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We study the strangeness S = −2 baryon-baryon interactions in relativistic chiral effective field theory at
leading order. Among the 15 relevant low-energy constants, 8 of them are determined by fitting to the state of the
art lattice QCD data of the HAL QCD Collaboration (with mπ = 146 MeV), and the rest either are taken from
the study of the S = −1 hyperon-nucleon systems, assuming strict SU(3) flavor symmetry, or are temporarily
set equal to zero. Using the so-obtained low-energy constants, we extrapolate the results to the physical point
and show that they are consistent with the available experimental scattering data. Furthermore, we demonstrate
that the �� and �N phase shifts near the �N threshold are very sensitive to the lattice QCD data fitted, to
the pion mass, and to isospin symmetry-breaking effects. As a result, any conclusion drawn from lattice QCD
data at unphysical pion masses (even close to the physical point) should be taken with caution. Our results at
the physical point, similar to the lattice QCD data, show that a resonance (quasibound state) may appear in the
I = 0 �� (�N ) channel.
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I. INTRODUCTION

The strangeness S = −2 hyperon-nucleon (YN ) and
hyperon-hyperon (YY ) interactions play a key role in many
studies of great interest in hypernuclear physics and nuclear
astrophysics, e.g., the existence of the H dibaryon and the �

hypernuclei, and the hyperon puzzle. Despite the large amount
of experimental and theoretical efforts, the existence of the
H dibaryon remains inconclusive (see, e.g., Refs. [1,2]). The
H dibaryon was first predicted to exist by Jaffe [3] using
the MIT bag model as a deeply bound six-quark state with
strangeness S = −2, isospin I = 0, and spin-parity JP =
0+, appearing in the 1S0 partial wave of the ��-�N -��

coupled channels. Recent lattice QCD simulations performed
at mπ � 389 MeV showed some evidence for the existence of
a bound H dibaryon below the �� threshold [4–7]. However,
subsequent studies have shown that when those results are
extrapolated to the physical region the H dibaryon becomes
either weakly bound or unbound [8–11]. Recently the HAL
QCD Collaboration performed simulations very close to the
physical region [2], namely, mπ = 146 MeV. Using the so-
called HAL QCD method [12,13] and assuming SU(3) fla-
vor symmetry, they obtained an effective ��-�N coupled-
channel potential. The calculations using such a potential
yielded a resonant state in the �� channel (a quasibound
state in the �N channel), which, however, showed sizable
systematic uncertainties, depending on the evolution time t in
their simulation. Furthermore, it was shown that the coupled-
channel effects between �� and �N are weak.
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Regarding the existence of � hypernuclei [14–16], a
moderately attractive interaction was inferred from the
12C(K−,K+)12

� Be reaction [17]. However, subsequent anal-
yses showed that the � potential could be attractive [17],
almost vanishing [18], or weakly repulsive [19]. In 2015, the
“KISO” event claimed a deeply bound �−-14N hypernucleus
[20], indicating at least an attractive �N interaction. On the
other hand, based on the few-body calculations of the �NN
hypernucleus [21], a �NN bound state might appear, indicat-
ing that the �N interaction might be strongly attractive.

YN and YY interactions are important inputs to astrophysi-
cal studies as well, since hyperons might appear in the interior
region of neutron stars. The inclusion of YN interactions
results in a softening of the equation-of-state (EoS) of nuclear
matter, which is inconsistent with the observations of two-
solar-mass neutron stars [22,23], known as the “hyperon puz-
zle.” In this case, repulsive YY interactions seem to provide
one possible solution by stiffening the EoS [24,25].

