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Valuable theoretical predictions of nuclear dipole excitations in the whole chart are of great interest for
different nuclear applications, including, in particular, nuclear astrophysics. Here on the basis of experimental
and theoretical information on the E1 and M1 strength functions, inspired both from axially deformed
quasiparticle random-phase approximation and shell-model calculations, we derive simple expressions to
determine systematically the dipole strength in order to update former prescriptions with a special emphasis
on new expressions for the M1 spin-flip and scissors modes. We compare our final prediction of the E1 and M1
strengths with available experimental data at low energies and show that a relatively good agreement is obtained.
Its impact on the total radiative width as well as radiative neutron capture cross sections is also discussed. The
new expressions are believed to represent an improvement with respect to the analytical systematics proposed in
the past and used traditionally in reaction codes, such as the recommended RIPL-3 prescriptions.
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I. INTRODUCTION

Radiative neutron capture cross sections play a key role in
almost all nuclear applications. Despite a huge effort to mea-
sure such radiative neutron capture cross sections, theoretical
predictions are required to fill the gaps, both for nuclei for
which measurements are not feasible at the present time, in
particular, for unstable targets, and for energies that cannot
be reached in the laboratory. Some applications, such as nu-
clear astrophysics, also require the determination of radiative
neutron capture cross sections for a large number of exotic
neutron-rich nuclei [1]. In this case, large-scale calculations
need to be performed on the basis of sound and accurate
models to ensure a reliable extrapolation far away from the
experimentally known region.

The neutron capture rates are commonly evaluated within
the framework of the statistical model of Hauser-Feshbach,
although the direct capture contribution plays an important
role for very exotic nuclei [2]. The fundamental assumption of
the Hauser-Feshbach model is that the capture goes through
the intermediary formation of a compound nucleus in ther-
modynamic equilibrium. In this approach, the (n, γ ) cross
section strongly depends on the electromagnetic interaction,
i.e., the photon deexcitation probability. It is well known
that the photon strength function is dominated by the dipole
contribution. The various multipolarities of the γ -ray strength
function are traditionally modeled by the phenomenological
Lorentzian approximation or some of its energy-dependent
width variants [3].

The reliability of the γ -ray strength predictions can be
greatly improved by the use of microscopic or semimicro-
scopic models. Such an effort can be found in Refs. [4–9]
where a complete set of E1 and M1 γ -ray strength functions
was derived from mean field plus quasiparticle random-phase
approximation (QRPA) calculations. When compared with

experimental data and considered for practical applications,
all mean-field plus QRPA calculations need however some
phenomenological corrections. These include a broadening of
the QRPA strength to take the neglected damping of collective
motions into account as well as a shift of the strength to lower
energies due to the contribution beyond the one-particle–one-
hole excitations and the interaction between the single-particle
and low-lying collective phonon degrees of freedom [10–17].
In addition, most of the mean-field plus QRPA calculations
assume spherical symmetries so that phenomenological cor-
rections need to be included in a way or another in order
to properly describe the splitting of the giant dipole reso-
nance in deformed nuclei. State-of-the-art calculations includ-
ing effects beyond the one-particle–one-hole excitations and
phonon coupling are now available [10–17], but they remain
computerwise intractable for large-scale applications.

Despite the availability of such tabulated E1 and M1
strengths, many nuclear reaction codes still make use of
simple analytical formulas that present the advantage of being
easily tuned on experimental data but also adjustable to re-
produce measured cross sections. Such expressions have been
recommended by the latest Reference Input Parameter Library
(RIPL-3) [3] and are usually described by a Lorentzian-type
function or some variants of it [3,18]. One of the most com-
monly used expression corresponds to the standard Lorentzian
(SLO) [19,20] or the generalized Lorentzian (GLO) [18]
which differs from the SLO by including an energy-dependent
width. Although the E1 strength has been widely studied
[see, for example, Refs. [3,18,21,22] and references therein],
less effort has been devoted to the parametrization of the
M1 strength function for practical applications. The most
commonly used formula is an SLO expression describing the
spin-flip (sf) mode only [18] that neglects the low-energy M1
mode for deformed nuclei (the so-called scissors mode). Only
a few works [23–25] proposed a systematic phenomenological
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description of the low-energy scissors mode. In addition, such
formulas only describe the photoabsorption, whereas it is
now well accepted that the deexcitation strength function may
differ from the photoabsorption one, especially at low photon
energies. In particular, a nonzero limit of the dipole strength
has been observed experimentally [26,27] and confirmed by
shell-model (SM) calculations [28–33]. For this reason, the
predictions have to be complemented with a zero limit that is
missing in the present M1 SLO description.

