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We quantify the theoretical uncertainties of chiral effective-field-theory predictions of the muon-deuteron
capture rate. Theoretical error estimates of this low-energy process are important for a reliable interpretation
of forthcoming experimental results by the MuSun Collaboration. Specifically, we estimate the three dominant
sources of uncertainties that impact theoretical calculations of this rate: those resulting from uncertainties in the
pool of fit data used to constrain the coupling constants in the nuclear interaction, those due to the truncation of
the effective field theory, and those due to uncertainties in the axial radius of the nucleon. For the capture rate
into the 1S0 channel, we find an uncertainty of approximately 4.6 s−1 due to the truncation in the effective field
theory and an uncertainty of 3.9 s−1 due to the uncertainty in the axial radius of the nucleon, both of which are
similar in size to the targeted experimental precision of a few percent.
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I. INTRODUCTION

Effective field theories (EFTs) have become a widely used
tool in particle and nuclear physics. They are used to obtain
a systematic low-energy expansion of observables when a
separation of scales is present in a given problem. In partic-
ular, chiral EFT had a transformative effect on low-energy
nuclear theory [1–3] by providing a clear path towards a
nuclear Hamiltonian that can describe the properties of atomic
nuclei to high accuracy. Within this framework, nucleons
and pions are the degrees of freedom used to build up the
nuclear potential that is used to describe the spectra of nu-
clei. The expansion parameter Q of chiral EFT is given by
max(mπ/�b, q/�b ), where mπ denotes the pion mass, q a
low momentum scale, and �b denotes the breakdown scale
of the theory, which is expected to be comparable to the
lightest degree of freedom not taken into account in the theory.
An additional advantage over previous approaches to the
internuclear potential is that EFT also provides clear guidance
on how to construct the coupling to external sources. Indeed,
the electroweak current is also calculated order-by-order in a
low-energy expansion in chiral EFT and thus shares a large
number of low-energy constants (LECs) with the nuclear
potential. Thus, chiral dynamics constrains the form of the
nuclear currents significantly.

Uncertainty quantification of theoretical calculations is
particularly important in the nuclear electroweak sector where
observables that are very challenging, or even impossible,
to measure experimentally serve as input to astrophysical
models. Fortunately, uncertainty quantification was one of the

*acharya@uni-mainz.de
†andreas.ekstrom@chalmers.se
‡lplatter@utk.edu

initial promises of EFT calculations. However, it should be
pointed out that there remain several open questions on the
meaning and understanding of renormalization group invari-
ance of chiral EFT [4–6] and therefore also the interpretation
of truncation errors.

In this paper we build on recent progress in uncertainty
quantification for EFTs [7–11] and present new results for
the different sources of theoretical uncertainties in the EFT
description of muon capture on the deuteron, i.e., the process

μ− + d → νμ + n + n. (1)

Currently, the MuSun Collaboration is performing an experi-
ment at the Paul Scherrer Institut to measure the rate of this
reaction to percentage precision [12]. This will be the first
precise measurement of a weak nuclear process in the two-
nucleon (NN ) system, and the aim is to determine the LEC
cD that parametrizes the strength of the short-distance part of
the axial two-body current as well as the one-pion-exchange
contact term in the leading three-nucleon (NNN ) interaction
in EFT approaches to nuclear forces and currents.

Muon capture on the deuteron has long been expected to
provide understanding of the electroweak nuclear operator
(see Ref. [13] and references therein). A first chiral EFT
calculation of muon capture into the neutron-neutron (nn)
singlet S wave was carried out by Ando et al. [14]. More
recently, more complete calculations of the muon capture rate
were carried out in Refs. [15–17].

Here, we focus on the three dominant sources of un-
certainties of an EFT calculation of the capture rate: those
resulting from uncertainties in the nucleon-nucleon scattering
database, those due to the truncation of the EFT and those
due to uncertainties in the nucleon axial form factor. We will
focus on capture from the S-wave doublet state of the muonic
deuterium atom to the singlet S-wave state of the nn system,
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�
1S0
D , which is the only contribution to �D that is relevant to

the contact part of the axial current. Furthermore, this part
can be extracted by subtracting from �D the higher partial
wave contributions calculated in Refs. [15–17]. While these
contributions have theoretical uncertainties of their own, they
are not sensitive to physics at range shorter than that of pion
exchange at the chiral order we are operating at.

