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We derive the formulas of the squeezed back-to-back correlation (SBBC) between a boson and antiboson with
different in-medium masses in high-energy heavy-ion collisions. The influence of the in-medium mass difference
between a boson and antiboson on the SBBC is investigated. We calculate the SBBC functions of D-meson
pairs for the hydrodynamic sources described by the VISH2+1 code for Au+Au collisions at

√
sNN = 200 GeV.

Our results indicate that the SBBC strengths of D+D− and D0D̄0 are different if there are charge-dependent
in-medium interactions.
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Introduction. In high-energy heavy-ion collisions, the in-
medium mass shifts of bosons may cause a squeezed back-
to-back correlation (SBBC) between a detected boson and
an antiboson [1–4]. This SBBC is related to the in-medium
energies of the bosons, through a Bogoliubov transformation
between the creation (annihilation) operators of the quasi-
particles in the medium and the corresponding free particles
[1–4]. The study of the SBBC can provide information about
boson formations and in-medium interactions in high-energy
heavy-ion collisions.

In previous studies of the SBBC, the mass shifts of a boson
and antiboson are taken to be the same [1–9]. More generally,
the interactions of a boson and antiboson in a medium are
different, especially in a medium with a finite baryon chemical
potential [10–15]. The in-medium energy difference between
a boson and an antiboson leads to a mass difference between
the quasiparticles in a medium. It is necessary to check the
validity of the previous formulas of the SBBC calculations in
this case.

In this work, we derive the formulas for calculating
the SBBC function of a boson-antiboson with different in-
medium masses. The influence of the in-medium mass differ-
ence on the SBBC functions of D-meson pairs is investigated.
Since D mesons contain a charm quark, which is believed
to experience the entire evolution of the quark-gluon plasma
(QGP) created in relativistic heavy-ion collisions, D-meson
measurements have recently attracted great interest [16–21].
We calculate the SBBC functions of D-meson pairs for the
hydrodynamic sources described by the VISH2+1 code [22]
and find that the SBBC strengths of D+D− and D0D̄0 are
different in Au+Au collisions at

√
sNN = 200 GeV if there

are charge-dependent in-medium interactions.
In Sec. II, we present the formula derivations of the SBBC

function for a boson and antiboson with different in-medium
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masses. Then, we show the SBBC results of D-meson pairs in
Sec. III. Finally, a summary is given in Sec. IV.

Formulas. In the framework of a complex scalar field,
the Hamiltonian density of a system for a free boson and
antiboson with mass m is given by

H = φ̇φ̇† + ∇φ† · ∇φ + m2φ†φ, (1)

where

φ(x) =
∑

p

(2V ωp)−
1
2 (e−ipxap + eipxb†p ), (2)

φ†(x) =
∑

p

(2V ωp)−
1
2 (eipxa†

p + e−ipxbp ), (3)

where ap and a
†
p (bp and b

†
p) are creation and annihilation

operators of the free boson (antiboson), respectively, p =
(ωp, p), and ωp =

√
p2 + m2.

For a boson and antiboson in a medium with the same mass
m′ =

√
m2 ± m2

1, where “+” or “−” represents the case that

m′ is larger or smaller than m, respectively, the Hamiltonian
density of system can be written as [1]

HM = φ̇φ̇† + ∇φ† · ∇φ + (
m2 ± m2

1

)
φ†φ, (4)

and the Hamiltonian of the system can be diagonalized
through a Bogoliubov transformation [1,2].

Generally speaking, the interactions of a boson and anti-
boson with a medium are somewhat different. Assuming the
energy split between the boson and antiboson in the medium
is 2δ′, we consider the transformation

φ → eiδ′tφ, φ† → e−iδ′tφ†, (5)

and have

HM = φ̇φ̇† + ∇φ† · ∇φ + m2φ†φ ± m2
1φ

†φ

+ δ′2φφ† − iδ′(φ̇φ† − φφ̇†). (6)
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It will be seen that δ′2 provides an additional term of mass
square in average energy of the boson and antiboson, which is
associated with the different in-medium interactions for both,
while m2

1 reflects the in-medium interaction that is the same
for both.

Using the Bogoliubov transformation between the opera-
tors (ap, a

†
p, bp, b

†
p) for the free particles and (a′

p, a
′†
p , b′

p, b
′†
p )

for the quasiparticles,

ap = cpa
′
p + s∗

−pb
′†
−p, bp = c̄pb

′
p + s̄∗

−pa
′†
−p, (7)

where

c∗
±p = c±p = c̄∗

±p = c̄±p = cosh rp, (8)

s∗
±p = s±p = s̄∗

±p = s̄±p = sinh rp, (9)

rp = 1
2 ln(ωp/�p), (10)

�p =
√

p2 + m2 ± m2
1 + δ′2, (11)

we can diagonalize the Hamiltonian of the system for the
boson and antiboson with an energy split 2δ′ in the medium as

HM =
∑

p

[(�p + δ′)a′†
p a′

p + (�p − δ′)b′†
p b′

p]. (12)

The in-medium masses of the boson and antiboson are

m′
± = (�p ± δ′)

∣∣
p=0 =

√
m2 ± m2

1 + δ′2 ± δ′, (13)

and the in-medium mass difference between the boson and
antiboson with the same momentum is also the split 2δ′.

