Update on energies and widths in ¹³Be

H. T. Fortune

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

(Received 26 November 2018; published 7 January 2019)

I have compared new experimental information on resonances in ¹³Be with results of theoretical calculations. For the $1/2^+$ resonance at 0.86 MeV, the reported width of 1.70(15) MeV is considerably larger than the single-particle limit of 1.3 MeV. For the first $5/2^+$, the calculated width and 2^+ branching ratio for neutron decay are both in rough agreement with the data. I discuss the possibility that events from decay of the second $5/2^+$ to ${}^{12}\text{Be}(2^+)$ could contribute to the 0.86-MeV peak. If the 4.0-MeV resonance is indeed $3/2^+$, then its width should be considerably larger than reported.

DOI: 10.1103/PhysRevC.99.014304

I. INTRODUCTION

A recent experiment [1] has greatly improved our understanding of resonances in ¹³Be, which has no bound states. Three other relatively recent experiments had served to both clarify and confuse the issue [2-4]. Ribeiro et al. [1] used proton knockout from a 400 MeV/nucleon ¹⁴B beam incident on a CH₂ target to produce ¹³Be, and they detected ¹²Be + nin coincidence. The experiment also had the ability to detect coincident ¹²Be γ s. They report a $1/2^+$ resonance at an energy of 0.86(4) MeV with a width of 1.70(15) MeV and a $5/2^+$ resonance at an energy of 2.11(5) MeV. For the latter, they took the width of 0.4 MeV from earlier heavy-ion-induced transfer experiments [5,6]—the reaction ${}^{13}C({}^{14}C, {}^{14}O)$ ${}^{13}Be$ at $E_{\text{Lab}} = 337 \text{ MeV} [5]$ and the ${}^{14}\text{C}({}^{11}\text{B}, {}^{12}\text{N}){}^{13}\text{Be}$ reaction at $E_{\text{lab}} = 190 \text{ MeV}$ [6]. Ribeiro *et al.* [1] observed low-energy neutrons in coincidence with γ s of energy ~2 MeV, which they interpreted as evidence that the $5/2^+$ resonance also decayed to the 2^+ of 12 Be, in addition to the ground state (g.s.). Their branching ratio (BR) was $2^+/g.s. = 0.1/(0.24) =$ 0.42 [1,7].

Reference [1] adopted a low-lying $1/2^-$ resonance near 0.5 MeV from Ref. [8]. They argue correctly that a negative-parity state should not be produced in proton removal from ¹⁴B, but that it should be populated in neutron removal from ¹⁴Be—which was the procedure used in Ref. [2,8]. Ribeiro *et al.* also included in their analysis a second $5/2^+$ and first $3/2^+$ resonances, with both J^{π} assignments tentative. They took both energies (2.92 and 4.0 MeV, respectively) and widths (both 0.4 MeV) from the heavy-ion work [5,6]. Both are weak. The resolution width (FWHM) in Ref. [1] was about 0.7 MeV at E = 2 MeV, and it increases as $E^{0.75}$. Thus, all the widths, except for $1/2^+$, are significantly less than the resolution width, and that is the justification for the use of earlier widths.

Here, I examine the new experimental evidence in comparison with model calculations.

II. CALCULATIONS AND RESULTS

I have calculated single-particle (sp) widths in a potential model, using a Woods-Saxon shape with geometrical parameters r_0 , a = 1.26, 0.60 fm. Well depth was adjusted to reproduce resonance energy, and the width was computed from the phase shift. For $\ell = 2$, the width calculation is straightforward. The absence of a barrier for an *s*-wave neutron resonance is somewhat of a complication, but I have used the relationship $\Gamma_{sp}(\ell = 0) = (2E)^{1/2}$, where both energy and width are in MeV. From these $\ell = 0$ and 2 sp widths, I have computed expected widths with the expression $\Gamma_{calc} = S \Gamma_{sp}$, where *S* is the relevant ${}^{12}\text{Be} + n$ spectroscopic factor, given previously [9]. Relevant information is displayed in Table I.

The $1/2^+$ resonance could have a spectroscopic factor near unity, but even if so, the reported width of 1.70(15) MeV is significantly larger than the sp width of 1.3 MeV. I return to this discrepancy below. Even though the first theoretical $5/2^+$ state has a (sd)³ component that is larger than the $1d_{5/2}$ component [10], its spectroscopic factor to 12 Be (g.s.) is quite large—0.94 in my calculations. This happens because of the large (sd)³ component in ¹²Be (g.s.). With my S and Γ_{sp} , the computed width for decay of the first $5/2^+$ state to the g.s. is 0.63 MeV, slightly larger than the old experimental width of 0.4 MeV. However, it appears that the newer data [1–4] could easily accommodate a larger width. For decay of this state to the 2^+ of ¹²Be, Ref. [1] quotes a neutron energy of 0.1 MeV. With this energy, my computed width is 0.13 MeV (Table I) for s-wave decay (at this low energy, d-wave decay is weak enough to ignore), giving an expected $BR(2^+/g.s.) = 0.13/0.63 = 0.21$ —to be compared with the experimental BR quoted above of 0.42. The authors quote a relative yield of 0.1 (no uncertainty given) for decay through the 2^+ and 0.24(4) for g.s. decay. (Just in passing, I note that a neutron energy of 0.4 MeV for decay to the 2^+ would provide exact agreement with the experimental BR.)

