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Quasiparticle nature of excited states in random-phase approximation
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Quantum models of nuclear reactions require an effective way of taking into account the complex coupling of
the components of different excited states as well as the nuclear residual interactions of the composite system.
This is usually achieved with the use of distributions giving nonuniform weights for each of the modes involved.
The response function of the quantum model permits the inclusion of the residual interaction and thus a unified
description of collective and single-particle excitations. We analyze the particle-hole nature of the RPA modes
of the response function in the context of multistep direct (MSD) nuclear reactions. The energy distribution of
the particle-hole states that contribute to the response function is studied. Although many states make small
contributions to the low-energy collective states, we show that the energy distribution of the higher-energy states
is concentrated around the energies of the noninteracting components. The spreading energy of the strength
function is determined for different nuclei, and a general fit accounting for both the collective and noncollective
parts of the spectra is proposed. In addition we also test the randomness assumption commonly applied in models
of MSD reactions.
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I. INTRODUCTION

Reactions are widely used as a mechanism to study the
many different aspects of the interaction of particles with
nuclei. The internal structure of nuclei as well as the changes
in the systematics of this structure as nuclei approach the drip
line are both subjects of intense experimental and theoretical
study at present. The interactions of nucleons and other parti-
cles with nuclei are also important for nuclear applications,
especially for medical treatments, energy generation, and
national security. The energy scale involved can be associated
with different reaction models. The physics of low-energy
interactions (slow processes) is usually described by com-
pound nucleus formation, when the projectile is absorbed by
the target nucleus and emission occurs in a evaporation-like
process, while more energetic beams (a fast process) also
produce direct components in which only a single interaction
often takes place. Events that cannot be classified as either of
these are called pre-equilibrium reactions. They are neither as
slow as compound nuclear reaction nor as fast as a single-step
direct reaction. Emission from such an interaction usually
occurs after the initial stage of the reaction but before the
statistical equilibrium of the compound nucleus formation
has been attained. The interest in pre-equilibrium reactions
goes beyond fundamental studies of their nature. They also
play an important role in several applications, e.g., fast nu-
clear reactors, accelerator-driven systems (ADS), and proton
therapy. The reaction data are also necessary for planning
the production of medical radionuclides for diagnostic and
internal therapy purposes [1,2]. Theoretical nuclear reaction

*chimanski@ita.br

models are very important for supplementing the existing ex-
perimental data or even substituting for them, when practical
or economic difficulties are faced. Therefore, pre-equilibrium
nuclear reactions models are an important tool in nuclear data
evaluation.

The development of the theory of pre-equilibrium reactions
started in the 1960s with the classical model proposed by
Griffin [3]. His model is known as the exciton model due
the particle-hole form of excitations used to describe these
reactions. A time probability equation for transitions between
different exciton classes was proposed by Cline and Blann
[4], with which the entire energy-dependent dynamics could
calculated in terms of transition density rates. Many improve-
ments to this semiclassical theory were made in the years that
followed [5–11].

The quantum description of pre-equilibrium reactions was
developed in a framework of multistep reactions. In this
scenario, a pre-equilibrium reaction can be divided into two
parts: interactions involving bound states (multstep com-
pound, MSC) and those involving continuum states (multistep
direct, MSD). The first MSD model was introduced in the
1980s: the so-called FKK model, in [12]. Other versions of the
MSD model followed in [13,14]. Agassi, Weidenmüller and
Mantzouranis were the pioneers [15] of multistep compound
models. Their model was rederived in a more rigorous fashion
a decade later in [16].

In multistep approaches, the excitation of multiple particle-
hole components of the target nucleus is directly associated
with different reaction steps in the process. The first and most
important [14] type is the one-step reaction corresponding to
a one-particle–one-hole (1p-1h) target excitation. A two-step
reaction would correspond to a 2p-2h excitation and so forth.
This theory allows for the possibility of taking into account
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interference and collective effects. It also furnishes a better
description of the angular distributions of detected particles.
For this, the response function is very important in providing
the weights for the contribution to the cross section of each p-h
mode. Here, we analyze the response function in the context
of one-step direct reactions, in which the projectile-target
interaction excites a linear combination of one-particle–one-
hole modes.

