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β equilibrium in neutron-star mergers
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We show that the commonly used criterion for β equilibrium in neutrino-transparent dense nuclear matter
becomes invalid as temperatures rise above 1 MeV. Such temperatures are attained in neutron-star mergers. By
numerically computing the relevant weak-interaction rates we find that the correct criterion for β equilibrium
requires an isospin chemical potential that can be as large as 10–20 MeV, depending on the temperature at which
neutrinos become trapped.
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I. INTRODUCTION

β-equilibrated nuclear matter is of great physical signifi-
cance as the main constituent of neutron stars. It is therefore
important to establish the conditions for β equilibrium at the
densities and temperatures that are astrophysically relevant.

In this paper we point out that the standard
low-temperature criterion for β equilibrium in neutrino-
transparent nuclear matter is not valid at temperatures and
densities that are attained in neutron-star mergers. After their
formation in a supernova, neutron stars quickly cool [1–3]
below a temperature of 1 MeV, but neutron-star mergers (now
observed [4,5]) contain nuclear matter at densities above
nuclear saturation density nsat and temperatures ranging up
to 30 MeV [6–11]. The proper way to treat nuclear matter in
mergers is to do a full neutrino transport calculation. However,
this is a technically formidable task, so many treatments (see,
e.g., Refs. [11–15]) assume neutrino transparency up to some
temperature Ttrap, using a cold neutrinoless β-equilibrated
equation of state for T < Ttrap. In this work we provide the
leading finite-temperature corrections to the β equilibration
condition in neutrino-transparent matter. We find that β
equilibrium requires an isospin chemical potential that
increases with the temperature T , reaching a few MeV at
T ≈ 1 MeV and rising to almost 25 MeV at T ≈ 10 MeV.
Since the neutron stars start the merger process in a state
of high density but low temperature, and then heat up as
the merger proceeds, we expect that there will be regions
in which neutrinos are not trapped and the temperature and
density are in the range where our predicted corrections
are significant. The size of such ranges is not yet clear
because current estimates of the neutrino mean-free path
depend on the energy of the neutrinos and on the assumptions
about nuclear matter [16–19]. In Appendix A we summarize
a recent calculation of the mean-free path of neutrinos,
indicating that neutrinos are not trapped until temperatures
rise above approximately 5 MeV.

We work in natural units, where h̄ = c = kB = 1. All data
presented in our figures can be found in the Supplemental
Material [20].

A. The Fermi-surface approximation

Neutron stars contain nuclear matter at temperatures that
are much smaller than the Fermi energy of the nucleons and
electrons. Neutron stars are finite-size systems so we also
have to take into account finite-size effects such as neutrino
transparency, which occurs at temperatures low enough so that
the neutrino mean-free path is larger than the size of the star
[16,18,21,22]. At high enough density, flavor equilibration
occurs via direct Urca processes (neutron decay and electron
capture):

n → p + e− + ν̄e, p + e− → n + νe. (1)

Note that, because neutrinos escape from the star, neutrinos
can only occur in the final state.

In the T → 0 limit, one can work in the “Fermi-surface
(FS) approximation” where the Urca processes are dominated
by nucleons and electrons close to their Fermi surfaces. In the
Fermi-surface approximation, the criterion for β equilibrium
in nuclear matter is

μn = μp + μe, (2)

which can be obtained by ignoring the neutrinos in the Urca
process and thinking of the Urca reactions as n ↔ p + e−,
in which case the principle of detailed balance tells us that
Eq. (2) is the condition for equilibrium. Here μn, μp, and μe

are the relativistic chemical potentials (i.e., including the rest
mass) of the neutron, proton, and electron, respectively.

In the Fermi-surface approximation there is a threshold
density above which the direct Urca processes shown in
Eq. (1) are dominant. Below that threshold they are kinemat-
ically forbidden, and equilibration occurs via modified Urca
processes which involve an additional spectator nucleon in the
initial and final state [22–24].

In this paper, we consider only the six Urca processes
(two direct and four modified) where the charged lepton
involved is an electron. Weak interactions involving positrons
are negligible, since the electron chemical potential is always
above 100 MeV for the densities that we will consider, and so
the positron occupation is suppressed by a factor of more than
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exp(−100 MeV/T ). Additionally, for simplicity we neglect
Urca processes involving muons, because even though those
processes are not negligible, they do not qualitatively change
the conclusions that we present here.

B. Breakdown of the Fermi-surface approximation

The β-equilibrium criterion (2) is not guaranteed to be
valid under all circumstances because neutrinos are not in
statistical equilibrium in systems that are neutrino transparent.
Because neutrinos escape, they only occur in final states1 so
the two processes (1) whose rates have to balance are not
exact inverses of each other, which means that the principle of
detailed balance is not guaranteed to hold. (For a discussion in
the context of hot plasmas see Refs. [25,26].) Detailed balance
is a good approximation when neutrinos play a negligible
role; namely, in the T → 0 limit where the Fermi-surface
approximation is valid. However, for astrophysical applica-
tions we need to know the criterion for β equilibration at a
range of temperatures up to 30 MeV. We will now make a
rough estimate of the temperature at which the corrections to
Eq. (2) become significant. In Sec. IV we will perform a full
calculation.

