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Application of the variational principle to a coherent-pair condensate: The BCS case
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I propose a new algorithm that applies the variational principle to a coherent-pair condensate. The result is
equivalent to that of the so-called variation after particle-number projection in the BCS case, but now the particle
number is always conserved and the time-consuming projection is avoided. I derive analytical expressions for
the average energy and its gradient in terms of the coherent-pair structure. In addition, I give analytically the pair
structure at the energy minimum, and discuss its asymptotic behavior away from the Fermi surface, which looks
quite simple and allows easy physical interpretations. The new algorithm iterates these pair-structure expressions
to minimize energy. I demonstrate the new algorithm in a semirealistic example using the realistic Vlow-k

interaction and large model spaces (up to 15 harmonic-oscillator major shells). The energy can be minimized to
practically arbitrary precision. The result shows that the realistic Vlow-k interaction does not cause divergences in
the pairing channel, although tiny occupation numbers (for example smaller than 10−5) contribute to the energy
(by a few tens of keV).
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I. INTRODUCTION

Many nuclear structure theories start from a mean-field
picture [1]. The choices for the mean field can be either
phenomenological or microscopic. The phenomenological
type includes the widely used spherical harmonic oscillator,
Woods-Saxon, and Nilsson mean field. The microscopic the-
ory is the Hartree-Fock (HF) method.

The pairing correlation has long been recognized [2]
and influences practically all nuclei across the nuclear chart
[3,4]. To incorporate pairing into the mean field, one intro-
duces quasiparticles and uses, for example, Nilsson+BCS,
HF+BCS, or Hartree-Fock-Bogoliubov (HFB) theory. These
theories are examples of the variational principle, where the
trial wave function is the quasiparticle vacuum. In the BCS
case only the pair structure (occupation probability) is varied,
whereas in the HFB case the pair structure is varied together
with the canonical basis.

However, the BCS or HFB theory has the drawback of
breaking the exact particle number [4]. Only the average
particle number is guaranteed by the chemical potential. Ef-
fectively, one replaces the original microcanonical ensemble
by the grand-canonical ensemble (at zero temperature). The
two ensembles are equivalent in the thermodynamic limit, but
differ in a nucleus having a finite number of nucleons. Espe-
cially in phase transition regions of sharp property changes,
the differences may be large.

To cue the problems, projection onto good particle num-
ber is necessary. It is usually done by numerical integration
over the gauge angle [4,5], and the result is a coherent-pair
condensate [of generalized seniority zero, see Eq. (1)]. The
projection can be done after or before the variation [1,4].
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Projection after variation (PAV) restores the correct particle
number and improves binding energy [4,6]. But it violates
the variational principle so the energy is not at minimum.
Moreover, many realistic nuclei have weak pairing and the
BCS or HFB solution collapses [7], then further projection
gets nothing. The variation after projection (VAP) [5] is pre-
ferred over PAV when feasible. VAP is simply the variational
principle using the coherent-pair condensate as the trial wave
function, and produces the best energy. For VAP+BCS see,
for example, Refs. [5,8–10]; for VAP+HFB see, for exam-
ple, Refs. [6,11–14]. The practical difficulty of VAP is that
numerical projection by integration is time consuming [15]
and needed many times in the current VAP procedure. In the
literature there are far fewer realistic applications of VAP than
those of the HF+BCS or HFB theory without projection.

In this work I apply the variational principle directly to
the coherent-pair condensate (VDPC). The particle number
is always conserved and the time-consuming projection is
avoided. (This feature is emphasized by the word “directly”
in the name “VDPC”.) This work considers VDPC+BCS that
varies the coherent-pair structure vα (3), and the result is
equivalent to that of VAP+BCS. My next work will extend to
VDPC+HFB that varies vα together with the canonical basis,
and is equivalent to VAP+HFB. (I name the new method
VDPC because VAP may be misleading: there is no projection
at all.)

I derive analytical expressions for the average energy and
its gradient in terms of vα . Requiring the gradient vanishes, I
get the analytical expression of vα at the energy minimum, and
discuss its asymptotic behavior away from (above or below)
the Fermi surface. The new VDPC algorithm iterates these vα

expressions to minimize the energy until practically arbitrary
precision. Without integration over gauge angle (necessary in
the VAP formalism), the analytical expressions of this work
look quite simple and allow easy physical interpretations. I
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demonstrate the new algorithm in a semirealistic example
using the realistic Vlow-k interaction [16] and large model
spaces (up to 15 harmonic-oscillator major shells). The
energy-convergence pattern and actual computer time cost
are given in detail. It is well known that zero-range pairing,
frequently used together with the Skyrme density functional,
diverges in the pairing channel [17,18]; so the pairing-active
space needs a phenomenological cutoff [13,15]. My result
shows that the realistic Vlow-k interaction converges naturally
in the pairing channel, although tiny occupation numbers (for
example smaller than 10−5) contribute to the energy (by a few
tens of keV).

This work relates to Refs. [8,10,14,19,20]. The average
energy of the pair condensate (1) has been derived in terms of
vα , for the pairing Hamiltonian [8] and a general Hamiltonian
[19]. However, the gradient of energy has not been derived.
Using this energy expression (without gradient) to numeri-
cally minimize energy is quick in small model spaces [10,14];
but the numerical sign problem arises in large model spaces
with many particles. For realistic applications, currently the
pairing-channel model space has been limited to a 10 MeV
window around the Fermi surface [10,14]. (5 MeV above and
5 MeV below, dimension is approximately that of one major
shell in atomic nuclei.) Only for the state-independent pairing
Hamiltonian with uniformly spaced single-particle energies
(this Hamiltonian has only one parameter of the pairing
strength in unit of the single-particle energy spacing), large
model spaces have been used [8,10]. In this simple schematic
model, vα (and the occupation number) decreases monotoni-
cally as the single-particle energy increases, so probably the
solution can be regulated to avoid the sign problem. Modern
mean-field theories use large model spaces, and VAP has been
done only by the gauge-angle integration [6,12,13]. One aim
of this work is to propose the new VDPC algorithm.

I also mention the Lipkin-Nogami prescription to restore
the particle number approximately [21–23]. It has been widely
used because the exact VAP is computationally expensive
[1,15]. There are ongoing efforts to improve the Lipkin
method [15].

