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Medium-polarization effects in 3SD1 spin-triplet pairing
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Stimulated by the still puzzling competition between spin-singlet and spin-triplet pairing in nuclei, the
3SD1 neutron-proton pairing is investigated in the framework of BCS theory of nuclear matter. The medium-
polarization effects are included in the single-particle spectrum and also in the pairing interaction starting
from the G matrix, calculated in the Brueckner-Hartree-Fock approximation. The vertex corrections due to
spin and isospin collective excitations of the medium are determined from the Bethe-Salpeter equation in
the random-phase approximation (RPA) limit, taking into account the tensor correlations. It is found that
the self-energy corrections confine the superfluid state to very low density, while remarkably quenching the
magnitude of the energy gap, whereas the induced interaction has an attractive effect. The interplay between
spin-singlet and spin-triplet pairing is discussed in nuclear matter as well as in finite nuclei.
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I. INTRODUCTION

For several decades the strong experimental evidence
of spin-singlet pairing between like nucleons in nuclei
has been stimulating intense theoretical activity [1]. In
contrast, there is not yet clear evidence for neutron-
proton (np) spin-triplet pairing. This is the reason why
this kind of pairing has received much less attention
[2–4]. However, it has been well known for a long
time that the isospin T = 0 np interaction could give
a relevant pairing, being more attractive than the T = 1
interaction [5]. In recent calculations on the competition be-
tween spin-singlet and spin-triplet pairings in N = Z nuclei it
has been argued that the latter is hindered by the spin-orbit
splitting [6–8]. However, in Ref. [6] it is pointed out that
in very large N = Z nuclei (A > 140) spin-triplet pairing
condensates are favored because the spin-orbit force becomes
vanishing small. The disappearance of the S = 1, T = 0
pairing with asymmetry in nuclei has been studied in, e.g.,
Ref. [9]. In those calculations no dynamical effects on pair
correlations are considered, whereas it is proved that particle-
vibration coupling could yield a significant contribution to the
pairing gap magnitude in the spin-singlet case [10] and also
in the neutron-proton spin triplet one, even if less significant
[11].

Studies of neutron-neutron (nn) and proton-proton (pp)
pairing in nuclear matter have also addressed the medium
collective excitations [12,13], which can enhance or quench
the pairing correlations according to the nuclear environment
where the Cooper pairs are embedded. In the case spin-singlet
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nn pairing in symmetric nuclear matter the medium-induced
interaction significantly enhances the gap, supporting calcu-
lations of energy gaps in 1S0 nn or pp spin-singlet pairing in
nuclei, where pair vibrations are included [10].

In the case of spin-triplet np pairing BCS calculations
with bare interaction in nuclear matter predict sizable energy
gaps of the order of 12 MeV, i.e., four times that of the spin
singlet [14]. Even if significant rescaling is expected from
the self-energy effects, the energy gap could be still large
enough by antiscreening due to the induced interaction [12].
Therefore the predicted effect of the spin-orbit energy splitting
could be resized by the large spin-triplet pair correlation
energy.

In this paper we discuss the 3SD1 spin-triplet np pairing
in symmetric nuclear matter, taking into account both self-
energy insertions to the quasiparticle spectrum and vertex
corrections to the bare interaction due to collective excitations
of the medium. The vertex corrections have been determined
from the random-phase approximation (RPA) version of the
Bethe-Salpeter (BS) equation in the Landau limit. However
the RPA does not consider the feedback of the effective
interaction on the collective modes which have generated
it.

As driving term, the Brueckner-Hartree-Fock (BHF) G
matrix is adopted to prevent divergences due to the hard
core of the nuclear force. The strong tensor force present in
the bare interaction deeply affects the G matrix so that it
cannot be neglected. This entails that the tensor parameters
must be included in the effective interaction, the solution of
the BS equation, when expressed in terms of Landau-Migdal
parameters [15]. The resulting energy gap will be compared
with the 1S0 spin-singlet nn (or pp) gap, and estimates based
on the local density approximation (LDA) will be made for
the gaps in nuclei.

