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Effect of Siegert’s theorem on low-energy neutrino-nucleus interactions

A. C. Hayes and J. L. Friar
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

(Received 29 September 2018; published 21 December 2018)

We examine the importance of conserving the vector current in calculating low-energy neutrino-nucleus
interactions by implicitly invoking Siegert’s theorem in describing the vector transverse electric current. We
find that at low neutrino energies (Eν < 50 MeV), Siegert’s theorem can change neutrino cross sections for
normal-parity non-spin-flip excitations by about a factor of two. The same is true of muon capture rates. At
higher neutrino energies the effect of Siegert’s theorem diminishes, and by about 100 MeV the effect is very
small.
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I. INTRODUCTION

The use of nucleon and pion degrees of freedom in describ-
ing low-energy nuclear processes is standard in the field. This
is hardly surprising since asymptotic channels in low-energy
nuclear reactions often contain nucleons, whose rest masses
determine the bulk of the total energy in a nucleus. Pions,
on the other hand, are hidden at low energies (compared to
the pion mass), but their effect is extremely important. Much
effort has been expended in describing the forces between nu-
cleons in terms of two-, three-, and even four-nucleon forces
generated by pion exchanges. The effect of pion exchanges is
more subtle on the various mechanisms that produce nuclear
reactions. One of the best studied is meson-exchange currents
(MECs), particularly in electromagnetic (EM) interactions.
The exchange of charged pions can generate an EM current,
which can be significant.

A longstanding discrepancy (≈10%) between the observed
and calculated thermal neutron-proton capture rates (n +
p → d + γ ) was resolved in 1970 by Riska and Brown [1],
who used explicit pion-exchange mechanisms to explain the
discrepancy in terms of MEC. This reaction is primarily mag-
netic dipole and is dominated by the large isovector magnetic
moment of the nucleon, which suppresses the relative contri-
bution of MEC. In other channels (such as electric dipole) the
relative contribution can be much larger (≈50%). Pionic MEC
contributions to the nuclear Compton amplitude are needed
for gauge invariance of the latter, and were calculated by Friar
in 1976 [2].

The analogous pionic MEC in the axial charge operator
(also relatively large ≈30%) was calculated by Kubodera
et al. in 1978 [3] and was applied to 0+ → 0− transitions by
Haxton [4] in 1981. It is clear from the sizes of these pionic
currents that either MEC should be explicitly added to cal-
culations, or other means (viz., “tricks”) used to incorporate
MEC at some level of accuracy.

At low energies in EM interactions the latter is possible
because of Siegert’s theorem (ST) [5], a version of which can
be accomplished using a vector identity. Use of ST greatly
improves the interpretability of electromagnetic reactions. If

one works in the long-wavelength limit for photons (real or
virtual) the exponential photon wave function can be ignored,
leading to a transition operator for the EM current, J(x),

∫
d3x J(x) ≡ −

∫
d3x x ∇ · J(x) = i

[
H,

∫
d3x x ρ(x)

]
,

(1)

where we have used the current continuity equation ∇ ·
J(x) = −i[H, ρ(x)] → −i ωf i ρ(x) to produce the last form,
which is exact in this limit if the current J(x) is conserved.
Note that ωf i is the final nuclear energy minus the initial
nuclear energy and

∫
d3x x ρ(x) is the nuclear dipole operator,

which is much easier to treat and interpret than the current.
The significance of the MEC can be immediately seen by
separating the strong Hamiltonian H into kinetic (T) and po-
tential (V) parts, both roughly equal in size while opposite in
sign. The former part results from the single-nucleon convec-
tion current, JC (x), and leads immediately to

∫
d3x JC (x) =

i[T , D]. The potential part (i[V, D]) results from the MEC.
Thus even if one starts with single-nucleon currents, use of
the trick (replacing ∇ · J via the current continuity equation)
forces the introduction of multinucleon currents, provided that
there is a change of isospin (i.e., a net flow of current). Unless
the latter is true, [V, D] ∼= 0 for the bulk of the current. At
higher energies this vector-identity trick is only approximate
because there are additional terms, and a variety of forms are
possible.

