (7). First, the calculation
using operator Q

(IV)
+1

Q
(IV)
+1 =

A∑
i=1

r2
i t+1(i) (10)

that excites only |T + 1, T + 1; α〉 in the nucleus (N +
1, Z − 1) was done. After that, |T + 1, T ; α〉 states in the par-
ent nucleus were obtained by using the fact that their energies
E0(T + 1; α) differ from the energies of |T + 1, T + 1; α〉
in the nucleus (N + 1, Z − 1) by one Coulomb displacement
energy (CDE), �EC , i.e.,

E0(T + 1; α) − E+1(T + 1; α) = �EC. (11)

We used the notations Eμ (μ = 0,±1) for the energies in the
three nuclei in Fig. 1. The CDE, �EC , can be obtained from
the Skyrme-HF calculation. The transition strengths to various
isospin components T ′ of the Q(IV)

μ matrix elements are given
by the Wigner-Eckart theorem:

S
(μ)
T ′ (α) = ∣∣〈T , T ; 0|Q(IV)

μ |α; T ′, T + μ〉∣∣2

= |〈T T 1μ|T ′T + μ〉|2 · |〈T ; 0||Q(IV)||α; T ′〉|2.
(12)
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The expression ST ′ = ∑
α |〈0||Q(IV)||α; T ′〉|2 is the to-

tal reduced transition strengths. With 〈T T 10|T + 1 T 〉2 =
1/(T + 1) we find:

ε2
T +1 =

∑
α �=0

S
(+1)
T +1 (α)

(Eα − E0)2
, (13)

with

S
(+1)
T +1 (α) = 1

T + 1
|〈T ; 0||Q(IV)||α; T + 1〉|2, (14)

and Eα = E0(T + 1; α) = E+1(T + 1; α) + �EC .
It is useful to recall the isospin properties of the IVM

resonance [25] related to the calculation performed here. The
total transition strength of Q(IV) is expressed in terms of three
reduced transition strengths ST ′

mμ(0) =
∑
T ′

〈T T 1μ|T ′T + μ〉2ST ′ , (15)

and if Eμ(T ′) is the centroid energy of states of isospin T ′
excited by Q(IV)

μ , we also have

mμ(1) =
∑
T ′

〈T T 1μ|T ′T + μ〉2ST ′Eμ(T ′). (16)

Using expressions (15) and (16), we can obtain S
(0)
T and E0(T )

and determine the isospin energy splitting �E+

�E+ = E0(T + 1) − E0(T ) (17)

that relates to the symmetry potential V1 defined by the
expression

V1 = A

T + 1
�E+. (18)

In practice, the sum in Eq. (3) for the calculation of the
Coulomb mixing was obtained from the HF-RPA code of
Ref. [26]. The sum in Eq. (2) for the isospin mixing was calcu-
lated using the HF-RPA code including the charge-exchange
mode (HF-pnRPA) [27].

III. RESULTS AND DISCUSSION

Although the actual HF Coulomb potential V
(IV)
C can be

used directly as the probing operator, in our calculation the
IVM operator Q

(IV)
0 is also utilized to have the connection

between the Coulomb mixing, the isospin mixing, and the
properties of the IVM resonance. As mentioned above, when
the IVM operator is used, the results are affected by the choice
of r0. In Fig. 2, the distribution of IVM strength evaluated
using the Q

(IV)
0 [Fig. 2(a)] and Coulomb strength evaluated

using the V
(IV)
C [Fig. 2(b)] are shown for 208Pb. We can see in

Fig. 2 their close similarity. This is the reason why one can use
the ratio η between the total strength of Coulomb distribution
and that of the IVM distribution:

η =
∑〈0|V (IV)

C |α〉∑〈0|Q(IV)
0 |α〉 (19)

instead of the factor ( Ze2

2R3 )
2

in Eq. (7). Therefore, the uncer-
tainty from the value of r0 is avoided. In addition, it was found
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FIG. 2. The distribution of IVM strength (a) and Coulomb
strength (b) in 208Pb. The discrete RPA peaks for both operators were
smoothed by using the same Lorentzian averaging with the width of
1 MeV.

that the ratio η is close to the value of the factor in Eq. (7)
if r0 = 1.25 fm. In the calculation of the Coulomb strength
above, the V

(IV)
C contains not only the inside part (r � R) but

also the outside part (r > R). From the similarity shown in
Fig. 2, we can conclude that the outside part (r > R) does not
contribute much to the result.