In the present paper, we propose simple Lorentzian-type
expressions to describe E1 and M1 strength functions with a
special emphasis on new expressions for both the spin-flip and
the scissors (sc) mode components of the M1 strength. These
formulas, hereafter referred to as SMLO for simple modified
E1 Lorentzian and simple M1 Lorentzian, are explained in
Secs. II and III for the E1 and M1 modes, respectively.
The expressions are kept as simple as possible, still trying to
capture as much as possible systematics found in more mi-
croscopic approaches, such as the QRPA and SM predictions.
Average resonance capture (ARC) data as well as nuclear
resonance fluorescence (NRF) data are used to test or tune our
new prescriptions. In Sec. IV, we compare our SMLO pre-
dictions with experimental data that are sensitive to the total
dipole E1 + M1 strength. These concern the data obtained
through the Oslo method as well as the average radiative
width 〈�γ 〉 and neutron capture cross sections. Conclusions
are finally drawn in Sec. V.

II. THE E1 PHOTOABSORPTION STRENGTH

For the E1 photon strength function of cold and heated
nuclei, we consider here the SMLO model that provides a
rather simple expression [22],

←−
fE1 = 1

3π2h̄2c2

1

1 − exp(εγ /T )
σTRK

× 2

π

jm∑
j=1

sr,j

εγ �j (εγ , T )(
ε2
γ − E2

r,j

)2 + ε2
γ �j (εγ , T )2

, (1)

where T denotes to the temperature of the heated nucleus,
jm denotes the number of normal vibration modes of the
giant dipole resonance (GDR) excitation (jm = 1 for spherical
nuclei and 2 for axially deformed ones), and σTRK is the
Thomas-Reiche-Kuhn (TRK) sum rule given by

σTRK = 60
NZ

A
= 15A(1 − I 2) (mb MeV), (2)

where I = (N − Z)/(N + Z) is the neutron-proton asymme-
try factor. The Lorentzian function in Eq. (1) is characterized
by GDR parameters corresponding to the peak energy Er,j ,
the width at half maximum �j , and the possible deviation
of the peak cross section from the TRK sum rule sr,j . More
details on these quantities are given below.

The SMLO width, related to the relaxation mechanism the
giant vibration j mode, is taken to be energy and temperature
dependent as

�j (εγ , T ) = �r,j

Er,j

(
εγ + 4π2

Er,j

T 2

)
, (3)

where the linear dependence on the energy εγ comes from
the inverse εγ dependence of the average squared matrix ele-
ment in the transitions of the one-particle–one-hole states to
two-particles–two-hole states [3]. The quadratic temperature
dependence in Eq. (3) originates from the Fermi-liquid theory.

The GDR resonance energies of the j mode are taken
such that Er,j=1 < Er,j=2, at least, for deformed nuclei (for
spherical nuclei, Er,j=1 = Er,j=2). These energies are con-
nected to the energies Ea and Eb of the vibrations along
and perpendicular to the symmetry axis (note that for prolate
nuclei, we take Er,1 = Ea and Er,2 = Eb, whereas for oblate
ones, Er,1 = Eb and Er,2 = Ea). Finally, the sr,j factor gives
the weight of the j mode with respect to the TRK sum rule.

Whenever experimental photoabsorption data in the vicin-
ity of the GDR are available, the GDR parameters Er,j , �r,j ,
and sr,j can be adjusted. A compilation of such data can be
found in Ref. [22]. However, when no data exist, some sys-
tematics need to be provided. Such a systematic was obtained
by a least-squares fit to the recommended experimental GDR
parameters in spherical nuclei as well as deformed nuclei
in the 150 < A < 190 and 220 < A < 253 ranges where in
good approximation deformed nuclei can be considered as
axially deformed. The following expression was adopted for
the centroid energy Er of the GDR:

Er = e1(1 − I 2)1/2 A−1/3

(1 + e2A−1/3)1/2
, (4)

where e1 = 128.0 ± 0.9 MeV and e2 = 8.5 ± 0.2. Equation
(4) corresponds to a good approximation of the eigenenergy
of the GDR vibration within the hydrodynamical liquid drop
model [34] also in link with sum rule prescriptions [35–37].
For deformed nuclei, we assume the equiprobability of the
normal mode excitations and the twofold degeneracy of the
giant collective vibration perpendicular to the axis of sym-
metry. In this case, the centroid energy can be expressed as
Er = (Ea + 2Eb )/3, and the energies Ea and Eb along the
two ellipsoid semiaxes can be approximated as