The paper is organized as follows. Section II briefly re-
views the formalism for the condensate of coherent pairs. This
is the kinematics of the theory. Section III derives the analyt-
ical expression for the average energy. Section IV derives the
gradient of energy, vα at the energy minimum, and discusses
vα’s asymptotic behavior away from the Fermi surface. The
VDPC+BCS algorithm is described in Sec. V, and applied to
a semirealistic example in Sec. VI. Section VII summarizes
the work.

II. COHERENT-PAIR CONDENSATE

In this section I briefly review the formalism for the con-
densate of coherent pairs (state of zero generalized seniority
[24]). For clarity I consider one kind of nucleon, the extension
to active protons and neutrons is quite simple: the existence
of protons simply provides a correction to the neutron single-
particle energy, through the two-body proton-neutron interac-
tion. I assume time-reversal self-consistent symmetry [4,25],
and the single-particle basis state |α〉 is Kramers degenerate

with its time-reversed partner |α̃〉 (| ˜̃α〉 = −|α〉). No other
symmetry is assumed.

The ground state of the 2N -particle system is assumed to
be an N -pair condensate,

|φN 〉 = 1√
χN

(P †)N |0〉, (1)

where

χN = 〈0|P N (P †)N |0〉 (2)

is the normalization factor. The coherent pair-creation opera-
tor is

P † = 1

2

∑
α

vαa†
αa

†
α̃ =

∑
α∈�

vαP †
α , (3)

where

P †
α = a†

αa
†
α̃ = P

†
α̃ (4)

creates a pair on |α〉 and |α̃〉. In Eq. (3), � is the set of pair
indices that picks only one from each degenerate pair |α〉 and
|α̃〉. With axial symmetry, orbits of a positive magnetic quan-
tum number are a choice for �.

∑
α and

∑
α∈� mean summing

over single-particle indices and pair indices. Requiring |φN 〉 to
be time even implies that the pair structure vα (3) is real.

In practice, the canonical single-particle basis could be the
self-consistent HF mean field [9,10] or the phenomenological
Nilsson level [11,26]. In this work I vary vα on this fixed
canonical basis |α〉 to minimize the average energy Ē =
〈φN |H |φN 〉. Varying the canonical basis |α〉 will be in my next
work of this series.

I review necessary techniques. References [27,28] intro-
duced the many-pair density matrix

t
[γ1γ2...γr ],M
α1α2...αp ;β1β2...βq

≡ 〈0|P M−pPγ1Pγ2 . . . Pγr

×Pα1Pα2 . . . Pαp
P

†
β1

P
†
β2

. . . P
†
βq

×P †
γ1

P †
γ2

. . . P †
γr

(P †)M−q |0〉. (5)

All the pair indices α1, α2, . . . , αp, β1, β2, . . . , βq, γ1, γ2, . . .,
γr are distinct: Eq. (5) vanishes if there are duplicated Pμ

operators, or duplicated P †
μ operators, owing to the Pauli

principle; and I require by definition that α1, α2, . . . , αp

and β1, β2, . . . , βq have no common index (the common
ones have been moved to γ1, γ2, . . . , γr ). p, q, r are the
number of α, β, γ indices. M equals to the total number
of pair-creation operators minus r . Physically, the γ levels
are Pauli blocked and inactive. For convenience I introduce
{[γ1γ2 . . . γr ]} to represent a subspace of the original single-
particle space, by removing Kramers pairs of single-particle
levels γ1, γ̃1, γ2, γ̃2, . . . γr , γ̃r from the latter. Equation (5) is
the pair-hopping amplitude of Pα1Pα2 . . . Pαp

P
†
β1

P
†
β2

. . . P
†
βq

in
the blocked subspace {[γ1γ2 . . . γr ]}.

Reference [28] introduced Pauli-blocked normalizations as
a special case of Eq. (5) when p = q = 0,

χ
[γ1γ2...γr ]
M ≡ t [γ1γ2...γr ],M

;

= 〈0|P MPγ1Pγ2 . . . Pγr
P †

γ1
P †

γ2
. . . P †

γr
(P †)M |0〉.

(6)
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It is the normalization in the blocked subspace {[γ1γ2 . . . γr ]}.
Then Ref. [28] expressed many-pair density matrix (5) by
normalizations (6),

t
[γ1γ2...γr ],M
α1α2...αp ;β1β2...βq

= (M − p)!(M − q )!

[(M − p − q )!]2

× vα1vα2 . . . vαp
vβ1vβ2 . . . vβq

×χ
[α1α2...αpβ1β2...βqγ1γ2...γr ]
M−p−q . (7)

Normalizations (6) can be computed by recursive relations,

χN = N
∑
α∈�

(vα )2χ
[α]
N−1, (8)

χN − χ
[α]
N = (Nvα )2χ

[α]
N−1 = χN 〈φN |n̂α|φN 〉, (9)

with initial value χ
[α]
N=0 = 1. Knowing χ

[α]
N−1’s, I compute

χN by Eq. (8), and then χ
[α]
N ’s by Eq. (9). 〈φN |n̂α|φN 〉 =

〈0|P Na†
αaα (P †)N |0〉/χN is the average occupation number.

Equations (8) and (9) are just Eqs. (22)–(24) of Ref. [29],
using tNα; = Nvαχ

[α]
N−1 implied from Eq. (7). Equations (8) and

(9) are also valid in the blocked subspaces {[γ1γ2 . . . γr ]}. For
example, in {[β]} they read

χ
[β]
N = N

Pα �=Pβ∑
α∈�

(vα )2χ
[αβ]
N−1, (10)

χ
[β]
N − χ

[αβ]
N = (Nvα )2χ

[αβ]
N−1

= χ
[β]
N

〈
φ

[β]
N

∣∣n̂α

∣∣φ[β]
N

〉
(Pα �= Pβ ), (11)

where
∣∣φ[β]

N

〉 ≡ 1√
χ

[β]
N

(P † − vβP
†
β )N |0〉 (12)

is the pair condensate with β and β̃ blocked. In {[βγ ]} (Pβ �=
Pγ ) they read

χ
[βγ ]
N = N

Pα �=Pβ,Pγ∑
α∈�

(vα )2χ
[αβγ ]
N−1 , (13)

χ
[βγ ]
N − χ

[αβγ ]
N = (Nvα )2χ

[αβγ ]
N−1 (Pα �= Pβ, Pγ ). (14)

Later the new VDPC algorithm needs χ
[α]
N , χ

[αβ]
N , and

χ
[αβγ ]
N . χ

[α]
N must be computed by the recursive relation (9).