Table I shows the values of isospin mixing (or Coulomb
mixing) for N = Z nuclei including 40Ca, 56Ni, and 100Sn.
In this case, the Coulomb mixing and isospin mixing are
the same because there are only T = 1 states. The difference
between two different operators is very small, and it allows us
to use the Q

(IV)
0 with the ratio η instead of V

(IV)
C . In general, the

difference in the value of the isospin mixing between different
Skyrme interactions is usually not large. In N > Z nuclei, the
SKO interaction gives isospin mixing a factor of 2 smaller
than the other Skyrme interactions in some nuclei.

The Coulomb potential is kept in our HF and RPA calcu-
lation. One can argue that the Coulomb potential should not
be included in this calculation. The code [26] we use allows
us easily to include or exclude the Coulomb potential consis-

TABLE I. Isospin mixing (or Coulomb mixing) (%) of N = Z

nuclei including 40Ca, 56Ni, and 100Sn. The Coulomb potential is
included in the HF-RPA calculation.

No. Int. 40Ca 56Ni 100Sn

Q
(IV)
0 V

(IV)
C Q

(IV)
0 V

(IV)
C Q

(IV)
0 V

(IV)
C

1 SIII 0.96 0.68 1.55 1.22 5.44 4.54
2 SGII 1.09 0.79 1.85 1.46 6.58 5.51
3 SKM* 1.12 0.78 1.82 1.42 6.44 5.34
4 SkP 1.15 0.81 2.00 1.56 6.82 5.69
5 SkI2 0.87 0.62 1.43 1.11 5.34 4.46
6 SLy4 1.05 0.77 1.78 1.43 6.17 5.27
7 SKO 0.90 0.62 1.31 0.98 5.04 4.13
8 SKO’ 1.06 0.73 1.45 1.13 5.64 4.68
9 LNS 1.15 0.81 1.90 1.49 6.64 5.47
10 SK255 0.89 0.62 1.55 1.17 5.37 4.40
11 BSK17 1.02 0.70 1.54 1.23 5.68 4.75
12 SAMi0 1.01 0.74 1.73 1.36 6.13 5.15

014311-3



BUI MINH LOC, NAFTALI AUERBACH, AND G. COLÒ PHYSICAL REVIEW C 99, 014311 (2019)

TABLE II. Isospin mixing (or Coulomb mixing) (%) of N = Z

nuclei including 40Ca, 56Ni, and 100Sn. The Coulomb potential is
excluded in the HF-RPA calculation.

No. Int. 40Ca 56Ni 100Sn

Q
(IV)
0 V

(IV)
C Q

(IV)
0 V

(IV)
C Q

(IV)
0 V

(IV)
C

1 SIII 1.06 0.80 1.69 1.42 5.54 4.94
2 SGII 1.21 0.94 2.01 1.68 6.70 5.97
3 SKM* 1.23 0.93 1.97 1.64 6.53 5.76
4 SLy4 1.17 0.92 1.95 1.67 6.40 5.79
5 SAMi0 1.12 0.88 1.86 1.55 6.21 5.53

tently (in both HF and RPA). We find that this uncertainty, in
this case, is not large even in 100

50 Sn (see Tables I and II). We
prefer to use the results of the HF and RPA included Coulomb
potential as inputs into the calculation of isospin and Coulomb
mixing because they are more realistic and can be compared
to experiment.

In the HF calculation for nuclei with N �= Z a very small
(a fraction of a percent) isospin mixing component appears
even when the Coulomb interaction is put to zero [1,28,29].
In the present approach, the HF wave functions serve as the
basis for the RPA calculations. The RPA restores the isospin
symmetry [28,30] and the above spurious isospin mixing
causes negligible uncertainties in the numbers ε2

T +1, which are
calculated in perturbation theory.