Ea = 3Er

1 + 2D
, (5)

Eb = DEa, (6)

where D = 0.911a/b + 0.089 can be determined from the
ratio of the ellipsoid semiaxis lengths a/b = (1 + α2)/(1 −
α2/2), which, in turn, is a function of the quadrupole defor-
mation β2 since α2 = √

5/4πβ2.
Slight deviations from the TRK sum rule is known from ex-

perimental photoabsorption data; for this reason, the weights
of the j mode is estimated assuming that s� = ∑

j sj =
1.2, i.e., s1 = s�/3, s2 = 2s�/3 for prolate nuclei and s1 =
2s�/3, s2 = s�/3 for oblate nuclei.

As far as the GDR width is concerned, it can be estimated
from a simple power-law expression �r,j = cEd

r,j with c =
0.42 ± 0.05 MeV and d = 0.90 ± 0.04. More details on the
model and the adjustment can be found in Refs. [21,22,38].
Note that the high-energy quasideuteron contribution, i.e., the
photoabsorption cross section on a neutron-proton pair is not
included here but can be found in Ref. [22].
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FIG. 1. T dependence of the SMLO E1 strength function of
120Sn as a function of the photon energy.

Finally, the temperature T can be derived from the exci-
tation energy U using a simple Fermi gas expression. Since
the temperature entering Eq. (1) corresponds to the tempera-
ture of the final state, it reads T = √

(U − εγ )/ã where the
level-density parameter ã = A/10 MeV−1 is adopted. The T
dependence of the SMLO E1 strength and its impact at low
photon energies are illustrated in Fig. 1 for 120Sn.

Up to now, the SMLO model has been essentially adjusted
on photoabsorption data and out of it some systematics de-
duced. We compare in Fig. 2 the predicted E1 strengths with
ARC data at energies around 6 to 7 MeV [39]. A rather satis-
factory agreement is found bringing additional confidence to
the low-energy extrapolation of the SMLO E1 strength. More
comparisons with experimental photoabsorption data can be
found in Ref. [22], and an additional one will be discussed in
Sec. IV.

III. THE M1 PHOTOABSORPTION STRENGTH

Although much effort has been devoted in the past to
the modeling of the E1 strength, only a reduced number of
systematics exists regarding the M1 contribution. The M1
strength has been described essentially through a SLO expres-
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FIG. 2. Comparison between the experimental E1 strengths
from ARC data [39] with the T -dependent SMLO predictions for
the 47 nuclei recently reanalyzed.

sion describing the spin-flip mode [3,18]. Important progress
has been made for the past decade in describing microscop-
ically the M1 strength either within mean-field plus QRPA
methods or the SM (for a review, see Ref. [40]). Such work
can be used to help us to construct empirical expressions. In
particular, recent axially deformed Hartree-Fock-Bogolyubov
(HFB) plus QRPA calculations based on the Gogny D1M
interaction, hereafter referred to as D1M + QRPA [7–9] can
help us to build new empirical M1 strength functions. To do
so, we have chosen to adopt simple SLO expressions for both
the low-energy sc mode and the sf components of the M1
strength function, i.e.,

−→
fM1(εγ ) = 1

3π2h̄2c2
σsc

εγ �2
sc(

ε2
γ − E2

sc

)2 + ε2
γ �2

sc

+ 1

3π2h̄2c2
σsf

εγ �2
sf(

ε2
γ − E2

sf

)2 + ε2
γ �2

sf

, (7)

where σi = fiEi is the peak cross section, Ei is the the energy
at the peak, and �i is the the width at half maximum for both
the spin-flip mode (i = sf) or the scissors mode (i = sc).