The objective of this paper is the study of the statistical
assumptions underlying the MSD description and strength
function in the random phase approximation (RPA). The
expansion of the final target state in a particle-hole represen-
tation usually leads to several components that can contribute
coherently, especially at lower excitation energies, where the
collectivity of the states can increase the strength of the
transition amplitudes. Our goal is to study the characteristics
of the collective states, as well as those of the highly energetic
unbound particle components. We analyze the complexity of
the coupling among the states associated with target nucleus
excitation and study its coherence via energy averaging statis-
tics. The interference present in the states can be averaged
out under certain statistical assumptions. We start with a brief
introduction to the MSD description of nuclear reactions and
the statistical assumptions involved in Sec. II. The role of
coherency in collective modes and pure p-h excited states
is presented in Sec. III A. The study of the randomness
assumption is given in Sec. III B. Response functions for the
low-energy collective states as well the high-energy single-
mode states are shown in Sec. III C. The dependence of the
width of the distribution of a mode over uncoupled particle-
hole states is separated into two regions and a general fit
function is proposed. We conclude by summarizing our results
and providing the perspective for an improved description
of the particle-hole excitation chain in the multistep reaction
formalism.

II. THEORETICAL FORMALISM

A. Multistep direct theory of the double differential
cross section

In the framework of a multistep theory, each step refers
to terms arising from a Born-like perturbation expansion of
the transition amplitude. For example, assuming the target
nucleus to be initially in its ground state, the first and second
terms of the expansion are

T
(1)
f ←0 = 〈ψ (−)

k |〈f |V |0〉|ψ (+)
ki

〉, (1)

T
(2)
f ←0 = 〈ψ (−)

k |〈f |V GV |0〉|ψ (+)
ki

〉, (2)

where ψ (±) represent the incoming (+) and outgoing (−)
projectile wave functions and V represents the two body
perturbation term accounting for interaction of the leading
particle with the target nucleus. The number of steps is
associated with the number of projectile-target interactions in
the expansion. Since one expects higher terms in the Born
series to decrease in magnitude, the evaluation of the first
and second steps in the expansion should provide the most
important contributions.

The first term alone (1) gives rise to the one-step double
differential cross section [17,18]

d2σ (1)

d�dEk

= m2

(2πh̄2)2

k

ki

∑
f

∣∣T (1)
f ←0

∣∣2
δ(Ef − Ex ), (3)

where Ex is the residual excitation energy, � the solid angle,
and Ek the outgoing projectile energy. An energy average is
performed over the distribution of excited states. The standard
cross-section formula can be directly recovered for discrete
transitions if integrated over a small energy region around one
particular state.

When all terms in the multistep expansion are included,
the scattering amplitude becomes a sum of one-, two-, and all
subsequent multistep terms,

d2σ

d� dEk

= m2

(2πh̄2)2

k

ki

∑
f

∣∣∣∣ ∑
n

T
(n)
f ←0

∣∣∣∣
2

δ(Ef − Ex ), (4)

where n refers to the number of reaction steps.
The reduction of this expression to the calculation of a

sum of cross sections requires further simplifications. The
statistical assumptions usually assumed will be discussed in
the next section, Sec. II B.

B. Interference aspects and statistical assumptions

The transition elements in Eqs. (1) and (2) represent differ-
ent excitations of the target nucleus generated by collisions of
the projectile and the nucleons in the nucleus. The two-body
nature of the interaction present in the Born expansion gives
a one-particle–one-hole (1) excitation due to a single inter-
action for the one-step part. The second step of the reaction
usually leads to a two-particle–two-hole state (2) excited in
two collisions. A careful analysis of the interaction reveals
that the second step can also result in a transition from a
one-particle–one-hole state to another or even the return to
the ground state, after annihilation of the single-step one-
particle–one-hole state. However, such processes are much
less probable than the creation of a two-particle–two-hole
state and are usually neglected. This is known as the “never-
come-back” approximation and is generally assumed to be
valid in multistep direct models.

The average energy of the leading particle is reduced by
about 25% at each collision [13,19,20]. At this energy loss
rate the particle will remain in continuum in the first few steps
of a high energy collision. The energy loss rate of the particle
in the process also justifies the convergence of the expansion,
i.e., only a few collisions need to be taken into account. Other
more complicated events, in which the leading particle loses
sufficient energy to be captured, will lead to larger excitation
energies and to a compound nucleus [14].

When both terms in the expansion are included in Eq. (4),
the squared transition matrix element contains three terms:
the squared amplitudes of the one- and two-step processes
and an interference term consisting of products of the two
quantities. When an average over final energies is performed,
this interference term can be neglected, due to the nonexis-
tence of correlations between the one-particle–one-hole and
two-particle–two-hole states. In this way, the cross section can
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be reduced to the sum of the squared amplitudes and thus
to a sum of cross sections. In what follows, we analyze the
statistical assumptions for the particle- hole excitations of the
first step of the reaction.