We follow two approaches. (i) We use a family of 42
potentials at order Q3 that have been fitted at seven different
regulator cutoffs � in the range 450–600 MeV to six different
Tlab ranges in the NN scattering database. The LECs in
this family of NN + NNN interactions were simultaneously
fitted to pion-nucleon (πN ) and selected NN scattering data,
the energies and charge radii of 2,3H and 3He, the quadrupole
moment of 2H, as well as the comparative β-decay half-
life of 3H. A simple momentum-dependent error term with
EFT-like scaling was included in the fits to scattering data,
and all 42 potentials reproduce the pool of fit data equally
well, see Ref. [7] for details. Clearly, calculating the muon-
capture rate with this family of interactions probes an impor-
tant component of the total theoretical uncertainty. (ii) We
also use a set of chiral interactions with regulator cutoff
� = 500 MeV at orders Q0,Q2,Q3 with the subleading
πN couplings c1, c3, c4 according to the precise Roy-Steiner
analysis presented in Refs. [8,18]. The corresponding NN
contact potentials of this set of interactions are constrained
to reproduce the NN phase shifts of the Granada PWA [19]
up to 200 MeV laboratory scattering energy as well as the
binding energy and radius of the deuteron. This second class
of interactions enables us to parametrize �

1S0
D in terms of

only one LEC, either d̂R or cD , which are related by d̂R =
− m

4gA�b
cD + 1

3 ĉ3 + 2
3 ĉ4 + 1

6 , where ĉi ≡ cim and m is the
nucleon mass [15,20–23].1 Indeed, after extracting the LEC
cE of the leading NNN contact from the energy and radius of
3H and 3He, the three-nucleon force is completely predicted
up to order Q3 by �

1S0
D .

In the following we show that the capture rates extracted
from approaches (i) and (ii) agree with each other. Further-
more, we discuss the relative size of the uncertainties of
our predictions that arise from the aforementioned sources,
and their implications for the interpretation of the impending
experimental MuSun results.

II. THE 1 S0 CAPTURE RATE

At nuclear energies, the charge-changing weak interaction
Hamiltonian ĤW can be written in terms of the leptonic and
the nuclear weak current operators as

ĤW = GV√
2

∫
d3x[jα (x)J α (x) + h.c.], (2)

where GV is the vector coupling constant which is related
to the Fermi coupling constant GF and the Cabibbo mixing

1An error in the coefficient of cD in Ref. [20] was recently corrected
by Ref. [23]. The LECs of Ref. [7] have been reoptimized with a
corrected relation between the LECs cD and d̂R [23]. The new values
[33] are used throughout in this work.

angle θC by GV = GF cos θC , and “h.c.” stands for the Her-
mitian conjugate of the preceding term. The matrix element
of the leptonic weak current operator jα is lα e−iq·x, where lα

is the Dirac current of the leptons. The matrix element for the
process in Eq. (1) can then be written as

Tf i = GV√
2

φ1S (0)
∑
sμsd

〈
1

2
sμ, 1sd

∣∣∣∣
(

1

2
1

)
1

2
sμd

〉
lα (h, sμ)

× 〈ψnn|Jα (q)|ψd ; sd〉, (3)

where φ1S (0) = [αmμmd/(mμ + md )]3/2/π1/2 is the ground-
state wave function of the muonic deuterium atom at the
origin, and |ψnn〉 and |ψd ; sd〉 are, respectively, the states of
the nn system and that of the spin-polarized deuteron with
projection sd . Here, we have ignored the quartet channel
of muonic deuterium and only coupled the muon and the
deuteron spins to 1/2. For capture into the 1S0 singlet nn state
with relative momentum p, the differential doublet capture
rate is given by

d�
1S0
D

dp
= 1

2π3
p2E2

ν

(
1 − Eν

mμ + md

)
|Tf i |2, (4)

where the spin-averaged squared matrix element |Tf i |2 can be
obtained from Eq. (3) by averaging over the spin projections
sμd of the muonic deuterium atom and summing over neutrino
helicities h, which gives

|Tf i |2 = 1
6G2

V φ2
1S (0) |

√
2〈ψnn|J 1(q) − iJ 2(q)|ψd ; 1〉

− 〈ψnn|J 0(q) + J 3(q)|ψd ; 0〉|2. (5)

The neutrino energy is Eν = 1
2mμd

[m2
μd − 4(m2

n + p2)], where
mμd and mn are the masses of the muonic deuterium atom and

the neutron, respectively. The integrated capture rate �
1S0
D can

be obtained by integrating Eq. (4) with respect to p between
the limits 0 and pmax = (m2

μd/4 − m2
n)1/2.