Of particular interest to us is the conserved vector current
(CVC) in neutrino-nucleus interactions, which allows us to
follow the same path that we used in EM interactions. In
specific partial waves at low energy the MEC contributions
are significant, particularly in electric dipole (0+ → 1−) tran-
sitions. Recent results from neutrino detectors have motivated
many theoretical calculations of weak processes. One of the
most influential papers that provides a framework for the latter
is by O’Connell, Donnelly, and Walecka (ODW) [6]. Cross-
section formulas and rates for muon capture were derived in
terms of various operator types.
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Our primary interest in this work is the vector current
part of the (transverse) electric transition operator, T̂ el

V , which
effects normal-parity transitions. Transverse defines those di-
rections orthogonal to the momentum transfer, q, while longi-
tudinal defines directions collinear with q. It is conventional
in all treatments (weak or EM) to enforce current conservation
on the longitudinal current [as was done by ODW just above
their Eq. (35)], but not necessarily for the transverse current
components, which we examine here.

There are at least four different forms of the transverse
electric operator in the EM literature. The first is a standard
one (Eq. (7b) of Ref. [7]) that does not manifest Siegert’s
theorem (i.e., have a term proportional to ∇ · J) in the long-
wavelength limit,

T̂ el
JM (q ) = 1

q

∫
d3x ∇ × [

jJ (qx)YM
JJ (x̂)

] · J(x), (2)

where q is the magnitude of the momentum transfer (to the nu-
cleus). The second (Eq. (6) of Ref. [8]) does manifest ST, and
is obtained by a simple manipulation of the vector spherical
harmonics YM

Jl (x̂) and spherical Bessel functions jJ (qx) [8]
in Eq. (2) above. The third requires more manipulations and
leads to Eq. (7c) of Ref. [7], which also manifests ST

T̂ ′ el
JM (q ) = −i

q
√

J (J + 1)

∫
d3x YJM

×
[
∇ · J(x)

d

dx
(xjJ (qx)) − q2 x · J(x) jJ (qx)

]
(3)

and is our preferred form after replacing ∇ · J(x) by
−i[H, ρ(x)]. There is a fourth form that has good behavior in
the ST limit and near it, while exhibiting possible pathological
behavior in the short-wavelength regime. The latter form was
discussed by Haxton and Friar [8] and should not be used
except in the long-wavelength regime.

II. APPLICATION TO NEUTRINO-NUCLEUS
CROSS SECTIONS

The formalism for calculating neutrino-nucleus cross
sections from the output of a nuclear structure calculation is
often taken from Ref. [6], which involves evaluating the ma-
trix elements of a set of electroweak transition operators. The
many-body matrix elements that enter the cross section are de-
termined from the matrix elements of a set of single-nucleon
electroweak operators weighted by the corresponding nuclear-
structure-dependent one-body density-matrix elements
(OBDMEs). The detailed properties of this set of
momentum-dependent single-nucleon electroweak operators
are listed in the tables of Donnelly and Haxton [9].

Our primary interest is introducing the bulk of the effect
of MEC into weak cross sections at low energies by using
ST without the use of explicit models of MEC. This requires
modification of only part of T̂ el

JM [Eq. (37) in the requisite
Eqs. (35)–(42) of ODW] and nothing else. Thus one can
use Eqs. (39)–(42) of ODW for the axial currents, which are
unaffected by ST, Eq. (38) for T̂ mag

JM , and Eqs. (35)–(36) for
the vector charge. In addition the weak spin-magnetization

current (the second term in Eq. (37) of Ref. [6] and Eq. (22b)
in Ref. [9]) is unchanged. This leaves only the nucleon
convection current part of T̂ el

JM (the first term in Eq. (37)
of Ref. [6]) that we need to modify. Note that integrals are
ignored in the relevant formulas of ODW and in our equations
below.

Thus we replace the first operator term in Eq. (37) of
Ref. [6]

T̂ el
JM = q

MN

FV
1 �′M

J (x), (4)

with an operator that manifests ST, for which we use Eq. (3)
above with ∇ · J(x) replaced by −i ωf i ρ(x).