We expand a final target state in a single particle-hole
basis as

|f 〉 =
∑

af
μ |μ〉, (5)

where μ labels the individual single particle-hole components.
When the transition amplitude is squared, this expansion can
lead to many interference terms, involving different particle-
hole components. One expects (or postulates) [17,18] that,
after averaging over a sufficiently large interval in excitation
energy, only the squared amplitudes of the individual compo-
nents of the basis should contribute to the squared transition
amplitude. For energy bins accounting for a sufficient number
of states, the variations in sign and magnitude of the cross
terms should average to zero.

This is referred as randomness assumptions and is common
to most pre-equilibrium reaction models. The randomness
can originate from two different statistical assumptions: (i)
leading-particle or (ii) residual-system statistics. The first (i)
assumes the incident (leading) particle interaction with the
target nucleus (via V ) to be the source of the randomness. In
this scenario, the interaction V randomly provides a transition
from one nuclear state to several others. The leading-particle
assumption has been used, for instance, in the convolution
form of the FKK model [17]. In the case of residual-system
statistics (ii), the properties of the nucleus itself are responsi-
ble for the random coupling, with no mention being made of
the incident particle. This approach underlies the basis of the
Tamura, Udagawa, and Lenske model [13,21].

Although both statistical assumptions lead to the same
final expression for the first-step cross section, they begin to
differ in the second step, with the residual-system statistics
providing an expression that takes into account projectile-
target interference effects explicitly [17,18]. In this work,
we focus on a detailed study of the different particle-hole
interference terms for the first (n = 1) step alone. We can
describe a one-step process as follows.

Assuming the target excited state to be a linear combination
of particle-hole components μ, transitions from the ground
state are given by

|〈f |V |0〉|2 =
∑
μ′μ

a
f
μ′a

f
μ

〈
0|V |μ′〉〈μ|V |0〉. (6)

The squared transition elements lead to the multiplication of
two expansions containing several p-h components terms. The
interference and complexity involved in the cross terms are
removed when randomness is assumed, i.e., averaging over
excitation energies gives rise to a Kronecker delta,

〈∑
μ′μ

a
f
μ′a

f
μ

〉
=

∑
μ′μ

a
f
μ′a

f
μδμ,μ′ →

∑
μ

∣∣af
μ

∣∣2
. (7)

Thus, in both residual-system and leading-particle statistics,
the expression for the one-step cross section is

d2σ (1)

d� dEk

=
∑

μ

ρμ(Ex )|〈ψ (−)(k)|〈μ|V |0〉|ψ (+)(ki )〉|2, (8)

where the effective density of particle-hole contributions, also
known as the response or strength function, is defined by the
distribution

ρμ(Ex ) =
∑
f

∣∣af
μ

∣∣2
δ(Ef − Ex ). (9)

The magnitude of the residual interaction is associated with
the width of the distribution and provides a measure for
the particle-hole mixing of the excited states. The shape
and the width of this distribution is one of the topics of interest
of the present work.

C. Excited states

We use the RPA code by Colò et al. [22] throughout
this work for the analysis of the RPA excited states. The
wave functions of the occupied and unoccupied single-particle
states are obtained by solving the Hartree-Fock (HF) equation
self-consistently. The excited states and energies are obtained
by diagonalization of the RPA eigenvalue problem(

A B
−B −A

)(
X
Y

)
= Ex

(
X
Y

)
(10)

for a given value of the total angular momentum and parity
Jπ , where the RPA matrix elements are given by

Ami,nj = (Em − Ei )δmnδij + 〈mj |V |in〉,
Bmi,nj = 〈mn|V |ij 〉.

The indices m, n (i, j ) represent the HF single-particle states
with energies above (below) the Fermi level. The RPA states
are normalized as

Xx
μXx ′

μ − Y x
μY x ′

μ = δxx ′ .

The Tamm-Dancoff approximation (TDA) can be directly ob-
tained by setting B = 0 [22,23]. The Skyrme-type interaction
(Sly5) [24,25] is used for all results shown in this analysis. We
use the eigenvector components of the RPA diagonalization
to study the relative contribution of particle-hole states to
collectivity, the randomness assumption, and the response
function (9) for different angular momenta and parity.

III. RESULTS AND DISCUSSION

A. Collectivity and particle-hole mixing in excited states

We start by analyzing the manifestation of collectivity in
the excited RPA states of 56Ni for different angular momenta
and parity. A collective state is understood as a coherent
motion of many modes (p-h components) in a given state.
In general, this is represented by same sign contribution of
components to the strength of the excited state wave function.