In this work, we study the strangeness S = −2 YN and
YY interactions in relativistic chiral effective field theory
(ChEFT) at leading order (LO). It is an extension of our
previous studies of the nucleon-nucleon (NN ) [26,27] and
strangeness S = −1 YN [28–31] systems. The relativistic
ChEFT has been shown to be able to describe the NN , �N ,
and �N scattering data fairly well, already at LO [26–33].
In contrast to the S = 0 and S = −1 sectors, there are only a
few experimental data in the S = −2 sector. Here we use the
latest lattice QCD data of the HAL QCD Collaboration [2] to
fix 8 of the 15 low-energy constants (LECs) at LO. The rest
are determined from the S = −1 sector [29] assuming SU(3)
flavor symmetry, or temporarily set equal to zero. In addition,
we extrapolate the results to the physical region and compare
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them with the available �� and �N experimental data. The
consistency among the lattice QCD simulation, ChEFT, and
experimental data is discussed.

The paper is organized as follows: In Sec. II we present a
brief overview of the formalism of relativistic ChEFT. The fits
to the lattice QCD data are discussed in Sec. III. Phase shifts,
cross sections, and low-energy parameters for the ��, ��,
and �N systems are shown in Sec. IV. We conclude with a
short summary and outlook in Sec. V.

II. BARYON-BARYON INTERACTIONS IN RELATIVISTIC
CHIRAL EFFECTIVE FIELD THEORY

ChEFT has been successfully applied to study low-energy
(octet) baryon-baryon interactions [34–39] since the pioneer-
ing work of Weinberg [40,41]. Compared to phenomeno-
logical models, ChEFT has three main advantages. First, it
has a deep connection with the underlying theory of the
strong interactions, QCD, particularly, chiral symmetry and
its breaking. Second, it employs a power counting scheme,
which enables one to improve calculations systematically.
As a result, one can estimate the uncertainty of the results.
In addition, multibaryon forces can be treated on the same
footing as two-body interactions. Recently, we explored a
relativistic ChEFT approach to study the NN [26] and YN
[29] interactions at LO, in which more relativistic effects were
taken into account in the potentials and scattering equation
than in the nonrelativistic ChEFT.

The main feature of the relativistic formalism is that the
complete baryon spinors are retained in the calculations:

uB ( p, s) = Np

(
1

σ · p
Ep+MB

)
χs, Np =

√
Ep + MB

2MB

, (1)

where Ep = √
p2 + M2

B , and MB is the averaged baryon
mass. Apparently, Lorentz invariance is maintained by such
a treatment. Details of the formalism can be found in
Refs. [26,29].

For the strangeness S = −2 sector, the LO potentials con-
sist of nonderivative four-baryon contact terms (CTs) and
one-pseudoscalar-meson exchanges (OPMEs). Fifteen inde-
pendent LECs appear in the CTs that have to be pinned down
by fitting to either experimental or lattice QCD data. Strict
SU(3) symmetry is imposed on the CTs and the coefficients of
OPMEs, which can be found in, e.g., Refs. [37,38]. However,
due to the mass difference of the exchanged mesons (π,K, η),
SU(3) symmetry is broken in the OPMEs. We have followed
the convention of Ref. [37] and our previous S = −1 work
[29] to redefine the LECs such as C��

1S0 , instead of using
the SU(3) representation such as C27

1S0. In addition to the 12
LECs already appearing in the S = −1 sector [29], 3 more
(independent) LECs, defined as

V ��→��
CT (1S0) = ξB

[
C4�

1S0

(
1 + R2

pR2
p′

) + Ĉ4�
1S0

(
R2

p + R2
p′

)]
, (2)

V ��→��
CT (3P1) = ξB

(− 4
3C4�

3P 1RpRp′
)
, (3)

appear in the S = −2 sector. Here ξB = N2
pN2

p′ , Rp = | p|/(Ep + MB ), and Rp′ = | p′|/(Ep′ + MB ). To obtain the scattering

amplitude T
νν ′,J
ρρ ′ , the coupled-channel Kadyshevsky equation is solved:

T
νν ′,J
ρρ ′ (p′, p;