For densities below the direct Urca threshold we can esti-
mate the range of validity of the Fermi-surface approximation
by noting that it will become invalid when the exponential
suppression of direct Urca processes involving particles away
from their Fermi surface is not so severe as to make those
processes negligible relative to modified Urca. In direct Urca
processes the proton is expected to play a crucial role since
it is the most nonrelativistic fermion, which means that the
energy Ep of a proton rises very slowly as the momentum
pp of the proton deviates from its Fermi surface: Ep − EFp

≈
(pp − pFp

)pFp
/mp, where pFp

is the Fermi momentum of the
proton, EFp

is the proton Fermi energy, and mp is the proton
mass. For particles on their Fermi surfaces, the momentum
mismatch for direct Urca at densities around 3nsat in nuclear
matter described by the Akmal–Pandharipande–Ravenhall
(APR) equation of state [27] is pmiss = pFn − pFp − pFe ≈
50 MeV (see, e.g., Fig. 2 in Ref. [28]), and the proton Fermi
momentum is about 220 MeV. The energy cost of finding a
proton that is pmiss from its Fermi surface is pmisspFp/mp ≈
12 MeV, so we might expect that direct Urca electron capture,
where the probability of finding a proton from above its Fermi
surface includes a Boltzmann factor, becomes unsuppressed
at temperatures of order 10 MeV, and that it starts to compete
with modified Urca at even lower temperatures.

In fact, as can be shown from the Urca rate expressions
that we review in Sec. II, at 3nsat the modified Urca rate
is approximately a factor of [mnT/(3m2

π )]2 smaller than
the above-threshold direct Urca rate, where mn and mπ are
the neutron and pion masses, respectively. Thus, the below-

1The fact that neutrinos occur only in final states means that they
are out of statistical equilibrium. This is different from being in
statistical equilibrium with zero chemical potential, in which case
there would be a thermal population of neutrinos which could occur
in initial states as well.

threshold direct Urca electron-capture rate would begin to
compete with modified Urca when

e−(Ep−EFp )/T ≈
(

mnT

3m2
π

)2

, (3)

which, for a proton with Ep − EFp
= 12 MeV, is when the

temperature is between 1 and 2 MeV.
As we will show below in an explicit calculation, this is

a fair estimate. The Fermi-surface approximation starts to
become invalid at temperatures T � 1 MeV which are still
much less than the Fermi energies, and may still be low
enough for neutrinos to escape from the star. This leads us
to expect corrections to the low-temperature criterion (2) for
β equilibrium at temperatures and densities that are relevant
for neutron-star mergers, in which nuclear matter is heated to
temperatures up to 30 MeV.

In Sec. II we reproduce the standard calculation of the rates
of neutron decay and electron capture, which uses the Fermi-
surface approximation. To describe nuclear matter we will use
the APR equation of state [27].

In Sec. III we describe the kinematics of the below-
threshold direct Urca process, and how particles away from
their Fermi surface can participate in the processes, leading to
exponential suppression of the direct Urca rates for tempera-
tures below about 10 MeV.

In Sec. IV we describe the results of a numerical calcula-
tion of the rates which includes contributions from the whole
phase space.

II. URCA PROCESSES IN THE FERMI-SURFACE
APPROXIMATION

We now obtain the standard expressions for the rate of the
direct and modified Urca processes in matter with the APR
equation of state. We will assume ultrarelativistic electrons
and neutrinos, but nucleons that are nonrelativistic, with dis-
persion relation

Ei = meff,i + p2
i

2mi

, (4)

where, following Roberts et al. [19], at each density, meff,i is
chosen such that the Fermi energy EF,i ≡ Ei (pFi

) matches
the chemical potential μi from the APR equation of state,
which is a simple way of taking into account the nuclear mean
field. For the kinetic mass mi we use the rest mass in vacuum.

A. Direct Urca

In the T → 0 limit, the Fermi-surface approximation is
valid and conservation of energy and momentum ensures that
the direct Urca process (1) can only occur above the direct
Urca threshold density where the triangle condition

pFn < pFp + pFe, (5)

holds. For densities below the threshold density, the electron
and proton Fermi momenta are not large enough to add up to
the neutron Fermi momentum (the three momentum vectors
cannot be made to form a triangle) and so the direct Urca
reaction is prohibited. As density increases, the proton and
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electron Fermi momenta grow more quickly than the neutron
Fermi momentum and when the threshold density is reached,
they, when co-aligned, add up to exactly the neutron Fermi
momentum. Above threshold, the proton and electron Fermi
momenta can add up to the neutron Fermi momentum even
when they are not co-aligned [22].

The rates of the two direct Urca processes are given by
[22,29]

�dU,nd =
∫

d3pn

(2π )3

d3pp

(2π )3

d3pe

(2π )3

d3pν

(2π )3 〈|M|2〉(2π )4

× δ4(pn − pp − pe − pν )fn(1 − fp )(1 − fe ), (6)

�dU,ec =
∫

d3pn

(2π )3

d3pp

(2π )3

d3pe

(2π )3

d3pν

(2π )3 〈|M|2〉

× (2π )4δ4
(
pn − pp − pe + pν

)
(1 − fn)fpfe, (7)

where fi are the Fermi–Dirac distributions for n, p, or e, and
the matrix element is

〈|M|2〉 = 2G2

[
1 + 3g2

A + (
1 − g2

A

)pe · pν

EeEν

]
, (8)

where G2 = G2
F cos2 θc = 1.1 × 10−22 MeV−4, where GF is

the Fermi coupling constant and θC is the Cabibbo angle,
and the axial-vector coupling constant gA = 1.26. These rate
integrals are evaluated in the Fermi-surface approximation, so
we set |pi | = pFi

in all smooth functions of momentum in
the integral, and the neutrino three-momentum is neglected.
In this approximation we can perform phase-space decompo-
sition, splitting the rate integral into an angular integral and
an energy integral which can be straightforwardly evaluated,
revealing that the direct Urca neutron decay and electron-
capture rates are identical when Eq. (2) holds, and are given
by [22,30,31]

�dU,nd = �dU,ec = AdUG2
(
1 + 3g2

A

)
mnmppFeϑdUT 5,

ϑdU ≡
{

0 if pFn > pFp + pFe

1 if pFn < pFp + pFe,

AdU ≡ 3[π2ζ (3) + 15ζ (5)]/(16π5) ≈ 0.0170. (9)

B. Modified Urca

Below the direct Urca threshold density, modified Urca
processes provide the leading contribution in the T → 0 limit
because, although they are suppressed by a higher power
of T , they are kinematically allowed for particles on their
Fermi surfaces. Using the Fermi-surface approximation and
neglecting the neutrino three-momentum, we can perform
phase-space decomposition and calculate the rates.