In the case of nuclei that have N > Z, the Coulomb mixing
and isospin mixing are different (see Table III). Among N >
Z nuclei, 78Ni is an interesting nucleus because T = 11 is
large while Z = 20 is relatively small. As one expects, the
isospin mixing is strongly reduced by the factor 1/(T + 1). In
most nuclei, the Coulomb potential can be treated in perturba-
tion theory. When Z becomes large and the Coulomb potential
becomes very strong such as in the case of oganesson (302

118Og),
the perturbative approach in the calculation of the Coulomb
mixing is not correct. However, the isospin mixing in 302

118Og

TABLE IV. Isospin properties of the IVM resonance for 48Ca
(h̄ω = 11.28 MeV). E0 is the average energy of the strength distri-
bution. ST and ST +1 are the reduced transition strength to |T , T ; α〉,
and |T + 1, T ; α〉, respectively. �EC is the direct term of the CDE.
�E+ is the energy difference between |T , T ; α〉 and |T + 1, T ; α〉.
V1 is the symmetry potential as defined in the expression (18).

E0 ST ST +1 �EC �E+ V1

1 SIII 34.79 149.27 125.68 7.27 11.06 106.14
2 SGII 32.87 153.12 113.98 7.33 6.88 66.01
3 SKM* 32.54 156.72 125.68 7.23 9.60 92.17
4 SkP 30.00 160.48 123.00 7.23 11.15 107.02
5 SkI2 33.08 141.64 91.56 7.10 7.43 71.34
6 SLy4 30.57 148.43 123.51 7.22 10.19 97.80
7 SKO 32.60 144.58 72.78 6.96 15.84 152.08
8 SKO’ 32.32 138.67 81.67 7.14 11.75 112.77
9 LNS 33.14 134.72 102.85 7.52 9.78 93.86
10 SK255 34.65 153.56 100.39 7.08 11.77 112.99
11 BSk17 32.83 139.00 110.69 7.31 11.32 108.63
12 SAMi0 32.28 154.64 109.01 7.20 8.05 77.25

(T = 33) is still small, around 2%, because of the factor
1/(T + 1). It is useful to remind that the uncertainties caused
by other sources besides the Coulomb interaction are expected
to be an order of magnitude smaller, thus they are smaller than
the difference between results obtained with different choices
of the Skyrme interactions.

Finally, as mentioned in the text, for the isospin mixing,
only the T + 1 states are taken into account and the isospin
properties of the IVM resonance are useful for the calculation.
Therefore, the properties of the IVM resonance are shown
in Tables IV–VIII for 48Ca, 78Ni, 90Zr, 120Sn, and 208Pb,
respectively. In Tables IV–VIII, the average energy of the
transition strength distribution is E0 = m0(1)/m0(0). ST and
ST +1 are the total transition strength to the |T , T ; α〉 and
|T + 1, T ; α〉 states, respectively. �EC is the direct CDE.
�E+ given by Eq. (17) is the difference in energy between

TABLE III. Coulomb mixing ε2
C (%) and isospin mixing ε2

T +1 (%) of N > Z nuclei including 48Ca (T = 4), 78Ni (T = 11), 90Zr (T = 5),
120Sn (T = 10), and 208Pb (T = 22).

48Ca 78Ni 90Zr 120Sn 208Pb
ε2

C ε2
T +1 ε2

C ε2
T +1 ε2

C ε2
T +1 ε2

C ε2
T +1 ε2

C ε2
T +1

1 SIII 1.14 0.10 3.83 0.04 4.13 0.52 10.85 0.23 29.90 0.29
2 SGII 1.33 0.12 4.28 0.05 4.98 0.66 11.66 0.32 34.38 0.41
3 SKM* 1.35 0.12 4.66 0.05 4.91 0.62 12.10 0.30 35.57 0.36
4 SkP 1.52 0.11 5.53 0.04 5.18 0.58 12.41 0.28 38.50 0.32
5 SkI2 1.20 0.09 4.71 0.03 4.13 0.53 11.03 0.25 32.36 0.32
6 SLy4 1.37 0.12 4.45 0.04 4.73 0.56 11.36 0.25 33.64 0.29
7 SKO 1.32 0.05 6.19 0.02 4.02 0.41 10.50 0.23 32.75 0.26
8 SKO’ 1.20 0.07 4.79 0.03 4.36 0.49 11.69 0.25 34.64 0.28
9 LNS 1.43 0.12 4.85 0.04 5.10 0.63 12.86 0.29 38.04 0.34
10 SK255 1.24 0.08 4.64 0.03 4.13 0.49 10.84 0.24 31.94 0.28
11 BSk17 1.18 0.10 4.40 0.04 4.30 0.53 11.38 0.23 33.24 0.28
12 SAMi0 1.35 0.11 4.27 0.05 4.72 0.60 10.93 0.30 31.85 0.37
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TABLE V. The same as in Table IV, but for 78Ni (h̄ω = 9.60 MeV).