χ
[αβ]
N could be computed by the recursive relation (11), but

I find it simpler and quicker to use an alternative formula
(Pα �= Pβ):

(vα )2χ
[α]
N − (vβ )2χ

[β]
N = [(vα )2 − (vβ )2]χ [αβ]

N . (15)

Deriving Eq. (15) has only one step using Eq. (11). Similarly,
χ

[αβγ ]
N could be computed by the recursive relation (14), but it

is simpler and quicker to use (Pα, Pβ, Pγ are all different)

(vα )2χ
[αγ ]
N − (vβ )2χ

[βγ ]
N = [(vα )2 − (vβ )2]χ [αβγ ]

N . (16)

This section discusses the kinematics of the formalism, next I
discuss the dynamics.

III. AVERAGE ENERGY

In this section I derive analytically the average energy of
the pair condensate. The antisymmetrized two-body Hamilto-
nian is

H =
∑
αβ

εαβa†
αaβ + 1

4

∑
αβγμ

Vαβγμa†
αa

†
βaγ aμ. (17)

Note the ordering of αβγμ, thus Vαβγμ = −〈αβ|V |γμ〉. I
assume time-even H (εαβ = εβ̃α̃ , Vαβγμ = Vμ̃γ̃ β̃α̃) and real εαβ

and Vαβγμ. No other symmetry of H is assumed.
I compute the average energy Ē = 〈φN |H |φN 〉 in the

canonical basis (3). For the one-body εαβ part, only the
diagonal type a†

αaα contributes,

〈0|P Na†
αaα (P †)N |0〉 = χN 〈φN |n̂α|φN 〉 = (Nvα )2χ

[α]
N−1,

(18)

which is Eq. (9). For the two-body Vαβγμ part, only three
mutually exclusive types contribute (Pα �= Pβ): a†

αa
†
α̃aα̃aα ,

a†
αa

†
α̃aβ̃aβ , and a†

αa
†
βaβaα . The first type is

type1 = 〈0|P Na†
αa

†
α̃aα̃aα (P †)N |0〉 = 〈0|P Na†

αaα (P †)N |0〉
= χN 〈φN |n̂α|φN 〉, (19)

because |α〉 and |α̃〉 are either both occupied or both empty
in (P †)N |0〉. The second type a†

αa
†
α̃aβ̃aβ = P †

αPβ = PβP †
α , so

Eqs. (5) and (7) imply

type2 = 〈0|P Na†
αa

†
α̃aβ̃aβ (P †)N |0〉 = tN+1

β;α

= N2vαvβχ
[αβ]
N−1. (20)

The third type a†
αa

†
βaβaα = 1 − aαa†

α − aβa
†
β + aαaβa

†
βa†

α by
basic anticommutation relation, so definition (6) implies

type3 = 〈0|P Na†
αa

†
βaβaα (P †)N |0〉

= χN − χ
[α]
N − χ

[β]
N + χ

[αβ]
N .

Using χN − χ
[α]
N = N2(vα )2χ

[α]
N−1 [Eq. (9)] and χ

[β]
N −

χ
[αβ]
N = N2(vα )2χ

[αβ]
N−1 [Eq. (11)], then factorizing out

N2(vα )2, I have

type3 = N2(vα )2
(
χ

[α]
N−1 − χ

[αβ]
N−1

)
.

In Eq. (11) I replace N by N − 1 (N → N − 1) and exchange
α and β (α ↔ β),

χ
[α]
N−1 − χ

[αβ]
N−1 = (N − 1)2(vβ )2χ

[αβ]
N−2

= χ
[α]
N−1

〈
φ

[α]
N−1

∣∣n̂β

∣∣φ[α]
N−1

〉
. (21)

Thus I have two equivalent expressions,

type3 = N2(N − 1)2(vαvβ )2χ
[αβ]
N−2, (22)

or

type3 = N2(vα )2χ
[α]
N−1

〈
φ

[α]
N−1

∣∣n̂β

∣∣φ[α]
N−1

〉
= χN 〈φN |n̂α|φN 〉〈φ[α]

N−1

∣∣n̂β

∣∣φ[α]
N−1

〉
. (23)

The last step is Eq. (9).

014302-3



L. Y. JIA PHYSICAL REVIEW C 99, 014302 (2019)

The expectation value of H (17) is

〈φN |H |φN 〉 =
∑
α∈�

2εαα〈φN |a†
αaα|φN 〉

+
∑
α∈�

Vαα̃α̃α〈φN |a†
αa

†
α̃aα̃aα|φN 〉

+
α �=β∑

α,β∈�

Vαα̃β̃β〈φN |a†
αa

†
α̃aβ̃aβ |φN 〉

+
α �=β∑

α,β∈�

(Vαββα + Vαβ̃β̃α )〈φN |a†
αa

†
βaβaα|φN 〉.

(24)

The summations run over pair index α and β. The first term
collects two equal contributions by εαα = εα̃α̃ , which gives
the factor 2. The second term collects four equal contribu-
tions by Vαα̃α̃α = −Vαα̃αα̃ = −Vα̃αα̃α = Vα̃ααα̃ , which cancels
the factor 1/4 in the Hamiltonian (17). The third term col-
lects Vαα̃β̃β = −Vαα̃ββ̃ = −Vα̃αβ̃β = Vα̃αββ̃ . The fourth term
collects Vαββα = −Vαβαβ = Vα̃β̃β̃α̃ = −Vα̃β̃α̃β̃ and Vαβ̃β̃α =
−Vαβ̃αβ̃ = Vα̃ββα̃ = −Vα̃βα̃β .

Substituting Eqs. (18), (19), (20), (22) into Eq. (24),

〈φN |H |φN 〉 = N2

χN

⎛
⎝∑

α∈�

(2εαα + Gαα )(vα )2χ
[α]
N−1

+
α �=β∑

α,β∈�

Gαβvαvβχ
[αβ]
N−1

+ (N − 1)2
α �=β∑

α,β∈�

�αβ (vαvβ )2χ
[αβ]
N−2

⎞
⎠, (25)

where I introduce the paring matrix elements Gαβ and the
monopole matrix elements �αβ as

Gαβ ≡ Vαα̃β̃β, (26)

�αβ = Vαββα + Vαβ̃β̃α. (27)

Note Gαβ = Gβα = Gαβ̃ , �αβ = �βα = �αβ̃ , and Gαα =
�αα . Equation (25) expresses the average energy by normal-
izations and is adopted in coding. Another equivalent ex-
pression by occupation numbers reveals more physics. Using
Eqs. (18) and (23),

〈φN |H |φN 〉 =
∑
α∈�

(2εαα + Gαα )〈φN |n̂α|φN 〉

+N2
α �=β∑

α,β∈�

Gαβvαvβ

χ
[αβ]
N−1

χN

+
α �=β∑

α,β∈�

�αβ〈φN |n̂α|φN 〉〈φ[α]
N−1

∣∣n̂β

∣∣φ[α]
N−1

〉
. (28)

The analytical expression for the average energy has been
given in a slightly different form in Ref. [19]. The gradient

of energy and others, crucial to the new VDPC algorithm, are
new results of this work as given in the next section.