For the modified Urca processes, which involve strong
interactions between the nucleons, we use the matrix elements
given by Yakovlev et al. [22] and Friman and Maxwell [32],
which involve a long-range one-pion exchange interaction.
The matrix element for neutron decay and electron capture
with a neutron spectator (n-spectator modified Urca) is given
by

〈|Mn|2〉 = 84G2 f 4
πNN

m4
π

g2
A

E2
e

p4
Fn(

p2
Fn + m2

π

)2 , (10)

and the matrix element for neutron decay and electron capture
with a proton spectator (p-spectator modified Urca) is given
by

〈|Mp|2〉 = 96G2 f 4
πNN

m4
π

g2
A

E2
e

(pFn − pFp )4[(
pFn − pFp

)2 + m2
π

]2 , (11)

with the p-wave πN coupling constant fπNN ≈ 1.
When the traditional β-equilibrium condition (2) is used,

the n-spectator modified Urca neutron decay and electron-
capture rates are equal and given by [21,22,31,33]

�mU,n = AmUG2f 4
πNNg2

A

m3
nmp

m4
π

p4
FnpFp(

p2
Fn + m2

π

)2 ϑnT
7,

ϑn ≡
{

1 if pFn > pFp + pFe

1 − 3
8

(pFp+pFe−pFn )2

pFppFe
if pFn < pFp + pFe.

(12)

See Sec. 6 of Ref. [31] for a comprehensive discussion of
the integrals involved in the Fermi-surface approximation of
the modified Urca rates, including clarification of errors and
omissions in the literature.

The p-spectator modified Urca neutron-decay and
electron-capture rates are equal to each other when Eq. (2)
holds and are given by [21,22,31,33]

�mU,p = AmU

7
G2f 4

πNNg2
A

mnm
3
p

m4
π

pFn(pFn − pFp )4[
(pFn − pFp )2 + m2

π

]2 ϑpT 7,

ϑp ≡

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if pFn > 3pFp + pFe

(3pFp+pFe−pFn )2

pFnpFe
if

pFn > 3pFp − pFe

pFn < 3pFp + pFe

4 3pFp−pFn

pFn
if

3pFp − pFe > pFn

pFn > pFp + pFe(
2 + 3 2pFp−pFn

pFe
− 3 (pFp−pFe )2

pFnpFe

)
if pFn < pFp + pFe

, (13)

where AmU ≈ 7 × 2300/(64π9) ≈ .0084. We see that the p-
spectator modified Urca process does have a threshold den-

sity, in this case the density where pFn
= 3pFp

+ pFe
, which

occurs at a proton fraction xp = 1/65. Thus, the p-spectator
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modified Urca process is only prohibited at extremely low
densities [22], well below nuclear saturation density, which
is the minimum density that we consider here. In Appendix B,
we give the Fermi-surface approximation for the modified
Urca rates when Eq. (2) is violated by an amount ξ = (μn −
μp − μe )/T .

In the T → 0 limit, where the Fermi-surface approxima-
tion is valid, the standard low-temperature β-equilibrium con-
dition holds: when Eq. (2) is obeyed, the neutron-decay and
electron-capture rates balance for both direct and modified
Urca processes.

In the upper panels of Figs. 2 and 3, we have plotted,
among other curves that we explain in Sec. IV, the Fermi-
surface approximation of the two direct Urca (in dotted,
green) and four modified Urca (labeled “mU,” in blue) rates
in APR matter for T = 500 keV and 5 MeV, respectively. For
the APR equation of state the direct Urca threshold density is
around 5nsat. Above threshold, the direct Urca neutron-decay
and electron-capture rates are identical and dominate over the
modified Urca processes which have no threshold in the den-
sity range we consider. Below threshold, neither direct Urca
process is allowed and so the four modified Urca processes
dominate. The two n-spectator modified Urca processes are
slightly more important than the two p-spectator modified
Urca processes. As long as the Fermi-surface approximation is
used, and Eq. (2) is imposed, the proton-producing Urca pro-
cesses balance the neutron-producing Urca processes exactly
at all densities and temperatures.

III. URCA PROCESSES BEYOND THE FERMI-SURFACE
APPROXIMATION

A. Particles away from their Fermi surface

To discuss the rates it is useful to introduce the concept
of the single-particle free energy, defined as γi (p) ≡ Ei (p) −
μi = Ei (p) − EF,i [see Eq. (4) and the subsequent discus-
sion]. The single-particle free energy tells us how far in energy
a given state is from its Fermi surface.

At densities below the threshold density, the direct Urca
process becomes Boltzmann suppressed because, after im-
posing energy and momentum conservation, the phase-space
integral is dominated by processes whose initial state includes
particles above their Fermi surface or whose final state re-
quires holes below their Fermi surface. In both cases the
Fermi–Dirac factors in the rate expression provide a suppres-
sion factor of exp(−|γi |/T ).