2469-9985/2019/99(1)/014310(6) 014310-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.99.014310&domain=pdf&date_stamp=2019-01-11
https://doi.org/10.1103/PhysRevC.99.014310


WENMEI GUO, U. LOMBARDO, AND P. SCHUCK PHYSICAL REVIEW C 99, 014310 (2019)

II. THEORETICAL FRAMEWORK

A. Gap equation

In this section, the formalism of the BCS theory of the
3SD1 superfluid state of symmetric nuclear matter is set,
including the medium-polarization effects [14]. The two cou-
pled gap equations (L = 0, 2) are written as

�ST
L (k) = −Z2

F

π

∫ ∞

0
k′2dk′ ∑

L′

V ST
LL′ (k, k′)√

ε2
k + �(k′)2

�ST
L′ (k′),

(1)

where

�(k)2 = �ST
0 (k)2 + �ST

2 (k)2. (2)

The prefactor ZF (or Z factor) is the quasiparticle strength,
which takes into account the depletion of the Fermi surface
[16]. The quasiparticle spectrum is given by

E2
k = (εk − εF )2 + �(k)2, (3)

where εk = k2/2m∗ + U0 is the single-particle energy in the
effective mass approximation (EMA) and εF is the Fermi
energy. In a consistent approach the the gap equation has to
be coupled to the conservation of the particle number:

ρ = 4
∑

k

1

2

[
1 − εk − εF

Ek

]
, (4)

FIG. 1. Pairing interaction with screening: the first term on the
right-hand side is the bare interaction; the second one is the induced
interaction, where the dashed bubble insertion is the series of ring
diagrams.

The pairing force, in principle, contains all irreducible in-
teraction diagrams, but here only the NN bare interaction
and the medium-polarization insertions will be considered, as
displayed in Fig. 1. The bare two-particle interaction is

V jst (k, k′) = N−1
0

∑
Y ∗

lm(k̂)Yl′m′ (k̂′)C(lm, ssz|jjz)

× C(l′m′, ss ′
z|jjz)V jst

ll′ (k, k′), (5)

where j , s, and t are total angular momentum, spin, and
isospin.

B. Induced interaction in RPA

In this section, we discuss the derivation p-h effective
interaction F T

SM,SM ′ (k, k′; p) leading to the vertex corrections
in the pairing interaction, Eq. (13). It fulfills the BS equation
in the RPA limit [17]:

F T
SM,SM ′ (k, k′; p) = GT

SM,SM ′ (k, k′; p) +
∑
M ′′

∫
d4k′′

(2π )4
GT

SM,SM ′′ (k, k′′; p)λ(k′′, p)F T
SM ′′,SM ′ (k′′, k′; p), (6)

where the k, k′, and q stand for energy-momentum and energy-momentum transfer, respectively, and S and T are total p-h spin
(with z projection M) and isospin, respectively. λ(k, q ) is the free polarization propagator [18]. The solution of the BS equation
assumes an algebraic form and can be solved analytically [19] in the Landau limit, where energy and momentum lie on the Fermi
surface and energy-momentum transfer q = 0. In that limit the driving term G(k, k′; 0) depends only on the angle θ between k
and k′ and, expressed in terms of Landau parameters (expanded in partial waves), can be written

G(k, k′) = N−1
0

∑
l

(
Fl + F ′

l τ 1 · τ 2 + Glσ 1 · σ 2 + G′
lσ 1 · σ 2τ 1 · τ 2 + q2

k2
F

HlS12(q ) + q2

k2
F

H ′
l S12(q )τ 1 · τ 2

)
Pl (cos θ ), (7)

where 2q = k − k′ is the relative momentum and S12 the tensor operator, S12(q ) = 3(�S · q̂ )2 − S2. Pl (cos θ ) are the Legendre
polynomials. The inclusion of the tensor Landau parameters is motivated by the fact that the interaction contains a strong tensor
component in the 3SD1 channel.

In the BS equation the choice of the driving term plays a crucial role. In principle it contains all irreducible processes of the
interaction. The simplest approximation is to take the bare interaction itself, but, to prevent the divergences related to the hard
core of the nuclear force, we adopted the Brueckner G matrix calculated in the Brueckner-Hartree-Fock (BHF) approximation.
The relation between the G matrix and the Landau parameters is presented in Appendix.

In order to derive the BS equation in the Landau limit, we follow closely Ref. [19]. After expanding in partial waves the p-h
interaction F (the same for the driving term),

F T
SMS,SM ′

S
(k, k′; 0) = N−1

0

∑
lml′m′
JM

4πY ∗
lm(k̂)Yl′m′ (k̂′)

[(2l + 1)(2l′ + 1)]1/2
〈lm SMS |JM〉〈l′m′ SM ′

S |JM〉F SJT
ll′ , (8)
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FIG. 2. Energy gap with self-energy effects. Left: Comparison between 3SD1 and 1S0 gaps from bare interaction. Middle: 3SD1 gaps with
single-particle spectrum in the EMA (effective mass vs density in the inset). Right: Energy gap with depleted Fermi surface (Z factor vs density
in the inset).