It can be seen that the Bogoliubov transformation involves
only the average in-medium energy of the boson and antibo-
son. Furthermore, the average energy �p is not only related
to m1 associated with the in-medium interactions that are the
same for the boson and antiboson, but it is also related to the
δ′ associated with the in-medium interactions that are different
for the boson and antiboson.

The SBBC function of the boson-antiboson with momenta
p1 and p2 is defined as [2,3]

C(p1, p2) = 1 + |Gs (p1, p2)|2
Gc(p1, p1)Gc(p2, p2)

, (14)

where Gc(p1, p2) and Gs (p1, p2) are the so-called chaotic and
squeezed amplitudes [2,3], respectively. They are given by
[2–4,23]

Gc(p1, p2) =
∫

d4σμ(r )

(2π )3
K

μ
1,2 ei q1,2·r {∣∣c′

p′
1,p

′
2

∣∣2
n′

p′
1,p

′
2

+ ∣∣s ′
−p′

1,−p′
2

∣∣2 [
n′

−p′
1,−p′

2
+ 1

]}
, (15)

Gs (p1, p2) =
∫

d4σμ(r )

(2π )3
K

μ
1,2 e2i K1,2·r{s ′∗

−p′
1,p

′
2
c′

p′
2,−p′

1

× n′
−p′

1,p
′
2
+ c′

p′
1,−p′

2
s ′∗
−p′

2,p
′
1

[
n′

p′
1,−p′

2
+ 1

]}
, (16)

for an evolving source. Here, d4σμ(r ) is the four-dimensional
element of the freeze-out hypersurface, q

μ
1,2 = p

μ
1 − p

μ
2 ,

K
μ
1,2 = (pμ

1 + p
μ
2 )/2, and p′

i is the local-frame momentum
corresponding to pi (i = 1, 2). In Eqs. (15) and (16), the quan-
tities c′

p′
1,p

′
2

and s ′
p′

1,p
′
2

are the coefficients of the Bogoliubov

transformation between the creation (annihilation) operators
of the quasiparticles and the free particles, respectively, and
n′

p′
1,p

′
2

is the boson distribution of the quasiparticle pair [2–5].
Results. We first consider a simple case, namely, a rest

particle-emitting source with a fixed freeze-out tempera-
ture Tf , a Gaussian spatial distribution [e−r2/2R2

/(
√

2πR)3],
and a temporal distribution of exponential decay [θ (t −
t0)e−(t−t0 )/�t /�t] [2,3,5]. In this case, the SBBC function of
the boson-antiboson emitted from the source with momenta
p1 and p2, and under the condition |p1| = |p2| = |p|, can be
given analytically by [24]

C(p1, p2) = 1 + e−2p2R2[1+cos(α)]B(p)
≡ 1 + f (α)B(p), (17)

where α(0 < α < π ) is the angle between momenta p1 and
p2, and

B(p) = |cp s∗
p np + cps

∗
p (np + 1)|2(

1 + 4ω2
p�t2

)
n1(p) n1(p)

, (18)

where np is the boson distribution of the quasiparticle pair
with average energy �p, and n1(p) = |cp|2 np + |sp|2(np +
1). Here, it should be mentioned that we have used an approxi-
mation that replaces the boson or antiboson momentum distri-
bution with the pair momentum distribution np in the denom-
inator of Eq. (18). The SBBC function C(p1, p2) approaches
its maximum [1 + B(p)] when the boson and antiboson ap-
proach antiparallelism, and decreases with increasing cos α
exponentiality. For the case of incomplete antiparallelism p1

and p2, the mass-shift-caused SBBC still exists, except for
very large sources.

The SBBC is expected to be strong for the mesons with
large masses [7,25], under the same source size and freeze-
out temperature. We plot B(p) in Fig. 1 as functions of
mass shift �m1 = (m′ − m0) for D+D− pairs with different
momenta and in-medium mass differences. Here, the solid and
dashed lines are for δ′ = 0 and 60 MeV, respectively. In the
calculations, the source freeze-out temperature is taken to be
150 MeV and we take �t = 2 fm. It can be seen that δ′ leads
to a shift of B(p) toward decreasing �m1. The function width
decreases with increasing momentum.

In Fig. 2 we plot B(p) as functions of δ′ for D+D−
pairs with momenta 0.8 and 1.2 GeV/c. Here, the source
parameters are the same as in Fig. 1. Based on the results [24]
calculated in the framework used by Fuchs, Martemyanov,
Faessler, and Krivoruchenko [26,27], the mass of the D me-
son in a hadronic medium in relativistic heavy-ion collisions
is approximately 3 ∼ 5 MeV/c2 smaller than its value at a
free state. Thus, we compare the B(p) functions at �m1 = −3
and −5 MeV/c2. For the lower momentum |p| = 0.8 GeV/c,
B(p) decreases with increasing δ′. However, for the higher
momentum p = 1.2 GeV/c, the result of B(p) for �m1 =
−5 MeV/c2 increases with increasing δ′, while the result for
�m1 = −3 decreases more rapidly with increasing δ′ when
δ′ > 40 MeV. The results of B(p) are sensitive to the mass
shift �m1, mass difference δ′, and particle momentum |p|.