E0 ST ST +1 �EC �E+ V1

1 SIII 30.55 382.04 186.47 8.90 18.19 118.23
2 SGII 28.86 385.18 186.63 8.96 14.34 93.22
3 SKM* 28.47 400.08 175.45 8.85 16.29 105.91
4 SkP 26.14 405.03 165.44 8.88 18.40 119.57
5 SkI2 27.01 387.49 123.12 8.64 19.35 125.79
6 SLy4 27.10 373.59 168.29 8.87 17.50 113.74
7 SKO 25.51 412.48 117.36 8.60 26.73 173.73
8 SKO’ 26.77 365.85 112.93 8.80 21.14 137.41
9 LNS 29.24 341.93 121.66 9.18 17.14 111.43
10 SK255 29.37 401.49 120.28 8.64 19.59 127.33
11 BSk17 28.01 364.18 155.15 8.93 19.89 129.29
12 SAMi0 28.96 388.83 196.12 8.87 15.02 97.66

|T , T ; α〉 and |T + 1, T ; α〉, and V1 is the symmetry potential
defined in Eq. (18). These values can be compared to the
work in Ref. [25] where the Green’s function method was
employed using the SIII Skyrme interaction. The values of
h̄ω = 41 × A−1/3 are given to describe the A−1/3 behavior
of the energy of the IVM- E0, from our calculation. This
behavior was also obtained in the hydrodynamical model or
other collective models. Due to the Pauli blocking of the
excess neutrons, it is expected that ST +1/ST < 1. Indeed, the
p-h excitations involving a proton transformed into a neutron
in an excess neutron orbit are forbidden by the Pauli principle.
Not so in the excitations represented by ST . There one can
have p-h components in which the proton is placed in the
orbits occupied by the excess neutrons. However, it is different
in the case of 90Zr. A plausible explanation is in the following.
In 90Zr the excess neutrons occupy mostly the 1g9/2 orbit.
There is no j = 9/2 orbit below the 1g9/2 and therefore one
cannot occupy this orbit if one constructs a Jπ = 0+ state.
Thus the amount of p-h components for the T , and T + 1 is
the same and there should be little difference between ST and
ST +1.

In the calculation of �EC , only the direct part that con-
tributes more than 90% to the CDE was included. Other

TABLE VI. The same as in Table IV, but for 90Zr
(h̄ω = 9.15 MeV).

E0 ST ST +1 �EC �E+ V1

1 SIII 33.53 425.52 430.42 12.22 4.24 63.66
2 SGII 31.45 426.10 444.33 12.38 3.52 52.74
3 SKM* 31.53 435.10 445.68 12.25 3.98 59.64
4 SkP 29.61 431.82 424.44 12.28 5.30 79.56
5 SkI2 31.89 380.95 368.23 12.04 3.12 46.82
6 SLy4 29.96 405.62 405.58 12.25 4.90 73.44
7 SKO 32.08 377.30 293.82 11.85 3.41 51.18
8 SKO’ 30.98 375.09 330.47 12.08 3.71 55.64
9 LNS 32.08 371.34 385.09 12.70 4.82 72.28
10 SK255 33.93 412.47 400.59 12.01 4.60 69.04
11 BSk17 31.61 387.62 380.95 12.34 4.32 64.73
12 SAMi0 31.78 424.63 426.62 12.23 3.59 53.78

TABLE VII. The same as in Table IV, but for 120Sn (h̄ω =
8.31 MeV).

E0 ST ST +1 �EC �E+ V1

1 SIII 29.86 804.40 469.01 13.97 8.73 95.20
2 SGII 28.25 798.77 499.43 14.12 6.87 74.98
3 SKM* 28.21 818.03 492.10 13.92 7.51 81.94
4 SkP 26.77 795.35 466.98 14.00 8.39 91.48
5 SkI2 27.78 735.27 402.59 13.73 8.03 87.55
6 SLy4 26.96 756.12 427.30 13.97 8.91 97.18
7 SKO 28.10 695.72 401.01 13.95 8.53 93.08
8 SKO’ 27.04 709.41 405.85 13.99 8.98 97.98
9 LNS 28.70 701.41 414.99 14.37 8.49 92.57
10 SK255 30.11 777.41 453.56 13.67 8.43 91.93
11 BSk17 27.87 740.77 404.41 14.03 9.12 99.45
12 SAMi0 28.70 788.05 490.95 14.08 7.21 78.63