the BS equation becomes the algebraic equation for the F SJT
ll′

matrix elements,

F SJT
ll′ = GSJT

ll′ −
∑
l′′

1

2l′′ + 1
GSJT

ll′′ F SJT
l′′l′ , (9)

where J is the total angular momentum. The matrix elements
GSJT

ll′′ are the coefficients of the partial-wave expansion of
the driving term. Their expression in terms of the Landau
parameters is reported in the Appendix. In the case of S = 0
all partial-wave matrix elements are diagonal, because the
tensor force does not affect the scalar Landau parameters and
we simply get the well known expression

F 0JT
ll = G0JT

ll

1 + G0JT
ll /(2l + 1)

, (10)

where G0J0
ll = Fl and G0J1

ll = F ′
l and J = l.

In the case of S = 1, off-diagonal matrix elements also
exist due to the coupling between vector and tensor Landau
parameters as shown in the Appendix. But only two different
angular momenta (l, l + 2) at most can couple together. The
explicit expression of the matrix elements F 0JT

ll (l′ �= l) of
the effective interaction is

F 1JT
ll = D−1

[
G1JT

ll

(
1 + G1JT

l′l′

2l′ + 1

)
−

(
G1JT

ll′
)2

2l′ + 1

]
,

F 1JT
ll′ = D−1G1JT

ll′ , (11)

where

D =
(

1 + G1JT
ll

2l + 1

)(
1 + G1JT

l′l′

2l′ + 1

)
−

(
G1JT

ll′
)2

(2l + 1)(2l′ + 1)
.

(12)

Notice that only two different angular momenta at most can
couple together, i.e., l = l′ or |l − l′| = 2.

C. Induced interaction in the p-p sector

For application to the gap equation, the p-h interaction
must be converted into p-p interaction and then the induced
part must be taken out (second diagram on the right-hand side

of Fig. 1). The spin-isospin transformation is given by

F st
pp(q, P )

= (−)1+t
∑
ST

(2T + 1)

{ 1
2

1
2 T

1
2

1
2 t

}

×
∑

MM ′mm′
{SM, SM ′|sm, sm′}F T

SMS,SM ′
S
(k, k′; 0),

(13)

where {SM, SM ′|sm, sm′} is the spin transformation bracket
and P is the total momentum [20]. For application to the np
pairing interaction in the 3SD1 the F 01

ll′ partial waves with
l, l′ = 0, 2 have to be projected out from the expansion of
F st (q, P ).

III. NUMERICAL RESULTS

The numerical evaluation of the medium-polarization ef-
fects starts from the G matrix calculated in the BHF approxi-
mation with the Argonne AV18 two-body interaction and the
consistent meson-exchange three body force [21].

From the G-matrix expansion of the self-energy the dis-
persion effects of the mean-field are included in the effective
mass approximation (EMA), and the depletion of the Fermi
surface is also approximated by the Z factors [22].

The medium polarization is described by the BS equation,
solved in the RPA, where the Gph matrix is the input, so
that p-p short-range correlations and p-h long-range collective
excitations of the nuclear matter are simultaneously treated in
a unified context.

Finally the p-p interaction induced by the medium polar-
ization is added to the bare interaction and the gap equation is
solved.

A. Self-energy corrections

As shown in Fig. 2(a), the energy gap with only bare inter-
action gives for the spin-triplet 3SD1 pairing a peak value the
order of 12 MeV, which should be compared with the value of
3 MeV for spin-singlet 1S0 pairing [14]. The large difference
between the two gaps is justified by the exponential depen-
dence on the interaction strength of the solution of the BCS
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FIG. 3. Driving p-h interaction G SJT
ll′ from the G matrix in the

SD channel.

gap equation [18]. In Fig. 2(b) the mean-field dispersive effect
is also reported for comparison using the effective mass (see
inset) in the quasi-particle spectrum, according to Eq. (3). This
effect is well known [23]: the gap magnitude gets reduced
and pairing density range is also shifted towards low densities,
where m∗/m ≈ 1. Additional reduction of the gap is obtained
when including the depletion of the Fermi sphere, as shown in
Fig. 2(c). The depletion is introduced via the Z factor [16,22],
plotted in the inset of the figure. This quenching effect is more
pronounced since pairing strength is exponentially dependent
on Z2. The two combined effects give rise to a remarkable
quenching of the gap in a density range, making the 3SD1

pairing a surface effect like the 1S0 one. However, the peak
value of the 3SD1 energy gap is still over two times larger
than the 1S0 one with the same self-energy approximation.