√
s) = V

νν ′,J
ρρ ′ (p′, p) +

∑
ρ ′′,ν ′′

∫ ∞

0

dp′′p′′2

(2π )3

MB1,ν′′ MB2,ν′′ V
νν ′′,J
ρρ ′′ (p′, p′′) T

ν ′′ν ′,J
ρ ′′ρ ′ (p′′, p;

√
s)

E1,ν ′′E2,ν ′′ (
√

s − E1,ν ′′ − E2,ν ′′ + iε)
, (4)

where V
νν ′,J
ρρ ′ is the interaction kernel which consists of CTs

and OPMEs,
√

s is the total energy of the baryon-baryon sys-
tem in the center-of-mass frame, and En,ν ′′ = √

p′′2 + M2
Bn,ν′′

(n = 1 and 2), where MBn,ν′′ are the baryon masses in the
intermediate state. The labels ρ, ρ ′, and ρ ′′ denote the partial
waves, and ν, ν ′, and ν ′′ denote the particle channels. The
Coulomb interaction is not considered in the present work
due to the lack of near-threshold data and because it would
require a complicated treatment. This is consistent with the
lattice QCD simulations [2]. To avoid ultraviolet divergence
in solving the scattering equation, the chiral potentials are
multiplied by an exponential form factor,

f�F
(p, p′) = exp

[
−

(
p

�F

)4

−
(

p′

�F

)4]
, (5)

with a cutoff value of �F = 600 MeV.1 Note that the cutoff
function is not yet in an explicitly covariant form. For a
relevant discussion, see, e.g., Refs. [26,27].

III. A FIT TO THE LATTICE QCD RESULTS

Recently the HAL QCD Collaboration performed simula-
tions for the strangeness S = −2 baryon-baryon systems with
almost physical pion masses (mπ = 146 MeV) [2]. The so-
called HAL QCD approach [12,13] is employed to extract the

1We have chosen the value of �F that can best describe the
strangeness S = −1 YN scattering data [29], though acceptable
fits to the data can be obtained with a cutoff ranging from 550 to
800 MeV in that sector (see Ref. [31] for more discussions). We leave
a careful study of the cutoff dependence of the results in the S = −2
sector to a future study once more precise data become available.
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TABLE I. Lattice QCD data used in the fits and the corresponding independent LECs of the relativistic ChEFT approach.

Reaction I Partial wave Phase shifts Corresponding LECs

�� → �� 2 1S0 Ec.m. � 40 MeV [42] C��
1S0 , Ĉ��

1S0

�N → �N 0 3S1 Ec.m. � 40 MeV [42] C8a
3S1, Ĉ8a

3S1

�� → �� 0 1S0 Ec.m. � 20 MeV, 32 MeV � Ec.m. � 32.8 MeV [2]

�N → �N 0 1S0 32 � Ec.m. � 32.8 MeV [2] C��
1S0 , Ĉ��

1S0 , C4�
1S0, Ĉ4�

1S0

Inelasticity 0 1S0 32 � Ec.m. � 32.8 MeV [2]

potentials from the Nambu-Bethe-Salpeter wave functions
on the lattice. Although the resulting potentials should in
principle be independent of the measured time slice t , current
results show sizable dependence on the evolution time t ,
which should be regarded as the systematic uncertainty of
the lattice QCD simulation [42]. They obtained results for the
I = 2 �� 1S0 phase shifts, the I = 0 �N 3S1 phase shifts
[42], the I = 0 �� phase shifts, the �N 1S0 phase shifts,
and the inelasticity [2] using the effective ��-�N coupled
channels, instead of the full ��-�N -�� coupled channels.

In the present work, we fit these lattice QCD data [2,42]
to determine the relevant eight LECs of the CTs. The fits are
performed in the following steps.2

First, we fit to the lattice QCD I = 2 �� 1S0 phase
shifts with the center-of-mass energy Ec.m. � 40 MeV, where
Ec.m. = √

s − MB1 − MB2 . MB1 and MB2 are the baryon
masses of the channel with the lowest energy threshold. This
is a single-channel scattering and the two LECs C��

1S0 and Ĉ��
1S0

can be fixed. All results with t = 11–13 were used to estimate
the central value and the uncertainty of the phase shift at each
energy.