To see how strong the resultant Boltzmann suppression
will be, we show in Fig. 1 the typical single-particle free
energy γi for the particles participating in neutron decay (left
panel) and electron capture (right panel) at various densities
of nuclear matter described by the APR equation of state, and
obeying the low-temperature criterion for β equilibration (2).
To obtain the typical momenta and energies at a given density
we impose energy and momentum conservation to reduce the
momentum space integral to the lowest possible dimension
and find the point at which the product of Fermi–Dirac
factors attains its maximum value. We emphasize that these
typical momenta and energies are independent of temperature.
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FIG. 1. Energy relative to their Fermi energy (defined as “γ ”)
for particles participating in direct Urca reactions in APR nuclear
matter obeying the standard low-temperature condition (2) for β

equilibrium. At each density we choose the momenta and energies of
participating particles (consistent with energy and momentum con-
servation) that maximize the product of their Fermi–Dirac factors.
Above threshold, all particles can have γ = 0. Below threshold, the
plot shows the least-Boltzmann-suppressed processes. The circles
indicate the particles that cause the Boltzmann suppression.

Temperature merely influences the strength of the Boltzmann
suppression due to particles with finite single-particle free
energies γi participating in Urca reactions.

Above the direct Urca threshold density (about 5nsat for the
APR equation of state) we find, as expected, that particles on
their Fermi surface (i.e., with γ = 0) can participate in direct
Urca processes while conserving energy and momentum.
Below the direct Urca threshold density, however, this is no
longer true.

B. Below-threshold direct Urca neutron decay

For direct Urca neutron decay, the kinematic obstacle is
that although a neutron on its Fermi surface has the same
free energy as a proton on its Fermi surface and an electron
on its Fermi surface (they all have γ = 0), the neutron’s
momentum is larger than the co-linear sum of the proton
and electron momenta. We see in Fig. 1 (left panel) that the
best available option below threshold is for a neutron on its
Fermi surface to decay into a proton that is above its Fermi
surface by an amount γp and an electron that is below its
Fermi surface by the same amount, γe = −γp. The energies
of the proton and electron still add up to the energy of the
neutron, but a co-linear proton and electron now have more
momentum then when they were both on their Fermi surfaces
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because the proton’s momentum rises rapidly as γp becomes
more positive (because the proton is nonrelativistic with a low
Fermi velocity) whereas the electron’s momentum drops more
slowly as γe becomes more negative, because the electron
is relativistic. This “best available option” has a Boltzmann
suppression factor of exp(−|γe|/T ) because the final-state
electron is trying to occupy a state in the already mostly
occupied electron Fermi sea. From Fig. 1 we see that for the
APR equation of state the value of |γe| for this process is
around 20 to 25 MeV at lower densities and then drops quickly
to zero as we approach the direct Urca threshold.

C. Below-threshold direct Urca electron capture

For direct Urca electron capture, the kinematic obstacle is
that a proton on its Fermi surface combined with an electron
on its Fermi surface does not have enough momentum to
produce a neutron on its Fermi surface. We see in Fig. 1 (right
panel) that the best available option below threshold is for a
proton above its Fermi surface to combine with an electron
at its Fermi surface. Because the proton is nonrelativistic, this
combination has enough momentum to create a neutron on its
Fermi surface, and the excess energy γp (and the remaining
momentum) goes into the final-state neutrino. This process
has a Boltzmann suppression factor of exp(−|γp|/T ) because
we are unlikely to find initial-state protons far above the
proton Fermi surface. From Fig. 1 we see that, for the APR
equation of state, the value of |γp| for this process is around
10 to 15 MeV at lower densities and then drops to zero as we
approach the direct Urca threshold. The suppression is less
than for neutron decay because the neutrino momentum can
be directed opposite to the neutron momentum, so it helps to
reduce the amount by which the proton needs to be above its
Fermi surface.

D. Relevance of below-threshold direct Urca

We learn from the calculation presented in Fig. 1 that,
below the threshold density, direct Urca processes are Boltz-
mann suppressed by a factor exp(−γ /T ) where γ is in the
10 to 20 MeV range at lower densities, dropping to zero as the
threshold is approached. For typical neutron-star temperatures
T � 0.1 MeV the Boltzmann suppression is overwhelming,
and direct Urca processes can be safely neglected compared
with modified Urca. However, as we will show in the next
section, at the temperatures characteristic of neutron-star
mergers, this is not the case.

We note that a similar analysis of the Fermi–Dirac factors
can be done with the modified Urca process, but it simply
reproduces the expected finding that, at any density, the
dominant contribution comes from particles close to their
Fermi surfaces, so the Fermi-surface approximation is always
valid for modified Urca and there is never any Boltzmann
suppression of the rate.

In Sec. I, we estimated that, at densities below the di-
rect Urca threshold, the Boltzmann-suppressed direct Urca
electron-capture rate would match the modified Urca rate
once the temperature rose to around 1 or 2 MeV. As we
will see in the next section, a full calculation confirms this

estimate, showing that at T � 1 MeV the contribution of
below-threshold direct Urca processes leads to corrections
to the low-temperature criterion for β equilibrium. Since the
dominant contribution to the below-threshold direct Urca rates
comes from particles that are far from their Fermi surfaces,
we now calculate the direct Urca rates exactly, performing the
entire momentum space integral.

IV. EXACT DIRECT URCA CALCULATION

Instead of assuming that all particles lie on their Fermi
surfaces, we numerically evaluate the direct Urca rate in-
tegrals (6) and (7) with nonrelativistic nucleons, but with-
out any further approximation, allowing the particles to
have any set of momenta that is consistent with energy-
momentum conservation. The details of the calculation, which
reduces to a three-dimensional numerical integral, are given in
Appendix C.