One possible measure of the collectivity of an excited state
is given by the deviation of the energy of the state from the
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FIG. 1. (a) Energy deviation δE and (b) the state strength |ax
μ|2 as functions of the excitation energy for different values of the angular

momentum and parity for 56Ni. Panel (c) shows the excitation energy dependence of the width σ of the states.

weighted mean of its particle-hole contributions,

δE = Ex −
∑

μ

Eμ

∣∣ax
μ

∣∣2
, (11)

where Eμ = Em − Ei is the energy of the p-h pair and
ax

μ = Xx
μ + Y x

μ is the sum of the the RPA amplitudes. This
represents the contribution of the p-h basis to the RPA exci-
tation energy, vanishing for pure single particle-hole modes
and increasing as more modes contribute coherently to an
excited state. The energy deviation is shown in Fig. 1(a) as a
function of the excitation energy of the RPA states. Although
fluctuations around zero occur over the entire energy range,
the more pronounced values are found in the low energy
part. As one might expect for this doubly-magic nucleus, the
largest deviation is obtained for the Jπ = 3− state. At higher
energies, where most of the states are dominated by a single
p-h contribution, the energy deviation is close to zero. Large
values are also expected at high excitation energies due to
border effects of the finite basis.

In addition, we show in Fig. 1(b) the summed strength of
the excited states for different angular momenta and parity.
As we have seen, the states at the beginning of the spectra
are expected to be collective, i.e., the modes that contribute to
these states do so coherently. This is reflected here in summed
values larger than 1, in particular for the low energy 3− states.
The strength does not correspond to the norm of the states due
to interference between the X and Y components in ax

μ that is
not taken into account in the normalization.

A good measure of the spreading width associated with
collective states is given by

σ 2 =
∑

μ(Ex − Eμ)2
∣∣ax

μ

∣∣2

∑
μ

∣∣ax
μ

∣∣2 , (12)

where the width vanishes for exited states dominated by a
single p-h component but increases in value for states in which
a number of modes contribute more or less equivalently. The
quantity σ is displayed as a function of the excitation energy
in Fig. 1(c). Its value is largest for the collective states at low
excitation energy. Its average increases slowly and reaches
values around 2.5–3 MeV at the higher end of the spectrum.

We also computed the contribution (in percent) of a single
particle-hole state to the RPA state strength as a function of

the difference between the component energy and the RPA
energy, i.e., |Eμ − Ex |. This quantity is shown in Fig. 2.
It grows slowly for low energy components in comparison
with the higher energy ones. This is another indication of the
collectivity of the low-energy states, in which many particle-
hole components contribute to the particle-hole mixing. Note
that the low-energy components are not the only ones that
contribute to the collective states. However, the overlap of
wave functions in the interior (holes) with higher-energy
ones outside (more energetic particles) of the nucleus tends
to cancel out, so that the coupling matrix elements become
small for larger energy distances. In the low-energy region,
the states are discrete and there are gaps between the first
excitation energy values. In this region, we found it necessary
to include at least ten components to reach 94% of the strength
of these states. This is only achieved by going further away in
energy when considering collective states.

FIG. 2. The percentage contribution of states near the noninter-
acting energy components for 3− excited states of 56Ni. The low
energy components contribute more to the collective states, while
the higher energy part of the spectra is composed mainly of single
particle-hole contributions.
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FIG. 3. (a) Relative contribution of RPA components to the transition matrix for a collective (a) and two noncollective (b), (c) 3− excited
states of 56Ni. The dark dotted line represents the case where only one state is taken into account. Vertical lines represent the |aμ|2 component
for each case. All curves are normalized to their relative maximum value.

B. Randomness assumption

In this section we focus on the statistical assumptions
discussed in Sec. II B. The randomness assumption is studied
by computing averages of matrix elements products in a bin
of excitation energy �E. For this, we define the distribution

Pμ(Eμ′ ) =
∑

Ex∈�E

ax
μ′a

x
μ, (13)

where ax
μ denotes the RPA eigenvector component μ of the

final state x. This represents the contribution of the RPA
modes to the transition amplitude necessary for the cross-
section calculation (6).

The randomness assumption implies that the distribution
(13) should behave like

Pμ(Eμ′ ) → δ(Eμ′ − Eμ), (14)

under an energy average covering a sufficient number of
states. In other words, the off-diagonal contributions, the
terms involving different particle-hole components, should
vanish in this case. One would then only need to take into ac-
count the incoherent sum over the particle-hole configurations
contributing to final states x in a given interval of excitation
energy.