Second, the 3S1 partial wave of the I = 0 �N system is
treated in the same way. Note that in our convention the
relevant LECs are defined as

V �N→�N
CT,I=0 (3S1) = ξB

[
1
9

(
C��

3S1 − C��
3S1

)(
9 + R2

pR2
p′

)
+ 1

3

(
Ĉ��

3S1 − Ĉ��
3S1

)(
R2

p + R2
p′

)]
= ξB

[
1
9C8a

3S1

(
9 + R2

pR2
p′

) + 1
3 Ĉ8a

3S1

(
R2

p+R2
p′

)]
.

(6)

In this case only the two combinations of those four relevant
LECs can be pinned down, namely, C8a

3S1 and Ĉ8a
3S1. For the

LECs (or the combinations of LECs) that contribute to the
SU(3) structures 10 and 10∗ in the 3S1 partial waves, we
have taken their values from the S = −1 sector via SU(3)
symmetry [29].

Six LECs appear in the spin-singlet ��-�N -�� coupled
channels, C��

1S0 , Ĉ��
1S0 , C��

1S0 , Ĉ��
1S0 , C4�

1S0, and Ĉ4�
1S0, but two of

them, C��
1S0 and Ĉ��

1S0 , have been fixed from the I = 2 ��
1S0 phase shifts as described above. Unlike the I = 2 �� 1S0

2The relevant masses and coupling constants are fixed at mπ =
146 MeV, mK = 525 MeV, mN = 958 MeV, m� = 1140 MeV,
m� = 1223 MeV, and m� = 1354 MeV [2]. In addition, we
have used D + F = gA = 1.277, F/(F + D) = 0.4, and f0 � fπ =
92.2 MeV [29].

and I = 0 �N 3S1 cases, the lattice QCD data on the I = 0
�� and �N phase shifts obtained at various time t look
rather different. A resonant �� state (a quasibound �N state
below the threshold) is found with the t = 9, 10, and 11 lattice
QCD data, but not with the t = 12 data. Therefore, we have
performed separate fits to the lattice QCD data obtained at
different t ranging from 9 to 12. The low-energy �� 1S0 phase
shifts with Ec.m. � 20 MeV, the �� and �N phase shifts, and
the inelasticity with 32 � Ec.m. � 32.8 MeV are taken into
account. Because the �N quasibound state appears very close
to the �N threshold at Ec.m. = 32 MeV with mπ = 146 MeV,
the near-threshold data are included.

We summarize the details of the lattice QCD data used and
the corresponding LECs in Table I. The values of the S-wave
LECs are listed in Table II. The LEC C4�

3P 1 in the 3P1 partial
wave of the �� → �� reaction is not determined by this
analysis, but it contributes to the ��- and �−p-induced cross
sections. We temporarily set C4�

3P 1 = 0 for the calculation of
the cross section, assuming that the low-energy cross section
is dominated by the S-wave contribution.

IV. RESULTS AND DISCUSSION

A. The I = 2 �� 1S0 phase shifts

In Fig. 1, we show the I = 2 �� 1S0 phase shifts. The
dashed lines are the fitted results with mπ = 146 MeV. We
obtained a χ2/DOF = 0.08 after the fits, which indicates a
good description of the lattice QCD data. The solid lines
are the extrapolations to the physical pion mass, with the
isospin symmetry being assumed for the hadron masses. The
extrapolations were done by only changing the hadron masses
to their physical values, but keeping the coupling constants F ,
D, and f0 and the other LECs fixed.

TABLE II. LECs for the S-wave contact terms (in units of
104 GeV−2). The 3S1 LECs are decomposed with the help of the
S = −1 scattering data [29], assuming SU(3) symmetry.