IV. GRADIENT OF ENERGY

In this section I derive the gradient of average energy
with respect to the pair structure vα (3). Moreover, I give the
analytical formula of vα that minimizes the energy. Finally I
discuss the asymptotic behavior of vα away from (above or
below) the Fermi surface.

Equation (25) expresses the average energy Ē in terms of
(Pauli-blocked) normalizations χN . To compute gradient of Ē,
I first compute gradient of χN . Under infinitesimal change δvα

of a single vα , the variation of P † (3) and (P †)N are

δP † = (δvα )P †
α ,

δ[(P †)N ] = N (P †)N−1δP † = N (δvα )P †
α (P †)N−1.

Thus the variation of χN (2) is

δχN = 〈0|δ[P N ](P †)N |0〉 + 〈0|P Nδ[(P †)N ]|0〉
= 〈0|P Nδ[(P †)N ]|0〉 + H.c.

= N〈0|P NP †
α (P †)N−1|0〉δvα + H.c.

H.c. means Hermitian conjugate, which in fact equals to the
first term because vα is real. Using Eqs. (5) and (7), I have

δχN = 2NtN;α δvα = 2N2vαχ
[α]
N−1δvα

= 2χN

vα

〈φN |n̂α|φN 〉δvα = 2

vα

(
χN − χ

[α]
N

)
δvα. (29)

The last two steps use Eq. (9).
If I Pauli block the β index (Pβ �= Pα) from the very

beginning, the derivation remains valid, so Eq. (29) implies

δχ
[β]
N = 2N2vαχ

[αβ]
N−1δvα = 2χ

[β]
N

vα

〈
φ

[β]
N

∣∣n̂α

∣∣φ[β]
N

〉
δvα

= 2

vα

(
χ

[β]
N − χ

[αβ]
N

)
δvα, Pβ �= Pα. (30)

And of course δχ
[α]
N = 0. Similarly, I easily obtain δχ

[βγ ]
N

by Pauli blocking the two indices β and γ from the very
beginning. Substituting δχN (29), δχ

[β]
N (30), and δχ

[βγ ]
N into

Eq. (25), using basic calculus then collecting similar terms, a
two-page long derivation gives the energy gradient,

∂Ē

∂vα

= ∂[〈φN |H |φN 〉]
∂vα

exp 1
=

−2N2

χN

[ Pβ �=Pα∑
β∈�

Gαβvβχ
[αβ]
N−1

+ χ
[α]
N

N2vα

(〈
φ

[α]
N

∣∣H ∣∣φ[α]
N

〉 − Ē
)]

(31)

exp 2
=

2N2

χN

[ Pβ �=Pα∑
β∈�

Gαβvβχ
[αβ]
N−1

+ vαχ
[α]
N−1

(
dα + 〈

φ
[α]
N−1

∣∣H ∣∣φ[α]
N−1

〉 − Ē
)]

, (32)
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where

dα = 2εαα + Gαα + 2
Pβ �=Pα∑
β∈�

�αβ

〈
φ

[α]
N−1

∣∣n̂β

∣∣φ[α]
N−1

〉
(33)

= 2εαα + Gαα + 2(N − 1)2
Pβ �=Pα∑
β∈�

�αβ (vβ )2 χ
[αβ]
N−2

χ
[α]
N−1

.

(34)

The two gradient expressions (31) and (32) are equivalent. dα

is the single-pair energy similar to the common single-particle
HF energy. In Eq. (33), 2εαα + Gαα is the unperturbed energy
for a pair on orbits |α〉 and |α̃〉, this pair interacts with other
pairs by energy 2

∑Pβ �=Pα

β∈� �αβ〈φ[α]
N−1|n̂β |φ[α]

N−1〉. Equation (34)
is equivalent to Eq. (33), based on Eq. (11).

Because Ē is independent of an overall scaling of vα , the
gradient of Ē is perpendicular to 
v,

∇Ē · 
v =
∑
α∈�

vα

∂Ē

∂vα

= 0.

This identity is used to numerically check the computer code.
Later I also need the HF single-particle energy

eα = εαα +
∑
β∈SD

Vαββα = εαα +
β∈SD∑
β∈�

�αβ, (35)

where β ∈ SD means the β orbit is occupied in the HF Slater
determinant. The Fermi energy eF ≡ (eh.o. + el.e.)/2, where
eh.o. and el.e. are eα of the highest (energy eα) occupied and
the lowest empty HF single-particle level. In Eq. (3), if I set
vα to 1 for occupied orbits and to 0 for empty orbits, the pair
condensate (1) reduces to the HF Slater determinant. In this
case dα ≈ 2eα .

At energy minimum, the gradient (31) and (32) vanish,
which implies

vα
exp 1
=

〈
φ

[α]
N

∣∣H ∣∣φ[α]
N

〉 − Ē

−N2
( ∑Pβ �=Pα

β∈� Gαβvβχ
[αβ]
N−1

)/
χ

[α]
N

(36)

=
〈
φ

[α]
N

∣∣H ∣∣φ[α]
N

〉 − Ē

−∑Pβ �=Pα

β∈� Gαβ
1
vβ

〈
φ

[α]
N

∣∣n̂β

∣∣φ[α]
N

〉

exp 2
=

−( ∑Pβ �=Pα

β∈� Gαβvβχ
[αβ]
N−1

)/
χ

[α]
N−1

dα + 〈
φ

[α]
N−1

∣∣H ∣∣φ[α]
N−1

〉 − Ē
(37)

= −∑Pβ �=Pα

β∈� Gαβvβ

(
1 − 〈

φ
[α]
N−1

∣∣n̂β

∣∣φ[α]
N−1

〉)
dα + 〈

φ
[α]
N−1

∣∣H ∣∣φ[α]
N−1

〉 − Ē
.