III. WEAK CURRENTS

The expressions for the charge-changing nuclear elec-
troweak currents, J α ≡ V α

1B + Aα
1B + V α

2B + Aα
2B, have been

derived in chiral effective field theory in Refs. [24–27]. We
take into account operators that give nonvanishing contribu-
tions to Eq. (1) up to O(Q3) in the chiral expansion. The
nuclear wave functions are also consistently calculated up to
the same order. In both, the current operators and the wave
function, we count Q/m as O(Q2) [7,28]. The Gamow-Teller
operator,

AGT
1B (q) = −FA(q2)

∑
i

e−iq·ri τ−
i σ i , (6)

enters at O(Q0). Here, FA is the axial form-factor which is
a function of the four-vector inner product q2 = mμ(mμ −
2Eν ). We use FA(q2) = gA(1 + r2

Aq2/6), where rA is the axial
radius of the nucleon. This truncation is consistent with the
chiral order to which we work in this paper, and with both
dipole and z parametrizations of the axial form-factor [29].
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The pseudoscalar operator [26],

A0
1B(q) = −gA

∑
i

e−iq·ri τ−
i

σ i · p̄i

m
, (7)

where p̄i = (pi + p′
i )/2 = pi + q/2 is the average of the

momenta of the nucleons before and after coupling with the
leptons, only appears at O(Q2). Additionally both Eqs. (6)
and (7) also include an induced-pseudoscalar contribution
[14] that gives Aα

1B(q) → Aα
1B(q) + qαqβA

β
1B(q)/(m2

π − q2).
The one-body vector operator appears at O(Q2) and consists
of the so-called convection current and the weak-magnetism
terms,

V1B(q) =
∑

i

e−iq·ri τ−
i

1

m

(
p̄ + i

μV

2
q × σ i

)
, (8)

where μV is the nucleon isovector magnetic moment, whose
value is 4.706. In Eqs. (7) and (8), and also in the two-
body currents discussed below, we have used the zero four-
momentum transfer values for the axial and electromagnetic
form factors since their q2 dependences are higher order in
the EFT expansion.

The axial two-body operators, which enter at O(Q3), can
be written as [14,26]

Aα
2B(q) = Âα

2B(q) + qα
[
qβÂ

β
2B(q) + ÂPS

2B(q)
]

m2
π − q2

, (9)

where

Â0
2B(q) = − i

gA

4f 2
π

τ−
×

[
σ 1 · k1

m2
π − k2

1

− σ 2 · k2

m2
π − k2

2

]

+ 2gA

mf 2
π

(
ĉ2 + ĉ3 − g2

A

8

) ∑
i

τ−
i

σ i · kik
0
i

m2
π − k2

i

, (10)

Â2B(q) = gA

2mf 2
π

{
σ 2 · k2

m2
π − k2

2

[
i

2
τ−
× p̄1 + 4ĉ3τ

−
2 k2

+
(

ĉ4 + 1

4

)
τ−
× σ 1 × k2 + μV

4
τ−
× σ 1 × q

]

+ 2d̂1

∑
i

τ−
i σ i + d̂2τ

−
× σ× + (1 ↔ 2)

}
, (11)

and

ÂPS
2B(q) = 4gAm2

π

mf 2
π

ĉ1

[
τ−

2

σ 2 · k2

m2
π − k2

2

+ (1 ↔ 2)

]
. (12)

The μV term in Eq. (11) and the pion pole contribution given
by the second term in Eq. (9) were ignored by Ref. [26] in
their proton-proton fusion calculation but were included by
Ref. [14] since they are non-negligible for the muon capture
process. In these equations, ki = p′

i − pi , τ−
× = (τ1 × τ2)x −

i(τ1 × τ2)y , σ× = σ 1 × σ 2, and fπ is the pion decay constant.
The linear combination gA�b (d̂1 + 2d̂2) = cD is convention-
ally used to combine the d̂1 and d̂2 terms, which are rendered
redundant by the Pauli principle [26]. The LECs ci in the pion-
exchange current also appear in πN and NN interactions and
in the long-range part of the NNN interaction, whereas cD

(or d̂R) simultaneously parametrizes both the strength of the

short-range part of the meson-exchange axial currents and that
of the intermediate-range part of the NNN interaction. The
vector part of the two-body current is given by the sum of the
so-called seagull and pion-in-flight terms [14],

V2B(q) = −iτ−
×

g2
A

4f 2
π

[
σ 1σ 2 · k2

m2
π − k2

2

− σ 2σ 1 · k1

m2
π − k2

1

+ σ 1 · k1

m2
π − k2

1

σ 2 · k2

m2
π − k2

2

(k2 − k1)

]
. (13)

The two-body vector charge operator, V 0
2B, is suppressed

by an additional factor of the chiral EFT expansion parameter.