We show in Fig. 3 the SBBC functions of D-meson pairs
for the source as in Figs. 1 and 2 and with a Gaussian radius
R = 3 fm. It can be seen that the influence of δ′ on the SBBC
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FIG. 1. B(p) as functions of mass shift �m1 = (m′ − m0) for
D+D− pairs with momenta 0.8 and 1.2 GeV/c and the splits δ′ = 0
and 60 MeV (solid and dashed lines).

functions at the higher momentum is different when �m1 =
−3 and −5 MeV/c2. For �m1 = −3 MeV/c2, δ′ makes the
SBBC function at high momentum decrease. However, δ′
makes the SBBC function at high momentum increase for
�m1 = −5 MeV/c2.
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FIG. 2. B(p) as functions of δ′ for D+D− pairs with momenta
0.8 and 1.2 GeV/c and �m1 = −3 and −5 MeV/c.
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FIG. 3. SBBC functions of D-meson pairs for the Gaussian
source as in Figs. 1 and 2 and with R = 3 fm.

As discussed above, δ′ is associated with the in-medium
interactions, which are different for a boson and antiboson.
If assuming these in-medium interactions are particle-charge
dependent, the split δ′ will be zero for a D0D̄0 pair. For a
D+D− pair, the split may reach a few tens of MeV [11,15].
In this case, it can be seen that the SBBC of D+D− at high
momentum is weaker or stronger than that of D0D̄0 when
�m1 = −3 or −5 MeV/c2 in the simple source model, where
�m1 is the mass shift related to the in-medium interactions,
which are the same for the particles and antiparticles.

We next investigate the SBBC functions for the evolv-
ing sources described by the viscous hydrodynamic model
VISH2+1 [22] under the Monte Carlo Glauber (MCGlb) initial
conditions fluctuating event by event [28]. Figures 4 and 5
show the SBBC functions C(�φ) of D-meson pairs for the
hydrodynamic sources for

√
sNN = 200 GeV Au+Au colli-

sions with centralities 0%–80% and 40%–80%, respectively.
Here, �φ is the angle between the transverse momenta of
the two D mesons, the ratio of the shear viscosity to entropy
density of QGP is taken to be 0.08 [29,30], and we take the
freeze-out temperature to be 150 MeV based on comparisons
of the transverse-momentum spectra of D mesons [24] with
the RHIC experimental data [16].

It can be seen that the results of the SBBC function for
nonzero δ′ are smaller than those for zero δ′ when �m1 =
−3 MeV. In addition, the results of the SBBC function for
nonzero δ′ are slightly larger than those for zero δ′ when
�m1 = −5 MeV. Assuming that there the split δ′ associ-
ated with the charge-depend in-medium interactions exists,
we conclude that the SBBC of D+D− and D0D̄0 pairs are
different for the different �m1. This may provide a probe with
which to study the in-medium interactions in detail.
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FIG. 4. SBBC functions of D-meson pairs for viscous hydrody-
namic sources for

√
sNN = 200 GeV Au+Au collisions with 0%–

80% centrality.

The dependence of SBBC on particle momentum is com-
plicated for the hydrodynamic sources with fluctuating ini-
tial conditions. The more serious oscillations of single-event
SBBC functions at higher momentum [4] may lead to a lower
SBBC function after being averaged over events [7,24], al-
though the intercept of the SBBC function C(p,−p) increases
with increasing particle momentum [1–9]. It can be seen that
the widths of the SBBC functions C(�φ) for higher momen-
tum are narrower than those for lower momentum, which is
similar to that for the simple source in Fig. 3. By comparing
the SBBC functions in Figs. 4 and 5, we find that the SBBC
functions for the peripheral collisions are higher than those
for the central collisions. This is because the averaged source
lifetime is smaller for the peripheral collisions [7].

Summary. We derived the formulas of SBBC between a
boson and antiboson with different in-medium masses. The
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FIG. 5. Same as Fig. 4, but with 40%–80% centrality.

SBBC is related to the average in-medium energy of the
boson and antiboson, which is the same as for quasiparticles
having the same mass. However, the more general formulas
developed in this paper indicate that the SBBC is associated
with both in-medium interactions, one is the same for a boson
and antiboson and the other one is different for the boson and
antiboson, respectively. Due to the high strength, the SBBC
of heavy-meson pairs provides a possible probe with which to
study the in-medium interactions of the heavy mesons in detail
in relativistic heavy-ion collisions. Our results calculated with
the VISH2+1 code for Au+Au collisions at

√
sNN = 200 GeV

indicate that the SBBC strengths of D+D− and D0D̄0 pairs
are different if there are charge-dependent in-medium interac-
tions.
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