C��
1S0 Ĉ��

1S0 C��
1S0 Ĉ��

1S0 C4�
1S0 Ĉ4�

1S0

−0.0418 0.1726
t = 9 −0.0154 0.0041 −0.0088 0.3570
t = 10 −0.0183 0.0977 −0.0134 0.6544
t = 11 −0.0202 −0.0482 −0.0038 0.8982
t = 12 0.0157 0.6119 0.1709 −0.1982

C��
3S1 Ĉ��

3S1 C��
3S1 Ĉ��

3S1 C��
3S1 Ĉ��

3S1

0.0137 0.9261 0.0872 −0.4132 0.0230 0.2880
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FIG. 1. Phase shifts of the I = 2 �� 1S0 partial wave. The
dashed line denotes the result with mπ = 146 MeV and the solid line
denotes the result with mπ = 138 MeV.

For the �� 1S0 channel, the phase shifts at the low-energy
region are positive, indicating that the attractions are weak, but
at the high-energy region the interactions become repulsive.
In the SU(3) basis, the 1S0 partial waves of �� (I = 2),
�N (I = 3/2), and NN (I = 1) all belong to the same
representation of 27. However, the maximum value of the
phase shifts are about 10◦ for the �� system, 40◦ for the �N
system [29], and 60◦ for the NN system [26]. This clearly tells
us that the 27 SU(3) representation is becoming less attractive
with the increase of the strangeness. On the other hand, we
checked that a simultaneous fit of the �+p cross sections and
the lattice �� 1S0 phase shifts failed, similar to the attempt
at a combined fit of NN and strangeness S = −1 YN data
[29]. As a result, we conclude that SU(3) symmetry-breaking
effects should be included if one wishes to simultaneously
describe the systems with different strangeness, as also
discussed in Ref. [38]. We note that the extrapolation to the
physical point only causes minor changes of the phase shifts.

0 20 40 60 80 100
-10

0

10

20

30

Ec.m. (MeV)

 (d
eg

re
es

)

N 3S1 (I=0)

t = 11 - 13
m  = 146 MeV
m  = 138 MeV

FIG. 2. Phase shifts of the I = 0 �N 3S1 partial wave. The
dashed line denotes the result with mπ = 146 MeV and the solid line
denotes the result with mπ = 138 MeV.

B. The I = 0 �N 3S1 phase shifts

The �N 3S1 phase shifts are shown in Fig. 2, with a fitted
χ2/DOF = 2.68. The relativistic ChEFT can describe the
low-energy lattice data well, but not those of high energies.
Namely, lattice data show that the phase shift turns negative
at high energies [42], which is not reproduced in the present
study. It seems that higher-order chiral potentials are needed
in this channel to provide enough repulsion at high energies.
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FIG. 3. I = 0 �� and �N 1S0 phase shifts and the inelasticity
with mπ = 146 MeV and t = 9–12. The inelasticity η is defined as
Sii = ηe2iδi .
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FIG. 4. I = 0 �� and �N 1S0 phase shifts and the inelasticity
with mπ = 146 MeV (dashed lines) and mπ = 138 MeV (solid lines)
and with t = 9 (a–c) and t = 10 (d–f).

In this channel, the phase shifts remain almost the same after
the chiral extrapolation to the physical point as well.