B. Induced interaction

The p-p matrix elements of the G matrix in the SD channel
are calculated from the BHF approximation with the same
two- and three-body forces as the self-energy. The p-p matrix
elements are transformed into p-h matrix elements, expressed
in terms of Landau parameters as shown in the Appendix.
For such a purpose the Landau limit has been adopted, where
the energy-momentum transfer is assumed to be vanishing.
Since the SD components of the G matrix derive from the
tensor part of the bare interaction, the additional H and H ′
Landau parameters have been introduced in the particle-hole
(p-h) effective interaction [24]. In Fig. 3 the SD partial waves
of the BHF Landau parameters are plotted as a function of the
density; see Eqs. (A5)–(A9) for T = 0 and the corresponding
ones for T = 1. The zero-order diagonal components are the
Landau parameters from the BHF G matrix with no tensor
force effect. The S = 1 partial-wave components are affected
by the tensor Landau parameters, but their effect is small. It
follows that the off-diagonal matrix elements are even smaller.
The main contribution comes from the isoscalar and isovector

FIG. 4. Comparison among 3SD1 gaps from RPA induced inter-
action and previous effects and 1S0 in full calculations.

density fluctuations (S = 0) as expected. From the solution
of the BS equation in the Landau limit with BHF Landau
parameters shown in Fig. 3 as input, the effective interaction
is determined and transformed in the particle-particle (p-p)
representation, according to Eq. (13). The matrix elements
of the 3SD1 induced part (second diagram of the right-hand
side of Fig. 4) are reported in Table I. It easily seen that the
dominant contribution is concentrated in the S = 0 isoscalar
matrix element. This contribution is attractive, much the same
as for the spin-singlet pairing in symmetric nuclear matter
[12].

C. Pairing gap from vertex corrections

The p-p effective interaction is added to the pairing in-
teraction and the BCS equation is solved. The resulting gap
vs Fermi momentum is displayed in Fig. 4 in comparison
with the preceding results. Two series of calculations have
been performed: the first one (upper stars) shows the effects
on induced interaction without self-energy corrections; the
second one (lowest stars) consists of full calculations: self-
energy plus induced interaction. There was a limit to the lower
densities imposed by the missing convergence of the BHF cal-
culation of the G matrix. This is due to the singularity of the
G matrix in the density domain where large pair correlations

TABLE I. p-p induced interaction (F 10
pp )ll′ in the 3SD1 channel.

ρ kF SS DD SD

(fm−3) (fm−1) (MeV fm3) (MeV fm3) (MeV fm3)

0.277 1.60 −0.70 −0.03 0.04
0.228 1.50 −1.14 −0.04 0.02
0.186 1.40 −1.63 −0.04 0.00
0.175 1.36 −1.65 0.05 −0.01
0.117 1.20 −3.43 −0.05 −0.04
0.068 1.00 −13.03 −0.07 −0.08
0.035 0.80 −22.32 0.00 −0.10
0.015 0.60 −28.40 0.09 −0.10
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TABLE II. Average gaps �0 (no screening) and � (screening)
in N = Z nuclei from LDA. The density profiles are taken from
Ref. [26].

A R (fm) �0 (MeV) � (MeV)

40 3.83 6.82 3.54
100 5.20 8.18 3.75
200 6.50 9.38 4.00

are expected to occur. This drawback requires a self-consistent
calculation of the BCS equation and a BHF calculation with
the quasiparticle energy spectrum, that is beyond the scope of
the present investigation. The main result is that, due to the
attractive nature of the new term, the self-energy quenching
is reduced, but less than in the case of spin-singlet pairing.
A second main result is that the shift of the peak value at
low density produced by the self-energy is not affected by
the induced interaction, suggesting that pairing is a surface
phenomenon in finite nuclei. Finally, it is worth noticing that
the spin-triplet pairing in the 3SD1 channel is still much larger
than the spin-singlet pairing in the 1S0 channel, as clearly
shown in Fig. 4.

D. Average pairing in nuclei from LDA

To make contact with pairing in nuclei we have estimated
the average gap in N = Z nuclei from the Thomas-Fermi den-
sity corresponding to the states around the chemical potential
μ defined as follows [25]:

〈�(μ)〉 =
∫

d�r
∑

i

1

g(μ)
δ(μ − εi )|φi (�r )|2�(r ), (14)

where φi (�r ) is the single-particle wave function with energy
eigenvalue εi , �(r ) is the nuclear matter gap for the density
ρ(r ) according to the local density approximation (LDA), and
g(μ) is the level density at μ. It easy to show that, in the h̄⇒0
semiclassical limit [25],

〈�(μ)〉 =
∫

d3�r �(r )ρ1/3(�r )∫
d3�r ρ1/3(�r )

, (15)

where we take for the density the phenomenological one
parametrized by [26]. In Table II the results are reported
for some N = Z nuclei. We see that screening substantially
reduces the gap values which, however, remain stronger than
in the T = 1 channel.