effects, such as the exchange term, the finite proton size effect,
the neutron-proton mass difference, the electromagnetic spin-
orbit, and the vacuum polarization have not been taken into
account. These effects are expected to be small, of the order
of one or few percents. They have been estimated in Ref. [31]
as a function of A and Z. Very recently, a fully self-consistent
calculation of these effects has been carried out for 208Pb in
Ref. [32] and confirmed the smallness of the effects. This
makes the value of the direct CDE quite acceptable for the
purpose of our study. It should be also noted that the other
isospin breaking forces of strong origin have not been taken
into account here. In general, our isospin mixing numbers are
lower than in other approaches where the collective effect of
the p-h states is neglected (see a discussion in Ref. [1]). It is
remarkable that our results (Tables I, III) for isospin mixing
are close to the results obtained in Ref. [13]. For example, in
40Ca, the isospin mixing in Ref. [13] is 0.9%. Our numbers
are around 1.0%. Our results for 48Ca were close to the result
given in Fig. 1 of Ref. [13]. In 100Sn, our result is 5–7%,
close to the values given in Fig. 5 of Ref. [13] [in the after
rediagonalization (AR) calculation] and also Refs. [11,12].

TABLE VIII. The same as in Table IV, but for 208Pb (h̄ω =
6.92 MeV).

E0 ST ST +1 �EC �E+ V1

1 SIII 28.19 2081.68 1164.34 19.34 9.87 89.25
2 SGII 26.35 2104.85 1271.02 19.52 7.90 71.45
3 SKM* 26.50 2130.51 1221.69 19.36 8.81 79.69
4 SkP 25.04 2065.16 1111.53 19.46 10.59 95.75
5 SkI2 25.37 1972.33 1012.50 19.00 8.64 78.12
6 SLy4 25.29 1954.69 1025.64 19.39 10.85 98.12
7 SKO 25.28 1918.29 895.07 19.08 9.28 83.90
8 SKO’ 24.94 1878.92 928.52 19.28 10.06 91.01
9 LNS 26.85 1839.60 1034.58 19.93 10.29 93.03
10 SK255 27.89 2064.87 1106.52 18.98 10.00 90.46
11 BSk17 26.04 1918.62 986.63 19.50 10.48 94.80
12 SAMi0 26.87 2077.67 1215.95 19.45 8.10 73.26
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IV. CONCLUSION

It is well known that the isospin formalism is very useful in
nuclear physics, where many examples of isospin symmetry
can be found. In particular, this is true for the ground states
where isospin mixing does not exceed a few percent. Among
the N = Z nuclei studied, 100Sn has the largest isospin admix-
ture, ε2

T +1 ∼ 5% (see also Refs. [11–13]). This is of course
due to its large charge, Z = 50. As one proceeds to exotic
nuclei (N > Z) with large numbers of protons and a large
excess of neutrons, the isospin mixing remains small because
the increase in the strength of the Coulomb field is balanced by
the geometrical factor (Clebsch-Gordan coefficient) 1/(T +
1) in the denominator. This does not mean that the isospin
nonconserving interaction, the Coulomb force, plays a minor
role in forming the nucleus, as can be seen in the large
Coulomb mixing we calculated. The isospin mixing and the
Coulomb mixing do not depend strongly on the choice of
the Skyrme interaction. We emphasize again that our results
here and in Refs. [1–5] for isospin mixing in the ground
states of even-even nuclei, ε2

T +1 are considerably smaller

than in the very early shell-model calculations [33,34]. This
reduced isospin mixing is due to the fact that the repulsive
p-h interaction in the isovector channel, the Coulomb strength
is shifted in energy from a 2h̄ω to close to 4h̄ω depending
on the interaction used. Also due to the conservation of the
energy-weighted sum rule in the RPA an upper shift in energy
means a reduction in the strength. Therefore, the reduction
of isospin mixing is more than a factor of four (and possibly
closer to a factor of eight) compared to the models in which
the p-h strength is left at the unperturbed position of 2h̄ω. Our
values for the isospin mixing agree well with the results of
isospin-projected HF calculations [13].
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