A. Urca rates

Figures 2 and 3 show in their upper panels the rates of
various Urca processes in APR nuclear matter that obeys the
low-temperature β-equilibrium criterion (2). As we will see,
at T � 1 MeV the Fermi-surface approximation starts break-
ing down and Eq. (2) is no longer the correct criterion for β
equilibrium: an additional isospin-coupled chemical potential
is needed to achieve β equilibrium, and its magnitude μδ is
shown in the lower panel.

In Fig. 2, we see that, at a temperature of 500 keV,
the Fermi-surface approximation is reasonably accurate. Well
above the direct Urca threshold density the neutron decay
and electron-capture rates are almost identical and agree well
with the Fermi-surface approximation, so that when the low-
temperature β-equilibrium criterion (2) is obeyed the net rate
of neutron or proton creation is zero. Consequently, to the
accuracy of our calculation (μδ is accurate to about ±150 keV,
described in Sec. IV B) there is no need for any additional
isospin chemical potential to enforce β equilibrium. As the
density drops below the threshold value, the direct Urca rates
drop below the modified Urca rate and become negligible,
and the modified Urca rates for neutron decay and electron
capture are identical so again there is no net creation of neu-
trons or protons, and no noticeable modification to the low-
temperature β-equilibrium criterion. However, it is interesting
to note that below (and even slightly above) threshold the
direct Urca rates for neutron decay and electron capture are
not the same. The deviation increases as the density goes fur-
ther below threshold. The size of the discrepancy agrees with
our analysis in Fig. 1, where we determine the exponential
suppression of each direct Urca rate, due to the Fermi–Dirac
factors. Only right below threshold is there a region where the
two direct Urca rates are different, but both are larger than
the modified Urca rates, requiring a finite but small μδ to
establish true β equilibrium. As temperature decreases further,
this effect will vanish, and the low-temperature β-equilibrium
criterion (2) will be increasingly valid.

In Fig. 3 we see that when we increase the temperature
to T = 5 MeV the Fermi-surface approximation becomes
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FIG. 2. Exact direct Urca and approximate modified Urca rates
at T = 500 keV, obeying the low-temperature β-equilibrium con-
dition (2). Above threshold, the two direct Urca rates balance each
other, and they also match the approximate direct Urca rate. Below
threshold, the direct Urca rates exponentially fall off, and modified
Urca dominates. However, the two direct Urca rates have different
exponential falloffs below threshold. In the lower plot, the deviation
μδ from low-temperature β equilibrium needed to achieve true β

equilibrium is plotted as a function of density.

unreliable. The direct Urca electron-capture rate agrees with
the Fermi-surface result above threshold, but it also shows no
suppression below threshold, dominating over modified Urca
and direct Urca neutron decay at all densities for which APR is
well defined. This means that, when μn = μp + μe [Eq. (2)],
there is a nonzero net rate of proton-to-neutron conversion,
implying that the system is not in β equilibrium.

B. Full criterion for β equilibrium

The fact that electron capture is much less suppressed
than neutron decay at T � 1 MeV means that the system
will be driven away from the state that obeys the standard
low-temperature β-equilibrium criterion. The predominance
of electron capture drives the neutron Fermi energy up and
the proton Fermi energy down, effectively introducing an ad-
ditional chemical potential that couples to the third component
of isospin.

The general criterion for β equilibrium is

μn = μp + μe + μδ, (13)

where μδ = −μI where μI is the chemical potential that
couples to isospin, normalized according to a convention [34]
where the proton has isospin +1/2 and the neutron has isospin
−1/2.

As the proton density drops, the rates of electron capture
and neutron decay move towards each other and eventually

FIG. 3. Exact direct Urca and approximate modified Urca rates
at T = 5 MeV, obeying the low-temperature β-equilibrium condi-
tion (2). Above threshold, electron-capture direct Urca dominates
and agrees with the approximate direct Urca rate calculation. At
densities greater than 6nsat, we expect neutron decay direct Urca
to match electron-capture direct Urca. Below threshold, electron-
capture direct Urca dominates over all modified Urca processes,
which contradicts the conventional wisdom. In the lower plot, the
deviation μδ from low-temperature β equilibrium needed to achieve
true β equilibrium is plotted as a function of density.

balance when μδ reaches its equilibrium value, which depends
on the density and the temperature. This value of μδ at T =
5 MeV is shown in the bottom panel of Fig. 3. We see that,
below the direct Urca threshold, μδ is about 15 MeV and it
decreases but remains non-negligible above threshold as well.

In Fig. 4, we show, for several temperatures, the magni-
tude of the additional isospin-coupled chemical potential μδ

needed to achieve true β equilibrium. At low temperatures,
below 1 MeV, the standard criterion (2) is correct to within
about 1 MeV; the only noticeable correction μδ ≈ 1.5 MeV
occurring right below threshold where direct Urca electron
capture begins to dominate over modified Urca. After that,
however, the correction term rises quickly with temperature:
at T = 5 MeV we need μδ ≈ 15 MeV and at T = 10 MeV we
need μδ ≈ 23 MeV. Although μδ drops with density once we
reach the direct Urca threshold, that decrease becomes quite
slow at these higher temperatures. If the neutrino-trapping
temperature is indeed around 5 MeV (see Appendix A), then
our calculations of μδ are only physically relevant at tempera-
tures below 5 MeV. Above the neutrino-trapping temperature
we expect that neutrinos are in statistical equilibrium with a
chemical potential μν obeying the detailed balance relation
μn + μν = μp + μe.