The last step of Eqs. (36) and (37) use Eq. (11). Analytically,
Eq. (31) is equivalent to Eq. (32), and Eq. (36) is equivalent
to Eq. (37). Numerically, I prefer Eq. (31) or Eq. (36) when
eα � eF (eF is the Fermi energy, here � means the α orbit is
well below the Fermi surface), and prefer Eq. (32) or Eq. (37)
when eα  eF . When eα � eF , physical arguments imply
〈φ[α]

N |H |φ[α]
N 〉 − Ē ≈ 2(eF − eα ) and dα + 〈φ[α]

N−1|H |φ[α]
N−1〉 −

Ē ≈ 0. I want to avoid the ≈ 0 case to avoid the numeri-
cal sign problem (subtract two very closed numbers, dα +

〈φ[α]
N−1|H |φ[α]

N−1〉 and Ē), so I prefer Eq. (31) or Eq. (36). When
eα  eF , physical arguments imply 〈φ[α]

N |H |φ[α]
N 〉 − Ē ≈ 0

and dα + 〈φ[α]
N−1|H |φ[α]

N−1〉 − Ē ≈ 2(eα − eF ). I want to avoid
the 〈φ[α]

N |H |φ[α]
N 〉 − Ē ≈ 0 case, so prefer Eq. (32) or Eq. (37).

The above analysis also implies the asymptotic behavior of
vα away from (above or below) the Fermi surface,

vα ≈ 2(eF − eα )

−N2
( ∑Pβ �=Pα

β∈� Gαβvβχ
[αβ]
N−1

)/
χ

[α]
N

= 2(eF − eα )

−∑Pβ �=Pα

β∈� Gαβ
1
vβ

〈
φ

[α]
N

∣∣n̂β

∣∣φ[α]
N

〉 , eα � eF , (38)

and

vα ≈ −( ∑Pβ �=Pα

β∈� Gαβvβχ
[αβ]
N−1

)/
χ

[α]
N−1

2(eα − eF )

= −∑Pβ �=Pα

β∈� Gαβvβ

(
1 − 〈

φ
[α]
N−1

∣∣n̂β

∣∣φ[α]
N−1

〉)
2(eα − eF )

, eα  eF .

(39)

In Eqs. (38) and (39), the summation

Pβ �=Pα∑
β∈�

Gαβvβχ
[αβ]
N−1

= χ
[α]
N

N2

Pβ �=Pα∑
β∈�

Gαβ

1

vβ

〈
φ

[α]
N

∣∣n̂β

∣∣φ[α]
N

〉
(40)

= χ
[α]
N−1

Pβ �=Pα∑
β∈�

Gαβvβ

(
1 − 〈

φ
[α]
N−1

∣∣n̂β

∣∣φ[α]
N−1

〉)
(41)

depends on the details of interaction, and should have impor-
tant contributions when the β orbit is near the Fermi surface.
If eβ � eF , vβ is very large and 〈φ[α]

N |n̂β |φ[α]
N 〉 ≈ 1, Eq. (40)

shows that this Gαβ term is suppressed by the factor 1/vβ ,
compared with those terms near the Fermi surface. If eβ 
eF , vβ is very small and 〈φ[α]

N−1|n̂β |φ[α]
N−1〉 ≈ 0, Eq. (41) shows

that this Gαβ term is suppressed by the factor vβ , compared
with those terms near the Fermi surface.

When eα � eF , generally vα should increase when eα

decreases, and the linear factor eF − eα in the numera-
tor of Eq. (38) contributes to this trend. The other factor∑Pβ �=Pα

β∈� Gαβ
1
vβ

〈φ[α]
N |n̂β |φ[α]

N 〉 in the denominator should also
contribute to this trend by the decaying of Gαβ , because
β was near the Fermi surface as explained above. When
eα  eF , generally vα should decrease when eα increases,
and the inverse-linear factor 1/(eα − eF ) in the denomina-
tor of Eq. (39) contributes to this trend. The other fac-
tor

∑Pβ �=Pα

β∈� Gαβvβ (1 − 〈φ[α]
N−1|n̂β |φ[α]

N−1〉) in the numerator
should also contribute to this trend by the decaying of Gαβ .

The exact [Eqs. (36) and (37)] and asymptotic [Eqs. (38)
and (39)] expressions for vα are key to the new VDPC
algorithm as given in the next section.
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V. COMPUTER ALGORITHM

In this section I design the computer algorithm to minimize
the average energy Ē. The variational parameters are the pair
structure vα (3). I have expressed Ē (25) and its gradient ∂Ē

∂vα

[Eqs. (31) and (32)] in terms of vα . In principle, coding these
expressions and choosing an available minimizer (for example
FMINUNC in MATLAB) solve the problem.

Practically, in large model spaces the sign problem may
arise. If I normalize vα such that vα ≈ 1 (the order of magni-
tude) near the Fermi surface, vα could be very large (small)
for eα � eF (eα  eF ) orbits: typically vα ≈ 10 (vα ≈ 0.01)
near eα = eF − 20 MeV (eα = eF + 20 MeV). Then the
sign problem may arise when recursively computing χ

[α]
N by

Eq. (9).
Most numerical softwares run very quickly using numbers

of double-precision floating-point format. (Because usually
the machine precision is double precision.) So in practice, if
I use double-precision numbers, how large could the model
space be? My experience is that there is no sign problem up
to the case of 2N = 24 particles in a single-particle space
of dimension D = 2� = 48. (The model space is half-filled;
the particle number is the largest considering the particle-
hole symmetry [30,31]. � is the number of vacancies for
Kramers pairs.) In this case MATLAB FMINUNC costs typically
0.3 second to minimize Ē, on a laptop by serial computing
(not in parallel).

The modern mean-field theory uses large model spaces (for
example, 15 harmonic-oscillator major shells). In this case
double precision is not enough, and I resort to softwares that
run quickly using arbitrary-precision numbers, for example,
Mathematica. In principle, any algorithm running into the
sign problem could use this strategy of increasing preci-
sion. However, in practice, computing with arbitrary-precision
numbers is usually much slower than with double-precision
numbers; so the formulas for coding must be simple so that
the total computer time cost is feasible. In this work I use 120
effective digits (by Mathematica function SetPrecision[120])
to compute the average energy Ē (25), which overcomes the
sign problem. Then I switch to double precision and compute
the gradient ∂Ē

∂vα
[Eqs. (31) and (32)] and the new vα [Eqs. (36)

and (37)], which has no sign problem at all. Computing
Ē (by 120 effective digits) costs negligible time compared
to computing ∂Ē

∂vα
and the new vα (by double precision),

so using arbitrary-precision numbers hardly affects the total
time cost. And for this reason I do not fine tune precision
in this work but always use 120 effective digits, which
is more than enough to overcome the sign problem when
computing Ē.