IV. COVARIANCE ANALYSIS

The covariance matrices provided in Ref. [7] offer a
straightforward handle on the statistical uncertainties in the
integrated and differential muon-capture rate stemming from
the experimental uncertainties in the fit data. The Jacobians
of of �

1S0
D with respect to relevant LECs were computed in a

simple finite difference scheme and derivatives could be reli-
ably extracted using splines. For the nuclear wave functions
we do not allow any variation in the axial coupling constant
gA. We start from gA = 1.276 [30] which after renormaliza-
tion to account for the Goldberger-Treiman discrepancy is
matched to the empirically determined πN coupling strength
g2

πNN/4π = 13.7 [31]. This value for gA is slightly larger
than the most recently adopted Particle Data Group (PDG)
value gA = 1.2723(23) but in fair agreement with the value
gA = 1.2749(9) employed by Hill et al. [32].

It is sufficient to use the first-order statistical methods
described in Ref. [7]. From this we can establish that the
uncertainty in �

1S0
D due to uncertainties in the determination

of the LECs at Q3 from experimental data is very small
and certainly not of any primary concern. We find that the
typical size of the statistical uncertainties in �

1S0
D is 0.5 s−1.

The sensitivity to different truncations of the NN scattering
database is of similar size, while variations of the regulator
cutoff is up to five times larger, see Fig. 1.

Based on the covariance analysis, variations of the regu-
lator cutoff, and the pool of fit data for extracting the LECs
we obtain a conservative estimate for the model uncertainty
at order Q3 in chiral EFT. Using a weighted average of the
results shown in Fig. 1, we find

�
1S0
D = 252.4+1.5

−2.1 s−1. (14)

V. CORRELATION WITH THE ASTROPHYSICAL
PROTON-PROTON S FACTOR

Using the chiral interactions at orders Q3 with the
πN LECs, c1,2,3,4 = (−0.74, 1.81,−3.61, 2.44) GeV−1, de-
termined in a Roy-Steiner analysis [18], we can analyze
the relation between different observables via a variation
of the short-distance LEC cD . For example, in Fig. 2 we
trace out the correlation between the proton-proton (pp) Spp

factor at zero energy and the muon-capture rate �
1S0
D . Different

points on the black line in this figure only differ in the values
of the LEC cD and cE that reproduce the binding energies and
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FIG. 1. Distribution of central values for the muon-capture rate

�
1S0
D when using the family of 42 chiral EFT potentials at order Q3

from Ref. [7]. The vertical bars indicate the respective statistical
uncertainty propagated from the underlying uncertainties in the
LECs. Calculations with identical regulator cutoffs � but different
truncations T max

Lab in the NN scattering database are connected with
a line to guide the eye. The weighted average of all calculations and
conservative error limits are indicated with dashed and solid lines,
respectively. The numerical values of the combined model error is
given in Eq. (14).

radii of 3H and 3He while the two-body interaction remain
unchanged.

As in Ref. [20], we can also use the triton binding energy
and β-decay half-life, corresponding to a reduced matrix
element of the J = 1 electric multipole of the axial-vector
current |〈3He||EA

1 ||3H〉| = 0.6848 ± 0.0011, to fix cD and cE ,
and thus also the muon-capture rate and the pp fusion S
factor, see Fig. 2 (dashed lines). With cD = −0.39 and cE =
−0.44, we find that Spp(0) = 4.058 × 10−23 MeV fm2, which

4.00 4.02 4.04 4.06 4.08 4.10 4.12

Spp(0) [10−23 MeV fm2]