We analyze the 3− excited states of 56Ni by performing
averages over different energy intervals and around different
excited states. Figure 3(a) shows Pμ(Eμ′ ) for averages about
the lowest energy collective state. In this case, small values
of the energy bin are insufficient to provide support for the
randomness assumption. Important contributions still come
from nearby configurations close to the component energy
Eμ. The reason for this is the collectivity of the low-energy
states: many components contribute coherently to the excited
states, and the expected sign fluctuation of the components
necessary to cancel nondiagonal terms does not occur. Also,
the RPA states are far apart in this region of the spectrum
(discrete part of the spectrum), making a bin of approximately
10 MeV necessary to include enough states to cancel the
crossed terms. Averages about more energetic, non-collective
excited states are shown in Figs. 3(b) and 3(c). In Fig. 3(b),
an intermediate energy state is considered, for which the
off-diagonal terms vanish rapidly under an average over a
bin of ≈1 MeV. For a higher energy state, as in Fig. 3(c),

a small energy interval average is also sufficient to cancel
the off-diagonal contributions. In this last case one observes
that many particle-hole configurations can still contribute to
the spectrum average. This mixing represents the incoherent
contributions of different components to the state, appearing
here in the sign fluctuations for the �E = 0 limit of Fig. 3(c).

The relative contributions of all nondiagonal and diagonal
terms were analyzed through the following two quantities. For
the diagonal terms∑

diag

= 1

N

∑
Ex∈�E

∑
μ

ax
μax

μ, (15)

and for the off-diagonal terms∑
off

= 1

N

∑
Ex∈�E

∑
μ

∑
μ′ 	=μ

ax
μax

μ′ , (16)

where N is the number of states within �E.
The diagonal components contribute to the cross section

while the off-diagonal terms tend to vanish for a sum over a
sufficiently wide interval �E, due to their sign and amplitude
fluctuations. Both Eqs. (15) and (16) are shown for the 3−
excited states of 56Ni in Fig. 4(a). The contribution of the
off-diagonal terms to the collective (two lowest) excited states

FIG. 4. (a) The total averaged contribution of the RPA compo-
nents of the diagonal (solid dark lines) and off-diagonal (dashed
gray lines) terms of the RPA components for 3− states of 56Ni:
Off diagonals contributions vanish rapidly for noncollective states
independently of the angular momentum and parity. (b) The number
of states within the excitation energy interval �E in the statistics:
The discrete nature of the low-energy collective states does not
permit enough states for a randomness assumption to be valid.
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only falls to zero for averages performed over a broad energy
range >10 MeV, while the more energetic states only need an
energy range of ∼2 MeV for the off-diagonal contributions to
become negligible. Figure 4(b) gives the number of states that
enter in the average as a function of the size of the energy
bin. As discussed before, the discreteness of the low-lying
energy states requires a larger bin to take into account a
relevant number of contributions for the average. Comparing
both panels, we find that N ≈ 12 states are necessary for the
contribution of the off-diagonal components to be negligible.
This requires bins larger than 10 MeV for low-lying excited
states, making any statistical assumption difficult to justify in
this case.

We have performed the same analysis for states of different
angular momentum and parity and reached similar conclu-
sions in all cases. As the excitation energies change, the values
for the limits of energy bins change, depending on whether the
states are collective or noncollective. The same conclusion can
be extended to the states of different nuclei. This facilitates
cross-section calculations, making possible a formalism in
which cross sections are calculated directly in terms of the
particle-hole contributions coupled to a same Jπ , which is
common to several codes and different approaches.

C. 1p-1h response function

We define the single one-particle–one-hole (μ) response
function (also called the strength function in this context) as
the strength of a p-h component contribution ax

μ to the excited
states of the nucleus. The RPA eigenvector components are
used to obtain histograms accounting for the relative density
of states. Under the general assumption of a constant coupling
interaction, the strength function, i.e., the distribution of a
noninteracting component, can be shown [26] to be of Breit-
Wigner form

BW(Ex ) = 1

π

γ

(Ex − Ē)2 + (
γ

2

)2 , (17)

with width γ of the spreading of the 1p-1h modes—which
we will call the spreading width here—furnishing an average
representation of the coupling interaction, and Ē the energy
of the noninteracting component.