T̂ ′ el
JM (q ) = FV

1 YJM√
J (J + 1)

[
ωf i

q
g1(qx) + q

2MN

×
(

g2(qx) + 2jJ (qx) x
∂

∂x

)]
, (5)

where

g1(z) = zjJ+1(z) − (J + 1)jJ (z), (6)

and

g2(z) = (J + 3)jJ (z) − zjJ+1(z). (7)

These forms are the operators describing transitions between
(assumed) single-nucleon states. A simpler and more tractable
form of the matrix element of the operator in parenthesis
in Eq. (5) (viz., g2(qx) + · · · ) can be obtained by inserting
the (implicit) final (ψf ) and initial (ψi) single-nucleon states
around that term. Integrating-by-parts half of the derivative
term (in x) produces

ψ
†
f (x)

(
g2(qx) + 2jJ (qx) x

∂

∂x

)
ψi (x)

−→ xjJ (qx)

(
ψ

†
f (x)

∂ψi (x)

∂x
− ∂ψ

†
f (x)

∂x
ψi (x)

)
. (8)

A. Cross section to the giant dipole resonance

The transverse electric operator only produces normal-
parity transitions with total changes in angular momentum
�Jπ = 0+, 1−, 2+, 3−, 4+, . . . , while only those that do not
change spin (viz., �S = 0) but change isospin (viz., �T = 1)
involve ST. Thus, invoking ST does not lead to any change
in the lowest-energy contributions to neutrino cross sections
that are dominated by Gamow-Teller 1+ transitions. How-
ever, other multipoles are affected, particularly transitions to
the giant dipole resonance (GDR). To estimate the size of
the effect on �Jπ = 1−,�L = 1, �S = 0, �T = 1 dipole
transitions, we consider the neutrino cross section for a pure
GDR excitation on a closed 16O core. We describe the GDR
resonance as a single state at 22.3 MeV of excitation in terms
of a harmonic oscillator p → sd cross-shell transition that
corresponds to the SU(3) (λ,μ) = (1, 0),�L = 1, �S = 0
transition, and use an oscillator parameter b = 1.8 fm. This
state contains the full E1 strength built on a closed p-shell
core. While this represents a very simplified description of the
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FIG. 1. (Left) The neutral-current neutrino cross section for ex-
citation of a simple GDR state at 22.3 MeV excitation energy in 16O.
The solid black curve shows the case when ST is included in the
calculation and the dashed red curve when it is not. (Right) The ratio
of the ST implicit calculated cross section to the case without ST. The
inclusion of ST increases the cross section at low neutrino energies
by more than a factor of two, but has little effect at high neutrino
energies.

GDR, it serves as a reasonable example for the purposes of
sensitivity studies of the importance of ST.

In Fig. 1 we show the neutral-current neutrino cross sec-
tion to the GDR state defined by the (λ,μ) = (1, 0),�L =
1,�S = 0 transition. Using Eq. (5) rather than Eq. (4) (i.e.,
implementing ST) increases the cross section at low neutrino
energies by a factor of about 2.5. At higher neutrino energies
the effect of ST diminishes, and by about 100 MeV the effect
is very small.

We also examined the (νe, e
−) GDR contribution to the

cross section for the electron neutrinos produced in the pion
decay-at-rest (DAR) process, for which the neutrino flux
is determined by the Michel spectrum. The predicted cross
section to the GDR state increases by about 63% when ST
is included implicitly, being 1.58 × 10−42 cm2 with ST and
0.97 × 10−42 cm2 when ST is omitted. In addition, the shape
of the cross-section angular distribution for the two cases is
also different, as shown in Fig. 2. Though the cross section to
the p → sd 3− S = 0 state is small, it also shows sensitivity to
ST, and is enhanced by about a factor of two at low neutrinos
energies. A similar factor is well known [10] in photonuclear
reactions.