The APR equation of state is based on variational cal-
culations of the energy (as a function of density) of pure
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FIG. 4. The isospin-coupled chemical potential μδ needed to
achieve true β equilibrium in APR matter at various temperatures.
For a given temperature, the upper and lower curves indicate the
range of values of μδ that are consistent with our estimates of the
theoretical uncertainty. Further details on the uncertainty are given
in the text.

neutron matter (PNM, xp = 0) and symmetric nuclear mat-
ter (SNM, xp = 0.5). An interpolation scheme was used to
get to the intermediate proton fraction, for a given density,
that satisfies the low-temperature β-equilibrium condition (2)
[27]. Thus, all thermodynamic quantities calculated within
the APR framework are functions of both baryon density
and proton fraction. To find the value of μδ = μn − μp − μe

necessary to achieve true β equilibrium at a given density and
temperature, we varied the proton fraction in discrete steps
until we found a proton fraction at which there was net neutron
production and an adjacent-step proton fraction at which there
was net neutron destruction, giving us an upper and lower
bound on μδ . These upper and lower bounds provide the
theoretical error on μδ . The uncertainty in the direct Urca rate
calculations, discussed at the end of Appendix C, is smaller
than the binning of μδ , which is ≈300 keV.

The temperature-dependent correction μδ to the β-
equilibrium condition arises from the temperature dependence
of the proton fraction in true β equilibrium. In Fig. 5 we
plot the proton fraction in true β equilibrium as a function
of density, for various temperatures. As temperature rises
above 1 MeV, the proton fraction drops. This reflects the
predominance of electron capture over neutron decay seen in
Fig. 3.

V. CONCLUSIONS

We have shown that that the standard low-temperature
criterion (2) for β equilibrium breaks down in neutrino-

FIG. 5. Proton fraction in neutrino-transparent nuclear matter in
true β equilibrium, for several different temperatures. As temperature
increases, the β-equilibrated nuclear matter becomes more neutron-
rich than predicted by the low-temperature β-equilibrium condition.

transparent nuclear matter at densities above nuclear sat-
uration density and temperatures above about 1 MeV. An
additional isospin chemical potential (13) is required to obtain
true equilibrium under the weak interactions. The ultimate
reason for this is that neutrinos are not in thermal equilibrium,
so the two reactions (1) that drive the system to equilibrium
are not exact inverses of each other (neutrinos can only occur
in final states) so the principle of detailed balance does not
apply. Our calculations for nuclear matter obeying the APR
equation of state show (Fig. 4) that the isospin chemical po-
tential μδ = μn − μp − μe required to obtain β equilibrium
becomes greater than about 5 MeV as the temperature rises
above 1 MeV, and reaches a maximum value around 23 MeV
at temperatures of 10 MeV.

We have recalculated the Urca rates for APR nuclear matter
at T = 5 MeV in true β equilibrium. The results are given in
Fig. 6, which shows that there are three processes that play the
central role in β equilibration. Above threshold, direct Urca
neutron decay balances with direct Urca electron capture. Far
below threshold, n-spectator modified Urca neutron decay
competes with direct Urca electron capture, but as threshold
is approached from below, direct Urca neutron decay becomes
increasingly important, eventually becoming more important
than n-spectator modified Urca neutron decay.

In Fig. 7, we show the fractional change in the six di-
rect Urca rates when the correct β-equilibrium condition is
imposed, compared with the low-temperature criterion for β
equilibrium (2). Far below threshold, the Urca rates increase
or decrease by a factor of 10 and, far above threshold, the Urca
rates approach their low-temperature β equilibrium (2) values.
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FIG. 6. Urca rates in true β equilibrium, μn = μp + μe + μδ .
Above threshold, the two direct Urca processes dominate. Below
threshold, direct Urca electron capture balances against modified
Urca neutron decay (n spectator) and, to a lesser extent, direct Urca
neutron decay.

The adjustment μδ to the low-temperature criterion for β
equilibrium has implications for any effect stemming from
weak interactions in β-equilibrated nuclear matter, in the
temperature range from about 1 MeV to the neutrino trapping
temperature. For example, the nuclear matter in neutron-star
mergers, which certainly reaches such temperatures, under-
goes significant density oscillations during the merger. The
density oscillations may be damped by bulk viscosity, which
arises from a resonance between the density oscillations and
β equilibration of the proton fraction, which occurs via Urca
processes [22,28,35]. The calculation of bulk viscosity re-
lies on examining the adjustment of the neutron-decay and
electron-capture rates as the nuclear matter is pushed out of β
equilibrium so, if the criterion for β equilibrium is modified,
it is likely that this will affect the calculated bulk viscosity for
material in neutron-star mergers.

While we used the APR equation of state, which has two-
and three-body nuclear interactions, to describe the nuclear
matter in which the Urca processes take place, our calculation
used the conventional Fermi–Dirac factors which assume that
single-nucleon momentum eigenstates are also energy eigen-
states. However, it is known [36] that short-range nucleon-
nucleon interactions lead to a depletion of low-momentum
states in the nucleon Fermi sea and a high-momentum tail
above the Fermi surface, so a truly consistent calculation
of the Urca rates would use modified Fermi–Dirac factors.
Additionally, the fact that an energy eigenstate actually cor-
responds to a superposition of multi-particle–hole eigenstates

FIG. 7. Fractional change in the six Urca rates at T = 5 MeV
when we change μδ from zero to the value for true β equilibrium.
Below threshold, the change is the most prominent, and as density in-
creases to far above the threshold density, the true β-equilibrium con-
dition approaches the behavior of the low-temperature β-equilibrium
condition (2).