C. The ��-�N-�� 1S0 phase shifts

As for the ��-�N -�� coupled-channel, which is im-
portant for the study of the H dibaryon, we can obtain a
good description of the lattice QCD data on the �� and
�N phase shifts and the inelasticity for each t = 9, 10, 11,
and 12, with the corresponding χ2/DOF = 0.42, 0.11, 0.30,
and 0.01, respectively. The results are shown in Fig. 3. The
sharp resonant state of �� (the quasibound state of �N ) is
well reproduced for t = 9–11. However, the extrapolations
to the physical pion mass look quite different for t = 9–12,
as shown in Figs. 4 and 5. The sharp resonance remains
with t = 9 and t = 11, but it disappears with t = 10. For the
case of t = 12, a quasibound state appears in the �N system
after the extrapolation, while the quasibound state is absent at
mπ = 146 MeV. Note that the �N threshold has changed after
the extrapolation, because the baryon masses changed as well.
The origin of this difference of the extrapolation is discussed
in Sec. IV D. We have also calculated the �� scattering
lengths in the physical region with t = 9–12 and found that
they are consistent with the analyses from the hypernuclear
experiments and the analysis of the two-particle correlations
in heavy-ion collisions [43–54], as shown in Table III.
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FIG. 5. I = 0 �� and �N 1S0 phase shifts and the inelasticity
with mπ = 146 MeV (dashed lines) and mπ = 138 MeV (solid lines)
and with t = 11 (g–i) and t = 12 (j–l).

D. The �N quasibound state

Our above study showed that the existence of the �N
quasibound state (the H dibaryon) is a quite delicate issue.
To understand the different behavior of the extrapolation,
we show the inverse of the 1S0 scattering length of the �N
channel multiplied with i, i.e., i/a�N , in Fig. 6. Because
�N is not the coupled channel with the lowest threshold,
the scattering length a�N is, in general, complex due to the
decay to the �� channel. When |a�N | is much larger than
the typical length scale of the strong interaction ∼1 fm,
i/a�N represents approximately the pole position of the �N
scattering amplitude in the complex momentum plane. If Im
(i/a�N ) > 0, then the pole is in the first Riemann sheet of the
complex energy plane, indicating that the �N system has a
quasibound state.

One can see that for t = 9 and 10, the evolution from
mπ = 146 MeV to the physical pion mass is similar. The value
of the imaginary part decreases and finally becomes negative

TABLE III. Physical �� 1S0 scattering length with t = 9–12 (in
units of fm).

t = 9 t = 10 t = 11 t = 12 Expt. analyses [43–54]

a��
1S0 −0.49 −0.60 −0.67 −1.44 −1.87 ∼ −0.5
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FIG. 6. Inverse of the 1S0 scattering length of the I = 0 �N

channel as a function of the pion mass.

for t = 10 when extrapolated to the physical region, which
corresponds to the disappearance of the quasibound state in
the �N system. Im (i/a�N ) < 0 indicates that the pole is in
the second Riemann sheet of the �N channel, which is not the
most adjacent sheet to the physical scattering axis, and hence
the structure is not directly visible in observables. While for
t = 11 and 12, the trend is the opposite. In both cases, the
imaginary part of i/a�N increases, and a quasibound state
appears in the physical region. Especially for t = 12, the scale
of the movement is relatively larger compared with the other
three cases. Such a behavior originates from the values of
the LECs with t = 12, e.g., the magnitudes of Ĉ��

1S0 and C4�
1S0

are larger than those with t = 9–11, as shown in Table II. In
this way, the fate of the quasibound state in the extrapolation
procedure is very sensitive. Even small changes of the inverse
scattering length at mπ = 146 MeV can result in completely
different behavior at the physical point.

The above calculations are performed in the isospin basis,
where it is a ��-�N -�� coupled channel with a common
baryon mass being used for each isospin multiplet. If we
consider isospin symmetry-breaking effects in the baryon
masses, we should calculate them in the ��-�0n-�−p-�0�-
�0�0-�−�+ coupled channels. In Fig. 7 we compare the ��
1S0 phase shifts obtained with or without isospin symmetry for
the baryon masses. Note that with the physical baryon masses,
the threshold energy of �0n is different from that of �−p, and
there appear two threshold cusps around Ec.m. ≈ 25 MeV. It
can be seen that those sharp resonant states have disappeared
if the isospin symmetry-breaking effects are included. Only
for the t = 12 case does the resonant state appear at the �0n
threshold, which corresponds to a quasibound state of the �0n
system.