In what follows we study the dependence of the spreading
width γ on the particle-hole component energies. The dis-
tributions are constructed with histograms of 1.5 MeV bin
size and the dependence of the distribution spreading width
along the spectrum is obtained by a fit of Eq. (17) to the
RPA histogram. Figure 5 shows the histogram for the lowest
particle-hole mode that contributes to the first 3− excited state
of 56Ni. The distribution is centered near the noninteracting
component, while the contributions to nearby excited states
rapidly decrease by about four orders of magnitude within 10
MeV. Small contributions are still present in the long tail of the
distribution at higher excitation energies. For this mode, the
larger contributions extend to a few lower-lying excited states
of the nucleus. Due to this, the mean value of the distribution
is displaced in relation to the noninteracting energy. This
shift is a manifestation of the collectivity present in this part
of the energy spectrum. The interaction potential causes a

FIG. 5. Low energy response function for 3− exited states of
56Ni. The histogram is constructed using the RPA eigenvector com-
ponents. The Eμ = 11.55 MeV particle-hole state is represented
by the vertical solid line. The dashed curve is the Breit-Wigner fit
and its mean value Ē = 12.50 MeV is represented by the vertical
dashed line. The displacement of the mean value of the distribution
in comparison to the particle-hole mode is caused by configuration
mixing present in the collectivity of the low lying excited states.

shift in the values of the new eigenvalues in comparison to
the energy components of the background basis. Attractive
interactions lower the minimum excitation energy, producing
an orderly pattern in the components, i.e., an eigenvector
with many coherent contributions, while repulsive potential
have the same effect but increase the maximum energy in-
stead [23,27]. Moving away from the collective part of the
spectrum, we show in Fig. 6 two distributions for higher
energy configurations. These are sharper in energy with only

FIG. 6. Response function for three high energy particle-hole
configurations of the 3− exited states of 56Ni. The Eμ particle-hole
states and the mean distribution value (vertical lines) coincide: dark
denotes Eμ = 33.13 MeV, gray Eμ = 50.65 MeV, and brown Eμ =
68.51 MeV.
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FIG. 7. Single-particle contribution to the response function
in the high energy region of the spectrum of exited states of
Fig. 5. The vertical solid dark and gray lines correspond to Em =
14.33 MeV proton and Em = 61.46 MeV neutron single-particle
states, respectively.

small contributions to distant excited states. In this region, in
general, no shift in the mean excitation energy is observed
compared to the respective particle-hole energies, as we can
see in the figure. Both results follow a Breit-Wigner function
very well with a mean value equal to that of the particle-hole
mode.

In addition, we also show the energy distribution of the
single-particle states (without the hole energy) that contribute
to the 1p-1h response function. For these, we sum over all
holes that couple to a particle state, and plot the histogram
as a function of E′

m = Ex − Eh. Fig. 7 presents two cases for
high energy particles. The particles in the continuum are only
weakly coupled by the residual interaction, as we can see by
the sharp shapes of the distributions. We thus conclude that
particles in the continuum can be well approximated as bare
particles.

We now perform an analysis of the particle-hole configu-
ration dependence of the width γ and shift δ = Eμ − Ē of
the response function, Eq. (17), for all spins and parities. For
this, we use mean values obtained by constructing histograms
with a bin energy of 4.5 MeV. In Fig. 8 both γ and δ are
presented for the 3− and 4+ excited states of 56Ni. Two regions
can be identified in both cases: in the lower energy part of
the spectrum, the collective states have a larger spreading
width (upper panel) associated with a larger displacement
with respect to the mean value of the distribution [see Fig. 8(a)
bottom panel]; in the higher energy region, the simpler single
particle-hole states have very sharp distributions centered
about the particle-hole configurations, as can be observed by
the null values of δ. We note that although the 4+ states
Fig. 8(b) present a similar spreading width when compared to
the 3− states, the shift in their mean value is smaller in the low
energy region. This is due to the particle-hole configuration
basis in this energy region. At low energy, the width γ behaves
as a linear-Gaussian like function while a square-root or

FIG. 8. The width γ of the Breit-Wigner distribution (upper
panels) and the energy shift δ between the mean distribution value
and the noninteracting p-h components (lower panels) for the
(a), (c) 3− and (b), (d) 4+ excited states of 56Ni. The squared dotes
represent averages around bins of 4.5 MeV, defined by the dotted
lines. The standard deviation of the mean value within each bin varies
over the spectra: larger values are found for the lower energy part of
the spectra while smaller numbers are obtained for intermediate/high
energies due to the absence of collective states.

linear dependence is observed in the higher energy part of the
spectrum.