[17] could further blur the direct Urca threshold beyond the
finite-temperature effects that we discuss in this paper.

In this work we did not consider particle processes in-
volving muons, although the APR equation of state includes
contributions from muons. Muons can participate in Urca
processes and also in leptonic processes such as μ− → e− +
ν̄e + νμ. A complete treatment of the Urca processes in
neutrino-transparent nuclear matter would introduce another
chemical potential μf (which couples to lepton flavor, dif-
ferentiating electrons from muons) whose value at a given
temperature and density is determined by balancing the six
muon Urca process rates.
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APPENDIX A: NEUTRINO MEAN-FREE PATH

Our calculations are applicable to matter in which neu-
trinos are not trapped, which means our results are valid at
temperatures up to the neutrino-trapping temperature for a
neutron star. This is determined by the length of the neutrino
mean-free path compared with the size of the star. The mean-
free path depends on the neutrino energy and the temperature,
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FIG. 8. Mean-free path of neutrinos in nuclear matter described
by the HS(DD2) equation of state (EoS). As temperature rises above
5 MeV it becomes more likely that neutrinos will be trapped inside
the merger region.

density, and composition of the nuclear matter with which it
interacts. To get a reasonable idea of the neutrino-trapping
temperature we used a start-of-the-art code developed in
Refs. [18,19] and available online in Ref. [37] to calculate
the neutrino mean-free paths due to charged and neutral
current reactions in nuclear matter above nuclear saturation
density. We used proton fractions and nuclear mean-field
values from the HS(DD2) equation of state [38,39], which
is tabulated online in Ref. [40]. The HS(DD2) equation of
state is a relativistic mean-field theory consistent with most
data from nuclear experiments and astrophysical constraints
[41,42]. Unlike APR, it is tabulated for finite temperatures,
making it suitable for estimating the temperature dependence
of the mean-free path. The mean-free path for neutrinos with
energy equal to the temperature is plotted in Fig. 8. We
show the mean-free path for neutral-current neutrino-neutron
scattering, since that is the dominant scattering process at
densities above nuclear saturation density. At a temperature
of 3 MeV, across the relevant range of densities, neutrinos
always have a mean-free path of several kilometers, so they
easily escape the merger region (whose radius is ≈10 km).
At T = 5 MeV, the mean-free path varies from about 1 km
at nuclear density down to 0.5 km at several times nuclear
density, and at T = 7 MeV, the mean-free path is typically
a few hundred meters. We conclude that it is reasonable
to expect that neutrino trapping will only begin to become
important when temperatures rise above 5 to 10 MeV.

APPENDIX B: MODIFIED URCA RATES WHEN
μn �= μ p + μe

We present here the Fermi-surface approximation of the
modified Urca rates in nuclear matter which is out of

β-equilibrium (2) by an amount ξ = (μn − μp − μe )/T . In
the following expressions for the rates the nonequilibrium
behavior is encapsulated in the function

F (ξ ) = −(ξ 4 + 10π2ξ 2 + 9π4)Li3(−eξ )

+12ξ (ξ 2 + 5π2)Li4( − eξ )−24(3ξ 2 + 5π2)Li5(−eξ )

+240ξLi6(−eξ ) − 360Li7(−eξ ), (B1)

where Lin is the polylogarithm function of order n. We note
that F (0) ≈ 2300. The rate of modified Urca neutron decay
with a neutron spectator is

�mU,nd(n)(ξ ) = 7

64π9
G2g2

Af 4
πNN

m3
nmp

m4
π

× p4
Fn

pFp(
p2

Fn
+ m2

π

)2 F (ξ )ϑnT
7, (B2)

where ϑn is defined as in Eq. (12). The rate of modified Urca
electron capture with a neutron spectator is

�mU,ec(n)(ξ ) = �mU,nd(n)(−ξ ), (B3)

and so the two n-spectator modified Urca rates agree in low-
temperature β equilibrium (2). The Fermi-surface approxima-
tion of the modified Urca neutron decay process with a proton
spectator is

�mU,nd(p)(ξ ) = 1

64π9
G2g2

Af 4
πNN

mnm
3
p

m4
π

× pFn

(
pFn

− pFp

)4[(
pFn

− pFp

)2 + m2
π

]2 F (ξ )ϑpT 7, (B4)

with ϑp defined as in Eq. (13), and the modified Urca electron-
capture rate with a proton spectator is

�mU,ec(p)(ξ ) = �mU,nd(p)(−ξ ), (B5)

where again both modified Urca rates with a p spectator agree
in low-temperature β equilibrium (2).

APPENDIX C: EXACT DIRECT URCA RATE INTEGRAL

The neutron-decay rate given by a twelve-dimensional
integral in Eq. (6) can be reduced, without approximation, to
a three-dimensional integral. Integrating over neutrino three-
momentum, we have

�n = G2

128π8

∫
d3pn d3pp d3pe fn(1 − fp )(1 − fe )

× δ(q − |pn − pp − pe|)

×
(

1 + 3g2
A + (

1 − g2
A

)
p̂e · pn − pp − pe

|pn − pp − pe|
)

, (C1)

where we define q ≡ En − Ep − Ee, and the “hat” denotes a
unit vector. We adopt spherical coordinates for the momentum
of each of the three particles. We have the freedom to choose
the coordinates such that the neutron momentum lies along
the z axis, and the proton momentum lies in the same plane
as the neutron momentum, and so the momentum unit vectors
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are written as

p̂n = (0, 0, 1), (C2)

p̂p = (√
1 − z2

p, 0, zp

)
, (C3)

p̂e = (√
1 − z2

e cos φ,

√
1 − z2

e sin φ, ze

)
, (C4)

where zp and ze are cosines of the polar angles of the proton
and electron momenta and as such, take values from −1 to
1. The azimuthal angle φ of the electron with respect to the

plane formed by the proton and neutron momenta ranges from
0 to 2π .