We summarize the different scenarios for the existence of
a �N bound state in Table IV. The results are based on the
fits to the central values of the lattice QCD data. It can be
seen that the quasibound state in the �N system is extremely
sensitive to the lattice QCD data fitted, to the pion mass, and
to the isospin symmetry-breaking effects. We note that the
strong sensitivity of the behavior of the phase shift around the
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FIG. 7. �� 1S0 phase shifts with isospin-averaged baryon
masses (a) and with physical baryon masses (b).

�N threshold with respect to the isospin symmetry-breaking
effect was also discussed in Ref. [38]. However, the ��

scattering length remains almost the same with or without
isospin symmetry-breaking effects taken into account.

In our study, we have also taken into account the statistical
errors of the lattice QCD results. In principle, the lattice QCD
simulations are more reliable as the time t increases, but
the uncertainties increase as well. To balance reliability and
accuracy, we chose the case of t = 10 to study the extrapola-
tions taking into account uncertainties. The previous fits were
performed using the central values of the �N lattice QCD
phase shifts with 32 � Ec.m. � 32.8 MeV. We have also fitted
to the upper bound and lower bound of the lattice QCD results
of the �N channel.3 The near-threshold �N phase shifts at
mπ = 146 MeV, at the physical point and the extrapolations
of i/a�N for all the three cases are shown in Fig. 8. These
results show that as the �N 1S0 phase shifts at mπ = 146 MeV
decrease, the slope of the trajectories with the extrapolation
becomes smaller. In particular, if we use the lower bound of
the �N lattice QCD phase shifts at t = 10, the quasibound
state survives in the physical region.

3Please refer to Fig. 2(b) of Ref. [2].
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TABLE IV. Summary of the �N quasibound state in different scenarios. The big circle © represents the existence of the quasibound state.

Lattice data t = 9 t = 10 t = 11 t = 12

mπ = 146 MeV © © ©
mπ = 138 MeV with isospin-averaged baryon masses © © ©
Physical hadron masses ©

E. Cross sections and low-energy parameters

Finally we compare our results with the available experi-
mental data. We note that the cross sections calculated using
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FIG. 8. Near-threshold �N 1S0 phase shifts with mπ = 146 MeV
(a), mπ = 138 MeV (b), and the extrapolations of i/a�N (c) with
I = 0 at t = 10 within the lattice QCD error bands.

the relevant LECs determined with the t = 9 and t = 10
lattice QCD data are more consistent with their experimental
counterparts than those obtained with the t = 11 and t = 12
lattice QCD data. Following the preceding paragraph, we
study the case of t = 10 in this sector. In Fig. 9, we show
the ��- and �−p-induced cross sections with the statistical
errors discussed previously taken into account. The cross
sections are calculated with all the partial waves with total
angular momentum J � 2. The experimental data are taken
from Refs. [55,56]. One can see that our results are consistent
with the scattering data, although the latter has a sizable
uncertainty. Such a comparison shows that the lattice QCD
data (in particular, those obtained with t = 10), the relativistic
ChEFT approach, and the experimental data are in general
consistent with each other.

In Table. V, we summarize the scattering lengths and ef-
fective ranges for various channels with the LECs determined
by fitting to the t = 10 lattice QCD data. For the sake of
comparison, we show as well the next-to-leading order (NLO)
and LO [37] heavy-baryon (HB) ChEFT [38] results obtained
with a cutoff of �F = 600 MeV, those of the NSC97f model
[57], and those of the fss2 model [44]. Note that the Coulomb
force is considered in the latter two approaches. The results
from different approaches are rather scattered. Clearly, more
experimental information is needed to further constrain the
S = −2 baryon-baryon interactions.
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FIG. 9. ��- and �−p-induced cross sections with the LECs
obtained by fitting to the t = 10 lattice QCD data. The experimental
data are taken from Refs. [55,56]. The grid bands in �−p → ��

and �−p → �−p reactions show the upper limits from Ref. [55].
Plab. denotes for the laboratory momentum of � (a) or �− (b–d).
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TABLE V. Predicted scattering lengths a and effective ranges r for various channels. The results obtained from HB ChEFT at NLO [38]
and LO [37] with cutoff �F = 600 MeV, the NSC97f model [57], and the fss2 model [44] are also shown for the sake of comparison. Note
that the Coulomb force is considered in the latter two approaches.