The VDPC algorithm is designed to increase the valence
space gradually: first minimizes Ē in a small valence space
(of dimension 2� ≈ 50 to use double precision) around eF to
quickly get the big picture, next refines the solution in larger
valence spaces until the desired convergence. The Nilsson
levels below the valence space are completely filled and form
an inert core, the core simply corrects the valence-space
single-particle energy by its HF mean field. Specifically, the
algorithm has five steps:

(i) I sort the single-particle basis states |α〉 by their HF
energy eα (35), and occupy the lowest 2N basis states. In other
words, I solve the HF equation but without mixing the basis
states. (This work is VDPC+BCS, not VDPC+HFB.) This
step is not needed if the input single-particle basis is already
the HF basis. (ii) I select around eF the first valence space
(VS1) of dimension 2� ≈ 50 (to use double precision). Then
I input both the energy [Eq. (25)] and the gradient [Eqs. (31)
and (32)] into MATLAB FMINUNC, to quickly minimize Ē. The
resultant vα of VS1 is called v(1)

α . (iii) I select around eF

the second valence space (VS2) of dimension 2� ≈ 200. I
initialize vα of VS2 to be v(1)

α if |α〉 belongs to VS1, and to be
a very large (small) number if |α〉 is not in VS1 and eα < eF

(eα > eF ) so that nα ≈ 1 (nα ≈ 0). Then I use the analytical
formulas (36) and (37) to iterate vα until convergence (usually
10 iterations are enough). The resultant vα of VS2 is called
v(2)

α . VS2 is large enough so that v(2)
α is very close to the final

solution. (iv) For all the basis states |β〉 not in VS2, estimate
vβ . I substitute v(2)

α into the asymptotic expressions (38)
and (39) to compute vβ . (This is the first-order perturbation:
determine vβ from v(2)

α of VS2.) Next I substitute v(2)
α and vβ

into Eqs. (38) and (39) again, to compute the final vβ , labeled
as vest

β . (This is the second-order perturbation: consider correc-
tions from mutual interactions among vβ .) The corresponding
occupation number is nest

β . (v) Choose two cutoffs nmin and
nmax (for example nmin = 10−6 and nmax = 1 − 10−7), and
select the third valence space (VS3): VS3 consists of VS2 and
those basis states |β〉 satisfying nmin � nest

β � nmax. I initialize
vα of VS3 to be v(2)

α if |α〉 belongs to VS2, and to be vest
β

if |α〉 is not in VS2. Then I use the analytical formulas (36)
and (37) to iterate vα in VS3 until the desired convergence.
The resultant vα of VS3 is called v(3)

α . This finishes the VDPC
algorithm.

The next section demonstrates the algorithm in a semire-
alistic example, giving the actual time cost and energy-
convergence pattern.

VI. REALISTIC EXAMPLE

In this section I apply the VDPC+BCS algorithm to the
semirealistic example of the rare-earth nucleus 158

64 Gd94. (This
example has been used in my recent paper [28] on deformed
generalized seniority.) The purpose is to demonstrate the
effectiveness of the algorithm under realistic interactions. For
simplicity, I consider only the neutron degree of freedom,
governed by the antisymmetrized two-body Hamiltonian

H =
∑

α

εαa†
αaα + 1

4

∑
αβγμ

Vαβγμa†
αa

†
βaγ aμ. (42)

The single-particle levels εα are eigenstates of the Nilsson
model [32]. The Nilsson parameters are the same as in
Ref. [28], here I only repeat β = 0.349 (the experimental
quadrupole deformation [33]). The neutron residual interac-
tion Vαβγμ is the low-momentum NN interaction Vlow-k [16]
derived from the free-space N3LO potential [34].

Specifically, I use the code distributed by Hjorth-
Jensen [35] to compute (without Coulomb, charge-symmetry
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breaking, or charge-independence breaking) the two-body
matrix elements of Vlow-k in the spherical harmonic oscillator
basis up to (including) the N = 14 major shell, with the
standard momentum cutoff 2.1 fm−1. (N = 2nr + l is the
major-shell quantum number.) Then the Nilsson model is
diagonalized in this spherical N � 14 basis, the eigenenergies
are εα and the eigen wave functions transform the spherical
two-body matrix elements into those on the Nilsson basis as
used in the Hamiltonian (42).

This procedure has several assumptions. Mainly the
proton-neutron interaction generates the static deformation
and self-consistently the Nilsson mean field. The residual
proton-neutron interaction is neglected, and in the Hamilto-
nian (42) the part of the neutron-neutron interaction already
included in the Nilsson mean field εα is not removed from
Vαβγμ. These assumptions make the example semirealistic.
My goal is to demonstrate the effectiveness of the VDPC
algorithm, not to accurately reproduce the experimental data.

All the numerical calculations of this work were done
on a laptop. The laptop has one quad-core CPU (Intel Core
i7-4710MQ @ 2.5 GHz), but I used only serial computing on
a single core (no parallel computing). All time costs plotted
in the figures or given in the text are the actual time costs
spent on this laptop. This work uses MATLAB R2015a and
Mathematica 10.2, to give the actual software version.

I follow the steps listed in Sec. V, and an example of a
complete run is shown in Fig. 1. In less than 30 seconds, the
energy error reduces to about 3 keV. (The exact minimum
E(exact), converged energy in the full space, is given by a
separate calculation. The full space consists of all Nilsson

                                             iter1    iter2    iter3    iter4    iter5
step1 step2 step3 step4 step5:

E
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100

101
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Energy Error
Time

FIG. 1. Energy and time in a complete run. The horizontal axis
shows the five steps listed in Sec. V, where step (v) is divided into
five iterations. The cross symbols correspond to the left axis and
show the energy error after each step or iteration, relative to the exact
minimum E(exact) (converged energy in the full space). The circle
symbols correspond to the right axis and show the computer time
spent by each step or iteration. All time costs in this work refer to
that by serial computing on a laptop (CPU is Intel Core i7-4710MQ
@ 2.5 GHz, no parallel computing).
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FIG. 2. Convergence of energy in VS1 by MATLAB. The horizon-
tal axis shows the number of iterations. The vertical axis shows the
energy at each iteration E(iter), relative to the final converged energy
E(final).

levels after diagonalizing in the spherical N � 14 basis.)
Below I explain and discuss each step.