Inspired from the mass and deformation dependences of
the D1M + QRPA strengths, the energy and width of the
Lorentzian-type function can be determined in a simple man-
ner. As far as the amplitude of the strength σi is concerned,
the D1M + QRPA calculations predict that, globally, the
centroid energy decreases as A−1/6 [Fig. 3(a)] and the spin-flip
peak strength fsf increases linearly with A [Fig. 3(b)] so that
the peak cross section σsf scales like A5/6. For the scissors
mode, present only in deformed nuclei, the centroid energy
remains rather constant around 3 MeV decreasing as A−1/10

[Fig. 4(a)], whereas the peak strength fsc is found to be
globally proportional to A and to the quadrupole deforma-
tion parameter β2 [Fig. 4(b)]. Note that some neutron shell
structures can be observed in the D1M + QRPA predictions
of the spin-flip and scissors modes that cannot be described
by a simple analytical expression. We have chosen to restrict
ourselves to simple expressions. The amplitude of the strength
can, in turn, be tuned by comparing our M1 prescriptions
[Eq. (7)] with existing data, namely, the ARC data [39] for
the spin-flip mode and the NRF experiments in the rare-earth
region for the scissors mode (see below).

When considering the deexcitation strength function, de-
viations from the photoabsorption strength can be expected,
especially for γ -ray energies approaching the zero limit. In
particular, SM calculations [28–33] predict an exponential
increase in the M1 deexcitation strength function at de-
creasing energies approaching zero. This so-called upbend
of the strength function observed experimentally [26,27] has
therefore been assumed to be of M1 nature, although no ex-
perimental evidence exists for the moment. Therefore, when
dealing with the deexcitation M1 strength function, a zero-
energy limit as determined in Ref. [9] can be added to the
photoabsorption expression, leading to

←−
fM1(εγ ) = −→

fM1(εγ ) + C exp(−ηεγ ), (8)
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FIG. 3. (a) Peak energy of the spin-flip resonance obtained
within the D1M + QRPA approach [9] as a function of the atomic
mass number for some 2000 even-even nuclei with 8 � Z � 110
lying between the proton and the neutron drip lines. (b) The same
for the peak strength fsf . The red line corresponds to the simple
analytical expressions adopted in the present paper. The blue dia-
monds correspond to the D1M + QRPA values for stable nuclei and
long-lived actinides.

where the parameter C is now taken to be deformation depen-
dent as inferred from SM calculations [31–33,42] and a recent
analysis of experimental multistep cascade spectra [43].

Finally, we adopt the following parameters for the three
M1 modes, i.e., for

(1) the spin-flip resonance: σsf = 0.03A5/6 mb, Esf =
18A−1/6 MeV, and �sf = 4 MeV;

(2) the scissors mode: σsc = 10−2|β2|A9/10 mb, Esc =
5 × A−1/10 MeV, and �sc = 1.5 MeV;

(3) the upbend: η = 0.8 and C = 3.5 × 10−8 exp
(−6β2) MeV−3.

where the final amplitude of the spin-flip and scissors mode
strength has been globally tuned on ARC and NRF data as
shown in Figs. 5 and 6, respectively. Globally, the M1 strength
is properly described except in the transitional region of A =
180–190 where the SMLO model overpredicts by a factor of 2
the scissors mode. This overprediction is related to the precise
determination of the deformation of these nuclei.

We compare in Fig. 7 the experimental M1 photoabsorp-
tion cross section of the slightly deformed 128Xe and spherical
134Xe obtained with quasimonoenergetic and linearly polar-
ized γ -ray beams [47] with the D1M + QRPA predictions as
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FIG. 4. (a) The same as Fig. 3 for the scissors mode strength
below 4.5 MeV. Only deformed nuclei for which the D1M + QRPA
scissors mode is non-negligible are shown. (b) The same for the peak
strength of the scissors mode divided by D1M β2 [41]. The blue
diamonds correspond to the D1M + QRPA values for stable nuclei
and long-lived actinides.

well as our new SMLO prescription. Although the SMLO M1
cross section in the energy region of the spin-flip resonance is
underestimated for both 128Xe and 134Xe, the overall strength
is captured. As seen in Fig. 7, the SMLO width for the
spin-flip mode is assumed to be constant and, in particular,
A-independent, in contrast to what is found with the D1M +
QRPA calculation and seen experimentally.
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FIG. 5. Comparison between the experimental M1 strengths
from the ARC data [39] with the SMLO expression [Eq. (7)] pre-
dictions for the 47 nuclei recently reanalyzed.
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IV. COMPARISON WITH EXPERIMENTS

So far, as described in the previous sections, the E1 and
M1 strength functions obtained within the SMLO model have
been tuned on measurements which are almost exclusively
sensitive to the specific radiative mode studied. A number of
additional experimental data concern the total dipole strength
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FIG. 7. Comparison among experimental, D1M + QRPA, and
SMLO M1 strength functions for the M1 photoabsorption cross
section σγ of (a) 128Xe and (b) 134Xe. Experimental data are taken
from Ref. [47].

for which it remains difficult to disentangle the E1 from the
M1 components and include the large compilation of average
radiative width as well as Oslo data and neutron capture cross
sections.