B. Shell-model calculations for 12C

To estimate the importance of including ST in calculations
of total inclusive cross sections, we examine the neutrino cross
section to the excited-state continuum of 12C. For this we used
the full 2h̄ω shell-model calculation of Ref. [11], labeled in
the latter reference as the unrestricted shell model, which has
an oscillator parameter b = 1.7 fm. This calculation includes
correlations in both the 12C ground state and the excited states.
The model space contains about 5500 states and includes the
multipoles 1+ − 5+ and 0− − 4−, with spurious center-of-
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FIG. 2. The normalized angular distribution for the GDR contri-
bution to the neutrino DAR cross section in 16O. The black curve
represents a calculation where ST has been included, and the red
dashed curve where it has not. The inclusion of ST causes the angular
distribution to be more forward peaked. The magnitudes of the two
cross sections differ by a factor of two, being 1.2 × 10−42 cm2 when
ST is included implicitly, and 0.6 × 10−42 cm2 when ST is omitted.

mass states eliminated exactly. For neutrino energies up to
100 MeV, the cross section is dominated by the 1+, 1−, and 2−
multipoles, with 2+ and higher-order multipoles making up
less than 5% of the cross section. Thus, to a good approxima-
tion the cross section is only affected by ST through the �S =
0 �Jπ = 1− multipole contribution, and to a much lesser
extent, by the �S = 0 �Jπ = 2+ contribution. In Fig. 3 we
show the ratio of the predicted total (νe, e

−) cross sections on
12C to the excited states of 12N, but excluding the Gamow-
Teller transition to the ground state of 12N. As can be seen,

30 40 50 60 70
Eν (MeV)

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

σ ST
/σ

N
ST

FIG. 3. The ratio of the total 12C(νe, e
−)12N∗ cross section to

the excited states of 12N, with and without the inclusion of ST.
The cross sections were derived from a complete 2h̄ω shell-model
calculation [11] and include all multipoles 0+ − 5+ and 0− − 4−.
They do not include the transition to the 12Ng.s..
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when all multipoles are included ST increases the total cross
section by 11% at 30 MeV and by less than 2% at 75 MeV.

III. MUON CAPTURE TO EXCLUSIVE STATES IN 12B

The effect of ST on positive-parity contributions to neu-
trino cross sections is difficult to observe because at low
neutrino energies, where ST has the most impact, 2+ or higher
multipoles contribute little to the total cross section. However,
muon capture rates to individual excited states of the final
nucleus are measurable. Recently, the Double Chooz (DC)
Collaboration measured [12] the products of μ capture on
several light nuclei, using the DC neutrino detector designed
to measure the neutrino mixing angle θ13.

We use the full 2h̄ω shell-model calculation discussed
above to examine the effect of ST on the 12C(μ−, νμ)12B
capture rates. The results are listed in Table I. As can be
seen, invoking ST can change the muon capture rates to
low-lying 2+ states by more than a factor of two. We note
that these calculations use harmonic oscillator wave functions.
In Ref. [11] the use of more realistic radial wave functions
was found to lower the predicted muon capture rates to 12B.
However, the sensitivity of the predictions with more realistic
radial wave functions to ST would likely be similar to the
results shown here.

TABLE I. Muon capture rates to the low-lying states of 12B from
the 12C(μ−, νμ) reaction, in units of 103 sec−1. The column labeled
ST implicitly includes Siegert’s theorem [Eq. (5)] and that labeled
NST ignores Siegert’s theorem [Eq. (4)]. The experimental values
are taken from Ref. [12].

State ST NST Experiment

1+ (g.s.) 5.3 5.3 5.68+0.14
−.23

21
+ (0.953 MeV) 0.167 0.441 0.321+0.09

−.07

21
− (1.674 MeV) 0.136 0.136 0.06+0.04

−.03

11
− (2.621 MeV) 0.98 1.75 0.47+0.06

−.05

22
+ (3.759 MeV) 0.021 0.029 0.026+0.015

−.011

IV. CONCLUSION

We have shown that if CVC is not included in the calcu-
lation of T̂ el

JM for neutrino-nucleus interactions at low ener-
gies, errors on the order of a factor of two are possible for
multipoles that are normal parity and nonspin flip. In such
cases, CVC can be invoked using Siegert’s theorem, which
results in the vector transverse electric transition operator of
the form given by Eq. (3). Neutrino processes that are affected
included those involving neutrino energies typical of Michel
pion decay-at-rest spectra, supernova neutrinos, as well as
muon capture.
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