IV. DISCUSSION AND CONCLUSIONS

In this paper the spin-triplet 3SD1 pairing in symmetric
nuclear matter has been discussed within the BCS theory with
medium-polarization effects. On one hand, the self-energy
corrections reduce significantly the gap magnitude, shifting
the peak value to low density. On the other hand, the induced
interaction, which is attractive almost in the full asymmetry
range, partially restores a higher magnitude of the gap without
squeezing the density range of the superfluid phase. The in-

duced interaction has been obtained in the RPA in the Landau
limit starting from the BHF p-h interaction. In this way the
long-range correlations are built up on top of the short-range
correlations included in the G matrix. In this approximation
the main contribution comes from the scalar density fluctu-
ations, as expected. On the other hand the feedback of the
vertex correction on the other spin-isospin fluctuations can
be treated only in the framework of the induced interaction
approach [27], which is a task of further investigations.

However, the gaps obtained in the present approximation,
as large as 2–3 times the magnitude of the spin-singlet pairing
in the 1S0 channel, provide a strong indication of the im-
portance of the medium polarization. The conclusion is that
the 3SD1 neutron-proton superfluid state in nuclear matter
turns out to be more stable than the 1S0 neutron-neutron
or proton-proton superfluid state. This is in agreement with
recent calculations, where it is found that, in N = Z nuclei
with mass higher than A = 140, np pair correlations are
stronger than nn or pp ones [6]. Under such a threshold the
pairing between like nucleons is found to be the favored one,
because the spin-orbit splitting in nuclei hinders np pairing.
Nevertheless the present nuclear matter calculations do not
exclude the possibility that the np pairing strength is much
larger in the spin triplet than the singlet even below A = 140.
It would be a timely issue to study the competition between
spin-triplet pairing and the spin-orbit force in finite nuclei
including medium screening effects.
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APPENDIX

The microscopic derivation of the Landau parameters from
the BHF approximation is obtained by converting the p-p
G matrix, as calculated with the Brueckner-Bethe-Goldstone
equation, into the p-h representation. This procedure yields
[28,29]

(F,F ′) = 1

16

∑
st

(2t ± 1)Gst , (A1)

(G,G′) = 1

16

∑
t

(2t ± 1)(G1t − G0t ), (A2)

(H,H ′) = 1

24

k2
F

q2

∑
t

(2t ± 1)
(
G̃1t

1 − G̃1t
0

)
, (A3)

where Gst denotes the G matrix with spin s and isospin t , and
G̃st

m is the same with q̂ along the spin quantization axis. The
isoscalar (isovector) Landau parameters take the upper (lower)
sign. Inverting the partial-wave expansion of the driving term,

014310-5



WENMEI GUO, U. LOMBARDO, AND P. SCHUCK PHYSICAL REVIEW C 99, 014310 (2019)

we can determine the coefficients

GSJT
ll′ = N0

[(2l + 1)(2l′ + 1)]1/2

4π

∑
m,m′, MS,M ′

S

[(2l + 1)(2l′ + 1)]1/2〈lm SMS |JM〉〈l′m′ SM ′
S |JM〉

×
∫

dk̂ dk̂′Ylm(k̂)Y ∗
l′m′ (k̂′)〈SMS, T |GST (k, k′)|SM ′

S, T 〉, (A4)

as a function of the Landau parameters. For S = 0 component the calculation is straightforward, whereas for S = 1 it is quite
tedious for the coupling between vector and tensor Landau parameters. It can be found in the literature (see, e.g., Refs. [17,30]).
Below are the matrix elements needed for the calculation of vertex correction to the np pairing interaction in the channel 3SD1.
For T = 0 they are, in order,

G000
00 = F0, (A5)

G020
22 = F2, (A6)

G110
00 = G0, (A7)

G110
22 = G2 − 1

4

(
7

3
H1 − 2H2 + 3

7
H3

)
, (A8)

G110
02 = −

√
10

12

(
3H0 − 2H1 + 3

5
H2

)
. (A9)

For T = 1 the isoscalar Landau parameters must be replaced by the corresponding isovector ones (F → F ′, . . . ).
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