Step (i) sorts the Nilsson basis by their HF energy eα

(35). This step costs negligible time. Figure 1 shows that the
pairing correlation energy is 1.83 MeV (defined as the energy
difference between the HF Slater determinant and the final
coherent-pair condensate).

Step (ii) selects VS1, and uses MATLAB FMINUNC to
minimize Ē. Figure 1 chooses VS1 to be (eF − 5.38, eF +
5.5), which consists of all Nilsson levels α satisfying eF −
5.38 MeV < eα < eF + 5.5 MeV. VS1 has dimension 2� =
48 (24 Nilsson levels below eF and 24 above eF ). Starting
from a random initial vα , MATLAB quickly minimizes Ē in
about 0.3 second. This process is plotted in Fig. 2: how
the energy converges as the number of iterations increases.
Figure 1 shows that VS1 has a cutoff (truncation) error of 1.33
MeV for energy. [The cutoff error is defined as the energy
minimum (the converged answer) in VS1 minus E(exact).]

Step (iii) selects VS2, and uses Mathematica to minimize
Ē by iterating Eqs. (36) and (37). I choose VS2 to be
(−∞, eF + �e), which consists of all Nilsson levels α sat-
isfying eα < eF + �e. This is the conventional way of doing
truncation: the valence space is limited to a finite energy win-
dow around the Fermi surface. Eight choices for the cutoff �e
generate eight different model spaces VS2, their dimensions
and cutoff errors (relative to the full space when �e = +∞)
are shown in Fig. 3. For two out of the eight choices, �e = 20
MeV and 50 MeV, Fig. 4 plots the energy convergence patten.
The accumulated computer time cost increases linearly with
the number of iterations, so each iteration costs the same time
approximately. The energy error decreases the fastest in the
first few iterations (by several orders of magnitude). Overall,
the curve is linear on the log-scale plot, so energy converges
exponentially with the number of iterations. In plotting Fig. 1,
I fix VS2 to be (−∞, eF + 20) and do ten iterations: the time
cost is 3.4 seconds and the energy cutoff error is 267 keV.
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cutoff Δe (MeV)
20 30 40 50 60 70 80 90

E
(Δ

e)
−E

(e
xa

ct
)

(M
eV

)

10-4

10-3

10-2

10-1

100
Cutoff Error

D
im

en
si

on

0

200

400

600

800

1000

1200

1400

Energy Error
Dimension

FIG. 3. The cutoff error and dimension of eight different model
spaces (VS2). The horizontal axis shows the cutoff �e, so the model
space is (−∞, eF + �e). It consists of all Nilsson levels α satisfying
eα < eF + �e, where eF is the Fermi energy. The cross symbols
correspond to the left axis and show the cutoff error: the energy of
each model space E(�e) relative to the exact energy of the full space
E(exact). The circle symbols correspond to the right axis and show
the dimension of each model space.

Step (iv) estimates vα in the full space by the asymptotic
expressions (38) and (39). This step reduces the energy error
to 18 keV in 2.4 seconds.

In step (v), I select VS3 by choosing two cutoffs nmin and
nmax. There are 94 Nilsson levels below eF , and in this work
I include all of them by setting nmax = 1. Ten choices of nmin

generate ten different VS3, their dimensions and cutoff errors
(relative to the full space when nmin = 0) are shown in Fig. 5.
In plotting Fig. 1, I fix nmin = 3 × 10−7 and do five iterations.
The time cost is about 6 seconds per iteration, and the energy

iterations
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FIG. 4. Energy and time in two different model spaces (VS2)
by Mathematica. The solid and dotted lines correspond to the left
vertical axis, and show the energy errors in the two model spaces.
The circle and triangle symbols correspond to the right vertical axis,
and show the accumulated computer time cost after each iteration.
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FIG. 5. The cutoff error and dimension of ten different model
spaces (VS3). The horizontal axis shows the cutoff nmin, so the model
space consists of all Nilsson levels α satisfying nα � nmin. The cross
and circle symbols have similar meanings to those of Fig. 3.

cutoff error is 2.4 keV. Figure 1 shows that step (v) costs the
largest time, but the energy converges quickly so practically
one needs very few iterations (around three iterations). In
passing, extending to VDPC+HFB, one may not need the
slowest step (v) when computing vα on each intermediate
canonical basis, because after step (iv) the energy error is
already pretty small (18 keV). Only at the final iterations step
(v) was needed to reach complete convergence.

This finishes my explanation of Fig. 1. Note that Fig. 1 is
just an example; for a desired accuracy, fine tuning parameters
in these five steps finds the shortest time cost.

The above discussions use two truncating schemes: by
energy �e and by occupation number nmin. Figure 6 compares
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FIG. 6. Compare the two truncating schemes shown in Figs. 3
and 5. The horizontal axis shows the cutoff error in each truncated
subspace, and the vertical axis shows the subspace dimension.
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FIG. 7. The error of the asymptotic vα expression relative to the
exact vα expression. The relative error RE ≡ (vasymptotic

α /vexact
α ) − 1.

The horizontal axis shows |vexact
α |, the absolute value of the exact vα .

The dot symbols correspond to the left vertical axis and show |RE|.
The cross symbols correspond to the right vertical axis and show the
exact occupation number nα .

them and shows that truncating by occupation number is more
effective than by energy. For a desired accuracy (cutoff error),
truncating by nmin needs a smaller subspace dimension. The
two schemes differ the most at small cutoff error or large
dimension (the top-left corner). This means for Nilsson levels
α well above the Fermi surface, nα is not a smooth mono-
tonically decreasing function of eα , but fluctuating around an
overall decreasing trend. Some Nilsson levels α are populated
more (less) than their neighbours owing to large (small)
magnitudes of Gαβ , as shown by Eq. (39). However at small
dimension (the bottom-right corner), the two schemes differ
little. Later I will show that time cost is proportional to the
cube of dimension, so the advantage of truncating by nmin over
truncating by �e is more apparent when evaluating the time
cost instead of the dimension.