PHYSICAL REVIEW C 99, 014304 (2019)

TABLE I. Energies, decay modes, and widths in ¹³Be (energies and widths in MeV).

¹³ Be state	Decay	E_n	S ^c	Γ_{sp}	$\Gamma_{calc}{}^{\mathbf{d}}$	Γ_{exp}
$1/2^{+}$	to g.s.	0.86 ^a	~1	1.3	1.3	1.70(15) ^a
$5/2^+_1$	to g.s.	2.11 ^a	0.94	0.67	0.63	0.4 ^b
	to $2^{+} + s$	$(0.1)^{a}$	0.29	(0.45)	(0.13)	
$5/2^+_2$	to g.s.	2.92 ^b	0.0004	1.4	0.0006	0.4 ^b
	to $2^{+} + s$	0.8	0.15	1.25	0.19	
	to $2^{+} + d$	0.8	0.005	0.082	0.0004	
	To exc. $0+$	0.68	0.85	0.066	0.056	
$3/2^{+}$	to g.s.	4.0 ^b	~ 0	2.82	small	0.4 ^b
	to $2^{+} + s$	1.9	0.19	1.9	0.37	
	to $2^+ + d$	1.9	1.32	0.52	0.69	

^aReference [1].

^bReferences [5,6].

^cReference [9].

 ${}^{d}\Gamma_{\text{calc}} = S \Gamma_{\text{sp}}.$

The second $5/2^+$ state is predicted to have an extremely small decay branch to ¹²Be(g.s.), with the largest decay to the first excited 0⁺ state of ¹²Be [11]. The experiment of Ref. [1] was not sensitive to this excited 0⁺ decay, but they appear to have observed some g.s. decays. Other than the excited 0⁺ decay, the other important branch should be *s*-wave decay to the 2⁺, for which the computed width is 0.19 MeV, considerably smaller than the supposed experimental width of 0.4 MeV. Reference [1] did not report observation of this decay, but I note that such a decay would have a neutron energy near 0.8 MeV. The presence of such decays might account for the fact that the reported width for the 0.86-MeV resonance is significantly larger than the sp limit. If this second $5/2^+$ state does indeed also decay to the excited 0⁺, that would add about 0.06 MeV to the computed width.

A decrease in S for the first $5/2^+$ would require an increase in S for the second $5/2^+$. Such changes would move both calculated widths closer to the experimental values.

The $3/2^+$ resonance is predicted to have a very small g.s. branch, but reasonably strong decays to the 2^+ , with both

s and d. Reference [1] observed 2-MeV γ s in coincidence with 2-MeV neutrons, indicating decay of the 4-MeV resonance to ¹²Be(2⁺). With my predictions, the width of this resonance should be considerably larger than 0.4 MeV.

III. SUMMARY

I have compared new experimental results for resonances in ¹³Be to previous and new model calculations. The reported width of 1.70(15) MeV for the $1/2^+$ resonance is considerably larger than the sp limit of 1.3 MeV, perhaps implying another contribution to that peak in the energy spectrum—for which one possibility is decay of the second $5/2^+$ state to the 2^+ of ¹²Be. The calculated width for the first $5/2^+$ resonance is in reasonable agreement with (but slightly larger than) the experimental value. Reference [1] was the first to positively identify decays of this state to ¹²Be(2⁺). Their 2⁺/g.s. branching ratio is in rough agreement with my calculations. If the 4.0-MeV resonance is indeed $3/2^+$, it should be considerably wider than currently thought.

A recent review [12] identified a few unanswered questions in ¹³Be. One of them was: Is the lowest resonance near 0.5 MeV $1/2^+$ or $1/2^-$, or are the two unresolved? Reference [1] was unable to answer this question. They state, "To promote one of them as the ground state ¹³Be is not within the scope of the present paper but certainly a challenge for theory."

Another unanswered question [12] was: Can better evidence be found for decays of ¹³Be resonances to excited states of ¹²Be? Reference [1] has provided convincing evidence for this question as it relates to the first $5/2^+$ state. Another question dealt with events near 1 MeV, and the extent to which they correspond to g.s. decays versus decays of an excited state to an excited state. I referred to this question above, in relation to the width of the $1/2^+$ resonance and the question of decays of the second $5/2^+$ resonance to $^{12}Be(2^+)$.

Perhaps the most important unanswered question concerns the possibility of decays of the second $5/2^+$ state to the excited 0^+ state. Reference [1] states that this "is indeed an experimental challenge."

- [1] G. Ribeiro et al., Phys. Rev. C 98, 024603 (2018).
- [2] Y. Aksyutina et al., Phys. Rev. C 87, 064316 (2013).
- [3] G. Randisi et al., Phys. Rev. C 89, 034320 (2014).
- [4] B. R. Marks et al., Phys. Rev. C 92, 054320 (2015).
- [5] A. N. Ostrowski *et al.*, Z. Phys. A **343**, 489 (1992).
- [6] A. V. Belozyorov et al., Nucl. Phys. A 636, 419 (1998).
- [7] E. Nacher (private communication, 2018).
- [8] Y. Kondo et al., Phys. Lett. B 690, 245 (2010).
- [9] H. T. Fortune, Phys. Rev. C 93, 054327 (2016).
- [10] H. T. Fortune, Phys. Rev. C 90, 064305 (2014).
- [11] H. T. Fortune and R. Sherr, Phys. Rev. C 82, 064302 (2010).
- [12] H. T. Fortune, Eur. Phys. J. A 54, 51 (2018).