The total E1 + M1 SMLO dipole strength is compared
with experimental data extracted from the Oslo method in
Fig. 8 for 30 nuclei for which Oslo data is available [48].
Note that the dipole strength data extracted from the Oslo
method only include experimental systematic uncertainties
and not model-dependent statistical uncertainties which can
be significantly larger and even change the slope of the dipole
strength (see Refs. [49,50] for more details). The low-energy
tail of the dipole strength is seen to be globally fairly well
reproduced.

Although the upbend does not impact ARC or NRF data, it
plays an important role in the estimate of the average radiative
width for which many experimental data are available. The
average radiative width is defined as [3]

〈�γ 〉 = D0

2π

∑
X,L,J,π

∫ Sn+En

0
TXL(εγ )

× ρ(Sn + En − εγ , J, π )dεγ , (9)

where D0 is the average resonance spacing for s-wave neu-
trons, Sn is the neutron separation energy, En is the neutron in-
cident energy, TXL = 2πε2L+1

γ

←−
fXL(εγ ) is the electromagnetic

transmission coefficient (X = M or E) for a multipolarity L
and ρ is the energy-, spin- (J -), and parity- (π -) dependent
nuclear level density.

It has been a long-standing problem that phenomenological
SLO models for the E1 strength tend to overestimate the
average radiative width significantly, whereas its improved
and widely used version, the so-called GLO model [18],
underestimates 〈�γ 〉. Such deviations can be found in Ref. [9].
In Fig. 9, we compare the 223 experimental average radia-
tive widths with the SMLO predictions. The low-energy M1
components, i.e., the scissors and upbend modes, contribute
in a non-negligible way to the 〈�γ 〉 integral [Eq. (9)] but are
not taken into account in the traditional Lorentzian approach
[3,18]; this explains why the GLO model underestimates the
experimental 〈�γ 〉. Our new SMLO prescription is found to
be globally in agreement with experimental data as shown in
Fig. 9 and seen from the root-mean-square (rms) deviations
given in Table I.

The deviation with respect to experimental data can be
characterized by the εrms and frms factors defined as

εrms = exp

[
1

Ne

Ne∑
i=1

ln ri

]
, (10)

frms = exp

[
1

Ne

Ne∑
i=1

ln2 ri

]1/2

, (11)

where Ne is the number of experimental data and ri is,
for each data point i, the ratio of theoretical to experi-
mental 〈�γ 〉 which takes into account the experimental un-
certainties δexp (see Ref. [9] for more details). We give in
Table I the εrms and frms factors for the 〈�γ 〉 values with
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FIG. 8. Comparison of the experimental Oslo strength [48] (black squares) with the SMLO predictions (full red lines) for 30 nuclei between
44Sc and 239U.

respect to the 223 experimental data [3]. Although the RIPL-
3 recommended strength clearly gives large deviations, our
new SMLO prescriptions reproduce rather well the global
trend in a way similar to what is obtained with the D1M +
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FIG. 9. Comparison between the 223 experimental (black cir-
cles) [3] and theoretical (colored diamonds) average radiative width
〈�γ 〉 as a function of A. The strength corresponds to the SMLO
model for the E1 and M1 including not only the spin flip, but also the
scissors and upbend modes. The nuclear level density adopted here
is from the combinatorial model [(Comb); blue full diamonds] [51]
or the constant temperature [(CT); open blue diamonds] [52].

QRPA + 0 lim+ strength [9]. The average radiative width
remains however sensitive to the nuclear level densities [see
Eq. (9)] as illustrated in Fig. 9 where the error bars on
the predictions represent the corresponding sensitivity using
different nuclear level-density models [51,52]. As already
found in Ref. [9], the constant-temperature level-density for-
mula leads systematically to lower predictions of the average

TABLE I. εrms and frms for the theoretical to experimental ratios
of both the 〈�γ 〉 and the Maxwellian-averaged neutron capture cross
sections (MACSs) 〈σ 〉. Theoretical estimates are obtained with the
present SMLO model, the D1M + QRPA + 0 lim+ [9], and the RIPL-
3 recommended strengths [3,18]. Both the CT [52] or the HFB +
Comb [51] models of nuclear level densities are considered.