The effects of collective states are seen in the response
function for energies up to about 20 MeV. Their contributions
can, in principle, also appear in different parts of the spectrum.
They appear in the tail of distributions and contribute to the
slow growth of the γ width for energies above 20 MeV. We
attempt to give a general description of all states with a com-
bined function: a linear or square-root function to describe the
high energy components (single-particle states) and a Wigner
type-function with a width accounting for the collective states,

γ (Eμ) = a1Eμ + a2

√
Eμ + a3Eμe

(Eμ−E0 )2

2σ2 , (18)

where E0 roughly represents the minimum particle-hole con-
figuration energy and σ is chosen for a better description of
the collective part of the spectrum.

Figure 9 presents fits using the function above for four dif-
ferent nuclei, 16O, 56Ni, 90Zr, and 120Sn. For these we take into
account all excited states with Jπ = 0±, 1±, 2±, 3±, 4±, 5±.
By comparing the panel for 56Ni to Fig. 8, one finds that
the summation of all angular momentum preserves the two
regions of the spectrum seen for 3− or 4+ states alone. As the
number of nucleons increases, the distributions move slightly
to the left towards the lower energy configurations. This is
due to the existence of more unoccupied low-energy bound
particle states in heavier nuclei. For example, 120Sn has a
partially filled neutron shell, which provides more unoccupied
bound states and creates lower energy components when
compared to 16O, in which both the proton and neutron shells
are complete. This effect also reduces the separation between

014305-7



CHIMANSKI, CARLSON, CAPOTE, AND KONING PHYSICAL REVIEW C 99, 014305 (2019)

FIG. 9. Spreading width of the BW distribution for four different
nuclei. Starting from the top: (a) 16O, (b) 56Ni, (c) 90Zr and (d) 120Sn.
The function in Eq. (18) is adjusted to the data with the coefficients
given in Table I. Dashed and solid lines represent fits with a2 = 0
and a1 = 0, respectively.

these states, therefore reducing the width of the response
function to about half when compared to the maximum values
for the 16O nucleus. We use a smaller value of E0 = 0
for 120Sn to account for this energy shift. The coefficients
obtained for the best fit are presented in Table I. We find
that the square root function represents the higher energetic
components with more precision.

We also estimate the spreading width given by

� = 2πv2/s, (19)

where v2 and and s are the mean values of the coupling
intensities and energy level distances of the particle-hole
spectrum, respectively [26]. We obtain both quantities with
the histograms shown in the upper panel of Fig. 10 for the 3−
state of 56Ni. The value obtained is �t = 0.23 MeV, as shown
by the horizontal dashed line in the bottom panel of the same
figure. The bottom panel shows � computed locally within
a range of 10 MeV. For energies below 20 MeV, the bound

TABLE I. Parameters obtained for the best fit to the data in Fig. 9.
We set σ = 6.0 MeV and E0 = 5.0 MeV for 16O, 15Ni, and 90Zr.
E0 = 0.0 MeV is used for 120Sn. For each nucleus, we consider the
cases a1 = 0 or a2 = 0.

Nucleus a1 (×10−3) a2 (×10−2 MeV2) a3 (×10−1)

16O 6.7 0 2.8
0 6.0 2.6

56Ni 4.0 0 1.7
0 3.4 1.6

90Zr 4.6 0 1.2
0 4.2 1.0

120Sn 3.8 0 1.7
0 3.6 1.4

FIG. 10. Energy level spacing distribution P (s ) (upper left
panel) of the particle-hole configuration energies Eμ, where s =
Eμ − Eμ+1, and the distribution of the squared interaction amplitude
(upper right panel). Both upper plots were obtained using the entire
spectrum of particle-hole configurations (Eμ). The middle panel
shows the s (solid squares) and v2 (solid circles) computed taking
into account states that contribute within a range of �Eμ = 10 MeV
around each point on the horizontal axis. In the bottom panel is
the local spreading width for different regions of the spectrum. The
horizontal dashed line was obtained using the mean values of the
histograms on the upper panels. The 3− excited states of 56Ni were
used.

states dominate the background spectrum and we observe a
larger spread in comparison to the continuum states above
20 MeV. Although the mean spacing level has a small de-
pendence on the configuration energy, the coupling elements
are larger when bound states of the nucleus are involved.
The local spreading width is always smaller than the total
spreading width �t , due to the limited energy range, which
does not take into consideration the coupling of all compo-
nents of the spectrum. The values obtained with Eq. (19)
are of limited interest when compared to those obtained with
the Breit-Wigner fit. The complicated coupling elements are
better represented by our proposed function, which aids in
separating the states that contribute to the collective part of
the spectrum from the simple particle-hole configurations.