Channel This work HB NLO [38] HB LO [37] NSC97f [57] fss2 [44]

�+�+ a�+�+
1S0 − 0.80 − 1.83 − 7.76 6.98 − 9.72

r�+�+
1S0 13.3 6.05 2.00 1.46 2.26

�0p a
�0p
1S0 0.45 0.34 0.19 0.40 0.33

r
�0p
1S0 − 4.55 − 7.07 − 37.7 − 8.94 − 9.23

a
�0p
3S1 − 0.09 0.02 − 0.00 − 0.03 − 0.20

r
�0p
3S1 72.5 1797 >104 912 27.4

�� a��
1S0 − 0.60 − 0.66 − 1.52 − 0.35 − 0.81

r��
1S0 3.73 5.05 0.59 14.7 3.80

�0n a�0n
3S1 − 0.14 − 0.26 − 0.25

r�0n
3S1 − 14.0 5.26 − 8.27

It is interesting to compare our results with those of the
NLO HB approach [38]. In particular, the scattering lengths
of the �+�+ channel are rather different, but those of the ��

channel are quite similar, as shown in Table V. We note that in
Ref. [38] they have fitted to the pp phase shifts and the �+p
cross sections to fix the relevant LECs in the S-wave con-
tact terms with SU(3) symmetry-breaking effects taken into
account and then made predictions for the �+�+ channel.
Our study shows that the lattice QCD data seem to prefer a
�+�+ attraction weaker than that predicted by the NLO HB
approach, indicating that the suppression of the attraction as
one adds more strangeness into the system may be larger than
that considered in Ref. [38] (see also the discussion in Sec.
IV A). Note that our results for the �+�+ channel are not
dependent on t . On the other hand, the similar results for the
�� channel can be easily understood. The NLO HB approach
fixed the relevant LECs by the empirical value of the ��

scattering length within the range of −1 ∼ −0.5 fm, while
our fits to the lattice QCD data also yield a a��

1S0 consistent
with its empirical value (see Table III).

V. SUMMARY AND OUTLOOK

Recent progress in lattice QCD simulations provides us
an unprecedented opportunity to better understand baryon-
baryon interactions that play an important role in studies
of hypernuclear and astronuclear physics. In particular, sup-
plementary information on hyperon-nucleon(hyperon) inter-
actions (to scarce experimental data) is key to understand-
ing many important issues of current interest, such as the
existence of H, �N [58], and �� [59] dibaryons and the
internal structure of neutron stars. Nevertheless, present lattice
QCD simulations still suffer sizable systematic uncertainties

originating from unphysical pion masses as well as coupled-
channel effects. Careful studies of such effects are urgently
needed to fully utilize the state-of-the-art lattice QCD simu-
lations to advance our understanding of the nonperturbative
strong interaction.

In the present work, we have studied the strangeness S =
−2 baryon-baryon interactions in relativistic chiral effective
field theory at leading order. The latest lattice QCD data of
the HAL QCD Collaboration were used to fix the relevant
low-energy constants. We obtained a good description of the
lattice QCD results (with perhaps the exception of the high-
energy I = 0 �N 3S1 phase shifts). Extrapolations from mπ =
146 MeV to the physical region were made. The behavior of
the �N system was found to be very sensitive to the lattice
QCD data fitted. In addition, our results can describe the
available experimental data very well, which show the overall
consistency among lattice QCD simulations, the relativistic
chiral effective field theory, and the experimental data.
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