The asymptotic expressions (38) and (39) very well repro-
duce the exact vα (36) and (37) away from the Fermi surface.
Figure 7 compares them at the energy minimum in the full
space. The horizontal axis shows |vexact

α | instead of vexact
α ,

because some vexact
α are negative with very small magnitudes.

(The range is −2.40 × 10−4 � vexact
α � 39.7). Near the Fermi

surface, the asymptotic expressions (38) and (39) are not
justified so |RE| is big (|RE| is the absolute value of relative
error). Going away from the Fermi surface, |RE| becomes
smaller and smaller. There are 680 different vα (the full-space
dimension is 1360 = 680 × 2), 661 of them have |RE| <
10%, 568 of them have |RE| < 1%. Figure 7 shows vα at
the energy minimum; near the minimum |RE| has a similar
pattern, which makes step (iv) effective.

The new algorithm minimizes Ē through iterating vα ,
by the exact expressions (36) and (37) or the asymptotic
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FIG. 8. Computer time cost of one iteration in different model
spaces. The horizontal axis shows the dimension of each model
space, and the vertical axis shows the time cost of one iteration
(averaged over many iterations). The asterisk symbols iterate by the
exact vα expressions (36) and (37), and the circle symbols iterate by
the asymptotic vα expressions (38) and (39).

expressions (38) and (39). The computer time cost per each
iteration mainly depends on the dimension of the (single-
particle) model space. Figure 8 shows that this time increases
approximately linearly with dimension on the log-log plot.
I perform a linear least-squares fit in the form log(T ) =
α log(D) + C (T is time in unit of second, D is dimension, α
and C are fitting parameters). The result is T = (D/339)2.96

for the exact vα , and T = (D/1245)1.76 for the asymptotic vα .
The latter is much quicker.

Finally I suggest some directions to further optimize the
algorithm. First, Fig. 1 shows that step (v) costs the most
time, in fact computing 〈φ[α]

N |H |φ[α]
N 〉 and 〈φ[α]

N−1|H |φ[α]
N−1〉

in Eqs. (36) and (37) is very time consuming. Currently I
use only serial computing on a single core; an easy speedup
would be computing 〈φ[α]

N |H |φ[α]
N 〉 and 〈φ[α]

N−1|H |φ[α]
N−1〉 in

parallel, by distributing each of them (each α) to different
cores. Second, in large model spaces (for example N � 14
of this work) majority of α orbits are above the Fermi surface
and computed by Eq. (37). For those eα  eF orbits, a very
good approximation [better than Eq. (39)] to Eq. (37) would
be replacing 〈φ[α]

N−1|H |φ[α]
N−1〉 by 〈φN−1|H |φN−1〉. If this ap-

proximation caused little error in the final average energy, it
should be used to greatly reduce the time cost. Third, Fig. 1
shows that step (iv) [iterates asymptotic vα expressions (38)
and (39)] is very quick and very effective, it could be used
many times at different places.

My results suggest that the realistic Vlow-k interaction does
not cause divergences in the pairing channel. In this work
the full space (N � 14) has dimension 1360. Figure 5 shows
that in the truncated subspace of dimension 426 (nmin = 6 ×
10−6), the energy cutoff error is already less than 26 keV—
energy has converged, roughly speaking. In some cases, a few
tens of keV may be important [36], then the tiny occupation
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numbers (for example smaller than 6 × 10−6) can not be
neglected and one should further enlarge the subspace.

What is the error of VDPC+BCS relative to the exact
solution of the Hamiltonian (42)? References [9,10] studied
this question using the state-independent pairing Hamiltonian
(constant pairing strength Gαβ = G), where exact solution is
available by the Richardson’s method [37,38]. For this model
Hamiltonian, VDPC+BCS is quite accurate in small spaces
up to � ≈ 20 [10], but the error is evident in very large spaces
[9,10]. In Sm isotopes, the error of pairing correlation energy
is about 1 MeV using a space of 11 oscillator shells (� = 286)
[9]. However, this model Hamiltonian is not very realistic: for
soft realistic interactions such as Vlow-k , globally Gαβ decays
(magnitude decreases) as |εα − εβ | increases, which limits
the space size active in the pairing channel. The error of
HF+VDPC+BCS in large spaces under realistic interactions
remains an open question, because the exact solution is diffi-
cult. Section VII gives some suggestions to go beyond VDPC:
break coherent pairs and perform configuration mixing; use
two or more different coherent pairs (different vα).

VII. CONCLUSIONS

This work proposes a new algorithm that applies the
variational principle directly to the coherent-pair condensate
(VDPC). It always conserves the particle number, and
avoids the time-consuming particle-number projection by
gauge-angle integration. Specifically, I derive analytical
expressions for the average energy and its gradient in terms
of the coherent-pair structure vα . Requiring the gradient
vanishes, I obtain the analytical expression of vα at the
energy minimum. The new VDPC algorithm iterates this
vα expression to minimize energy until practically arbitrary
precision. I also find the asymptotic expression of vα that is
highly accurate (see Fig. 7) and numerically very fast (see
Fig. 8). These analytical expressions look quite simple and
allow easy physical interpretations.

I demonstrate the new VDPC algorithm in a semirealis-
tic example using the realistic Vlow-k interaction and large
model spaces (up to 15 harmonic-oscillator major shells). The
energy-convergence pattern and actual computer time cost
are given in detail. Figure 1 shows an example run from
beginning to end. How to organize the analytical results of
this work into an optimal numerical algorithm remains an
open question, and some suggestions are given at the end
of Sec. VI.

It is a good property of a specific interaction to converge
naturally in the pairing channel; otherwise a phenomenologi-
cal cutoff is needed to truncate the pairing-active model space.
The zero-range pairing, frequently used together with the
Skyrme density functional, does not have this property. The
Gogny force has this good property. My results show that the
realistic Vlow-k interaction has this good property. However,
tiny occupation numbers contribute to the energy (see Fig. 5),
thus should be kept if the desired accuracy is high.

This work considers VDPC+BCS. Extending to
VDPC+HFB needs the gradient of the average energy
with respect to changes of the canonical single-particle basis.
They have been derived analytically and will be the topic of
my next work in the series.

I suggest two directions to go beyond VDPC to further
improve the ground state (and low-lying states). First, one can
break coherent pairs and perform configuration mixing [28],
which is the generalized-seniority truncation [27,28,39–42].
Second, the variational ground state can have two or more
different (different vα) coherent pairs instead of only one.
This is justified in for example neutron-halo nuclei, where the
coherent pairs in and not in the halo may be different.
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