〈�γ 〉 〈σ 〉
εrms frms εrms frms

SMLO (Comb) 0.90 1.45 1.11 1.47
SMLO (CT) 0.74 1.62 0.98 1.40
D1M + QRPA + 0 lim+ (Comb) 1.02 1.27 1.30 1.55
D1M + QRPA + 0 lim+ (CT) 0.90 1.32 1.15 1.40
RIPL-3 (Comb) 0.48 2.44 0.61 1.92
RIPL-3 (CT) 0.38 3.02 0.53 2.07
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FIG. 10. Ratio of the theoretical to experimental MACS at kT =
30 keV as a function of the atomic mass A for all nuclei between
Ca and Bi for which experimental MACS exist [54]. The theoretical
MACS are obtained with the present SMLO model for the E1 and
M1 strengths. The full symbols are calculations with the HFB +
combinatorial model of nuclear level densities [51] and the open
symbols with the CT plus Fermi gas model [52].

radiative width in comparison with the HFB + combinatorial
model.

The radiative neutron capture cross sections and reaction
rates of astrophysical interest have also been calculated sys-
tematically on the basis of the Hauser-Feshbach statistical
model described by the TALYS reaction code [53]. Figure 10
compares the 240 experimental MACSs [54] at 30 keV for
nuclei with 20 � Z � 83 with the TALYS predictions obtained
with the present SMLO model. Both the HFB + combinatorial
and constant temperature models of nuclear level densities are
considered. Note that in the TALYS calculation the strength
function is not renormalized as to reproduce the experimen-
tal average radiative width. Only nuclei with Z � 20 are
considered in the comparison to ensure the validity of the
Hauser-Feshbach approach, the cross section for lighter nuclei
being affected by the direct contribution [2] and the resolved
resonance regime [55] at the 30-keV neutron energies consid-
ered here. The deviation with respect to experimental data can
be characterized by the same εrms and frms factors as defined
for the average radiative width [Eqs. (10) and (11)], this time
with the ratio ri = 〈σ 〉ith/〈σ 〉iexp. As shown in Table I, the
rms deviation factors are quite satisfactory with the SMLO
prescription, relatively comparable to those obtained with
D1M + QRPA + 0 lim+ and significantly better than with the
former RIPL-3 recommendation, for which an frms deviation
of about 2 and mean deviation εrms � 0.5 are obtained. The
MACS as well as the average radiative widths are clearly
underestimated by the former RIPL-3 prescriptions. This ex-
plains the need to renormalize the average radiative width on

experimental data to reproduce properly the radiative neutron
capture cross section. This long-standing problem is largely
solved with the present updated SMLO prescriptions where
both the average radiative width and the neutron capture cross
sections are consistently estimated and globally in agreement
with experimental data. Such a conclusion holds regardless of
the nuclear level-density model adopted.

V. CONCLUSIONS

Valuable theoretical predictions of nuclear dipole excita-
tions in the whole chart of nuclei are of great interest for
different nuclear applications, including, in particular, nuclear
astrophysics. Here on the basis of experimental and theoretical
information on the E1 and M1 strength functions, inspired
both from axially deformed QRPA and from SM calculations,
we derive simple expressions to determine systematically the
dipole strength in order to update former prescriptions with
a special emphasis on new expressions for both the spin-flip
and the scissors mode components of the M1 strength. Such
expressions present the advantage of being easily tuned on
experimental data but also adjustable to reproduce measured
cross sections. We have extended our prescriptions of the pho-
toabsorption strength to the determination of the deexcitation
strength function by adding a temperature dependence to the
E1 GDR width and an M1 upbend at the lowest energies.
This extra strength together with the scissors mode impact
the overall radiative width as well as the radiative neutron
capture cross section, especially due to the increasing M1
strength at decreasing photon energies. We compared our
SMLO E1 and M1 strengths with available experimental data
at low energies and show that a relatively good agreement is
obtained. Finally, note that the expressions are kept as simple
as possible, still trying to capture as much as possible the
microscopic QRPA and SM patterns. If more sophisticated
functionals are required, it is then suggested to consider rather
the fully microscopic predictions, such as the tabulated E1
and M1 D1M + QRPA strength [9]. In the meantime, the new
expressions are believed to be more precise and more physical
than most of the analytical systematics proposed in the past,
such as the recommended RIPL-3 prescriptions [3].
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M. Krtička, A. Matic et al., Phys. Rev. C 85, 014311 (2012).

[24] M. R. Mumpower, T. Kawano, J. L. Ullmann, M. Krtička, and
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