240

250

260

270

Γ
1
S

0

D
[s
−1

]

triton β-decay

FIG. 2. The muon-capture rate �
1S0
D as a function of the pp

fusion Spp factor at zero energy parameterized by the axial current
LEC cD ∈ [−3.6, +3.6] at order Q3 using the Roy-Steiner based
interaction. The grey band indicates the uncertainty in the muon-
capture rate due to the uncertainty in the axial radius of the nucleon
r2
A = 0.46(22) fm2. The dashed lines indicates the values for Spp (0)

and �D when the experimental value for the triton β-decay half-life
is used to determine the LEC cD .

is consistent with our previously published result [34], and a
muon-capture rate

�
1S0
D = 252.8 ± 4.6 ± 3.9 s−1. (15)

These results are not sensitive to variations of the tritium β-
decay matrix element within the range of uncertainty quoted
above. The first uncertainty in the above expression for �

1S0
D

estimates the effect of truncating the chiral EFT expansion
at order Q3. The second uncertainty indicates the sensitivity
to variations of the axial radius within the error budget r2

A =
0.46(22) fm2 [29]. The truncation error is extracted by fol-
lowing the method discussed in Ref. [9]. In brief, we calculate
the capture rate at the lower orders Q0 and Q2, in the currents
as well as the wave functions, and express the results as an
expansion of the form �

1S0
D = �

1S0
LO

∑3
n=0 cn(p/�b )n, where

we assume that the breakdown scale of theory is �b = 500
MeV and the inherent momentum p of the problem is pro-
vided by the soft scale of chiral EFT, i.e., p = mπ . Note that
the maximum of the momentum-differential doublet-capture
rate in Eq. (4) occurs at a momentum scale p ∼ 25 MeV. We
obtain an estimate for the EFT truncation error by calculat-
ing (p/�b )4 max(|c0|, |c2|, |c3|). The order-by-order capture
rates with a cD that reproduces the comparative inverse β-
decay half-life of triton are (186.3, 247.3, 252.8) s−1 at or-
ders (Q0,Q2,Q3), respectively. We find that the uncertainty
estimate resulting from an analysis of the EFT truncation is
comparable to the error induced by the imprecise value of the
axial radius. In turn, both of these errors are twice as large
as the uncertainty related to the cutoff variation of the chiral
potential and truncations in the pool of fit data.

VI. CONCLUSION

We have analyzed uncertainties in calculations for the
muon-capture rate using two classes of interactions: (i) order
Q3 interactions constructed as described above and in Ref. [7],
and (ii) a set of interactions at order Q0,Q2,Q3, whose πN
couplings c1, c3, and c4 were taken from Ref. [18].

The analysis carried out in Refs. [8,18] has reduced the
uncertainties in the πN LECs significantly. This leaves cD

as the only undetermined LEC in the weak axial two-body
current. We demonstrated that this leads to linear correlations
between electroweak observables in the two-nucleon sector
that involve phase-shift equivalent NN interactions.

We focused on the singlet S-wave nn channel, which is the
only channel sensitive to the weak axial two-body contact cur-
rent. Our results for muon capture and the associated uncer-
tainties are shown in Eqs. (14) and (15). These uncertainty es-
timates are rooted in the description of the strong-interaction
part of the calculation. We also emphasize the importance of
the additional ∼1.5% uncertainty due to the uncertainty in the
nucleon axial radius. We note that the central value we obtain
is in excellent agreement with a prior chiral EFT calculation
[15] even though our error estimate is larger because we
perform a more rigourous treatment of uncertainties.

Using the result for muon capture into the single S wave
from Eq. (15) and the results from Ref. [15] for muon cap-
ture into higher partial waves, we can obtain an estimate of
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397.8 s−1 for the total capture rate, �D . We expect that higher
accuracy can be obtained for capture into higher partial waves
since these are less sensitive to the axial two-body current.
However, we refrain from giving a total uncertainty for this
capture rate.

We have also studied the correlation of the capture rate with
other NN observables. In agreement with previous work [35],
we find that the capture rate depends only weakly on the nn
scattering length ann provided that it is negative. However, the
capture rate would be significantly smaller if ann was positive
due to the existence of a shallow dineutron.

In the future, we will carry out a complete uncertainty
analysis for pp fusion and muon capture on the deuteron,
including the effect of higher partial waves. This analysis will
provide a full picture on the uncertainties and correlations of
electroweak processes in the NN sector. We emphasize that
the axial radius rA is a significant source of uncertainty in our
analysis. Future improvements in experimental precision and
lattice QCD results [36] will lead to important insights into

how the nuclear Hamiltonian correlates various electroweak
observables.
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