This choice of coordinates allows us to integrate over the
three trivial angles, giving a factor of 8π2. The rate integral
can now be written as

�n = G2

16π6

∫ ∞

0
dpn dpp dpe p2

np
2
pp2

e

× fn(1 − fp )(1 − fe )I (pn, pp, pe ), (C5)

where

I =
∫ 1

−1
dze

∫ 1

−1
dzp

∫ 2π

0
dφ δ

(
q −

√
p2

n + p2
p + p2

e + 2pppe

√
1 − z2

p

√
1 − z2

e cos φ + 2pppezpze − 2pnppzp − 2pnpeze

)

×

⎛
⎜⎜⎝1 + 3g2

A + (
1 − g2

A

) pnze − ppzpze − pe − pp

√
1 − z2

p

√
1 − z2

e cos φ√
p2

n + p2
p + p2

e + 2pppe

√
1 − z2

p

√
1 − z2

e cos φ + 2pppezpze − 2pnppzp − 2pnpeze

⎞
⎟⎟⎠. (C6)

We do the φ integral first, using the δ function. Clearly we require q > 0, because if q is negative, the argument of the δ function
could never be zero and thus the integral would be zero. For q > 0, the δ function argument vanishes for either zero or two
values of φ between 0 and 2π . We find that

I = 4|q|
∫ 1

−1
dzp

[
1 + 3g2

A + 1 − g2
A

2peq

(
p2

n + p2
p − p2

e − q2 − 2pnppzp

)]
�(q )

×
∫ 1

−1
dze

1√
4p2

pp2
e

(
1 − z2

p

)(
1 − z2

e

) − (
q2 − p2

n − p2
p − p2

e − 2pppezpze + 2pnppzp + 2pnpeze

)2
�(B ), (C7)

where the step function �(B ) enforces B > 0, where

B = 2pppe

√
1 − z2

p

√
1 − z2

e − |q2 − p2
n − p2

p − p2
e − 2pppezpze + 2pnppzp + 2pnpeze|. (C8)

This is the condition for there to be two, not zero, values of φ in the integration range which make the argument of the δ function
vanish and thus contribute to the integral.

We now evaluate the ze integral, noting that the step function �(B ) adjusts the range of integration. Only if C > 0, where

C = 2pe|q| − |p2
e + q2 − p2

n − p2
p + 2pnppzp|, (C9)

is the step function nonzero for any range of ze in the interval [−1, 1], in which case the step function is nonzero only for
z−
e < ze < z+

e , where z±
e lie inside the interval [−1, 1], and thus z±

e become the new integration bounds. Doing the ze integral,
we find

I = 2π |q|
pe

�(q )
∫ 1

−1
dzp �(C)

⎛
⎜⎜⎝

1 + 3g2
A + 1 − g2

A

2peq

(
p2

n + p2
p − p2

e − q2 − 2pnppzp

)
√

p2
n + p2

p − 2pnppzp

⎞
⎟⎟⎠. (C10)

The step function �(C) creates a restriction on the bounds of zp and so the actual range of integration over zp is the
intersection of the intervals [−1, 1] and [z−

p , z+
p ], where z±

p = (p2
n + p2

p − p2
e − q2 ± 2pe|q|)/(2pnpp ), and so the range of

integration will depend on the values of {pn, pp, pe}. Evaluating the integral over zp with the bounds y+ and y−, we have

I
(
pn, pp, pe

) = 2π |q|
pnpppe

�(q )J
(
pn, pp, pe

)
(C11)

where

J
(
pn, pp, pe

) =
[(

1 + 3g2
A − (

1 − g2
A

)p2
e + q2

2peq

)
y1/2 + 1 − g2

A

6peq
y3/2

]∣∣∣∣
y=y+

y=y−
, (C12)
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with

y+ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(pe + |q|)2 if −1 < z−
p < 1 < z+

p

(pe + |q|)2 if −1 < z−
p < z+

p < 1

(pn + pp )2 if z−
p < −1 < 1 < z+

p

(pn + pp )2 if z−
p < −1 < z+

p < 1,

(C13)

and

y− =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(pn − pp )2 if −1 < z−
p < 1 < z+

p

(pe − |q|)2 if −1 < z−
p < z+

p < 1

(pn − pp )2 if z−
p < −1 < 1 < z+

p

(pe − |q|)2 if z−
p < −1 < z+

p < 1.

(C14)

Thus, the direct Urca neutron decay rate is

�n = G2

8π5

∫ ∞

0
dpn dpp dpe pnpppe|q|�(q )

× fn(1 − fp )(1 − fe )J (pn, pp, pe ), (C15)

with J (pn, pp, pe ) as defined in Eqs. (C12)–(C14).
The direct Urca electron-capture rate integral is identical,

except that fn(1 − fp )(1 − fe ) is replaced by (1 − fn)fpfe

and, because the neutrino is now on the same side of the
reaction as the neutron, instead of with the electron and
proton, �(q ) is replaced by �(−q ).

The remaining three-dimensional integral in Eq. (C15)
can be done numerically (we used Mathematica’s Monte
Carlo integration routine), giving the direct Urca rate results
shown in Figs. 2 and 3. Mathematica’s estimated error on the
numerical integrals is under 20%, and repeated evaluation of
the integrals leads to results within 10% of their average.
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