The traditional Tamm-Dancoff approximation (TDA)
obtained by setting B = 0 in the RPA equations was also
tested and, aside from producing a slightly less collective
response function, furnished no substantial changes in the
results presented here. Although the corrections taken into
account in the RPA approach would be expected to reduce
the energy of the excited states, the spreading width of the
response function remains the same in the results obtained
with the TDA.

IV. SUMMARY AND OUTLOOK

The general statistical aspects present in the quantum the-
ory of multistep direct nuclear reactions models were studied
for the first time here in the random phase approximation.
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The description of the excited states in terms of the basis of
particle-hole configurations was used for the numerical verifi-
cation of the widely applied randomness assumption and for a
better description of response functions. The collective states
can be identified in the lower part of the energy spectrum
and have larger widths in the strength function when com-
pared to the single particle-hole configurations that dominate
higher excited states. A coherent collective contribution of the
particle-hole configurations to the excited states is responsible
for an energy shift and a broader strength function.

Collectivity in excited states was studied for different
values of the angular momentum and parity. Excited states
generated by an attractive interaction can have an excitation
energy well below the lowest energy particle-hole configu-
ration [23], so that many components can contribute to a
coherent collective state. This energy gap is a result of the
complicated coupling of many components, and the particle-
hole mixing is one of the fundamental features of collective
states. Yet the number of states that contribute to it is difficult
to determine analytically in a real RPA case.

Most of the quantities computed here depend on the
squared value of the summed RPA components. The random-
ness assumption is sensitive to the sign of the particle-hole
contributions and, in this way, to the number of states that
contribute coherently to the excited state. Fluctuations both
in sign and magnitude of the RPA linear components provide
the basis for the validity of the randomness hypothesis in the
squared transition matrix elements. Our analysis shows that
averages performed in a small interval of excitation energy
are sufficient to cancel crossed terms in highly excited states,
simplifying the calculations drastically. In such cases, the
cross section can be represented as an incoherent sum of
squared particle-hole transition contributions. This is not the
case for the low lying collective states. For these, quantum
mechanical interference effects are important and provide a
correct description of the excitation by taking into account co-
herent contributions. Although we have not included pairing
in our calculations, comparisons between RPA and QRPA cal-
culations show that the principal effect of pairing is to slightly
shift the energy of the low energy collective modes [28].

We have presented a study of the dependence of the width
of the strength function on the particle-hole configuration
energy in the RPA. We were able to separate the noncol-
lective and collective parts of the spectrum. A Breit-Wigner
distribution can be obtained analytically for schematic models
[26] representing the limiting case of a constant coupling
interaction. This function has an infinite second momentum

and includes the contributions of many states present in the
tail far from the mean value. This explains the larger spreading
width σ obtained in Sec. III A.

We have also shown that particles in the continuum can be
well approximated as bare particles. This is seen by their very
sharp single-particle contribution to the response function.
This justifies the simplified treatment often used for contin-
uum particle excitations in nuclear reactions.

Zelevinsky and collaborators have shown, in a random
matrix shell model framework, that the Breit-Wigner response
function obtained here is typical of weak coupling [29,30].
They have also shown that a Gaussian response function,
sometimes used in MSD model calculations [31], is to be
expected at typical strengths of the effective nucleon inter-
action. Although we did not focus this study on differences
in the interaction, we have found that the spreading width of
the response function depends on the particle-hole configura-
tions that are coupled. The low energy components (usually
involving bound particle-hole states) make a stronger and
more coherent contribution to the collective excited states.
Many other states make small contributions to the lower
energy collective states, but the contribution of these higher
energy states is close in form to a Breit-Wigner distribution,
reflecting their weaker coupling. In addition, the response
function at higher energies is typically of Breit-Wigner form
and is concentrated around the energies of the noninteracting
single particle-hole states. Thus, due to the variations in the
coupling with excitation energy, we believe that there is no
contradiction between their results and ours. In our case, at
least, we find that the response function is better modeled by
a Breit-Wigner distribution.

We believe our work will serve as a guide to a more
detailed description of the MSD reaction mechanism. Al-
though many models still use noninteracting particle-hole
descriptions, we believe that this work and the dependence
of γ on the particle-hole energy can provide improvements to
the interacting particle-hole description of nuclear reactions.
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