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The Monte Carlo (MC) procedure for sampling the hadron yields within the hadron resonance gas (HRG)
model is presented. The effects of excluded volume due to the finite hadron eigenvolumes and of exact charge
conservation within the canonical ensemble (CE) formulation are simultaneously taken into account with the
help of the importance sampling technique combined with the rejection sampling. The MC procedure allows
one to calculate arbitrary moments of the event-by-event hadron yields. Note that the CE formulation for the
excluded-volume HRG has not been considered before. The MC simulations coincide with the known analytic
results in the thermodynamic limit for the excluded-volume HRG in the grand canonical ensemble and for the
CE of noninteracting particles. The MC procedure is applied to study the simultaneous excluded-volume and
CE effects. These effects are considered within the full HRG to calculate the particle number fluctuations and to
estimate the finite-size effects.
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I. INTRODUCTION

The hadron resonance gas (HRG) model denotes a class of
popular simple models used to describe the thermodynamic
properties of QCD in the region of temperature and baryon
chemical potential where the hadronic degrees of freedom
dominate. The HRG models give rather successful descrip-
tions of different heavy-ion hadron yield data over a wide
range of collision energies [1–9]. The HRG models have also
been compared to and validated through the lattice QCD data,
both for the thermodynamical functions of the hadron systems
[10,11] and for fluctuations and correlations of the conserved
charges [12,13].

In its simplest form, the HRG system can be modeled
as a multicomponent gas of noninteracting hadrons and res-
onances. One usually refers to such a model as the ideal
HRG (I-HRG) model. It is argued [14] that by including
resonances into the model, one can effectively include the
interaction between the hadrons. Short-range repulsive inter-
actions are usually considered within the excluded-volume
(EV) approach. The thermodynamically consistent procedure
to include hadron eigenvolumes was developed in Ref. [15],
and was often used in fits of the HRG model of chemical
freeze-out properties [16–19], as well as for comparisons to
lattice QCD data [20–25]. The importance of the excluded-
volume effects in a gas of glueballs in the Yang-Mills theory
was recently pointed out as well [26]. Most analyses which
employ the excluded-volume HRG assume that all hadrons
have the same eigenvolumes. However, the eigenvolume ef-
fects essentially cancel out in the hadron yield ratios and,
thus, cannot affect the fit quality or the extracted values
of the intensive chemical “freeze-out parameters,” such as
temperatures or chemical potentials. Recently it has been

pointed out that thermal fits are extremely sensitive to the
choice of different hadron eigenvolumes for different hadrons
[27,28]. If different mass-volume relations for strange and
nonstrange hadrons are employed, a remarkable improvement
of the fit quality of hadron yield data can be achieved over
a large range of collision energies [29]. These eigenvolume
HRG models are therefore particularly interesting.

Conserved charges are conserved only on average in the
grand canonical ensemble (GCE), but differ from one mi-
croscopic state to another. The exact conservation of the
conserved charges becomes important for smaller systems.
Such exact conservation of charges can be enforced within the
canonical ensemble (CE) [30]. The CE formulation of the I-
HRG was successfully used to describe the hadron production
data in small systems, such as (anti)proton-proton and e+e−
collisions [9,31–34]. The CE strongly influences the strange
[35] and charm [36] hadron multiplicities, as the average total
numbers of strange and charm charges are often not large (of
the order of unity or smaller). It should be also noted that
for systems of noninteracting particles the CE effects lead
to noticeable suppression of particle number fluctuations for
statistical systems even in the thermodynamic limit [37,38].

To the best of our knowledge, the CE formulation for
the excluded-volume HRG is presently missing. Thus, the
influence of EV effects on the thermodynamic properties
within the CE was never explored. In the present paper a
Monte Carlo (MC) procedure is proposed which allows doing
exactly that.

The paper is organized as follows. Different versions of
the excluded-volume models are considered in the GCE and
the CE in Secs. II and IV B, respectively. In Sec. IV the MC
procedure is developed to calculate the moments of particle
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number distributions for the excluded-volume models, both in
the GCE and CE. Section V presents the numerical results,
and Sec. VI summarizes the paper.

II. EXCLUDED-VOLUME MODELS IN THE GCE

Our consideration will be restricted to the case of classical
(Boltzmann) statistics. It is useful to define the single-particle
function

zi (T ) = gi

2π2

∫ ∞

0
k2dk exp

[
−

(
k2 + m2

i

)1/2

T

]
, (1)

where gi and mi are the ith particle degeneracy factor and
mass, respectively, and T is the system temperature. In the
single-component system the ideal gas GCE partition function
reads (zi ≡ z)

Zid (V, T , μ) =
∞∑

N=0

exp

(
μN

T

)
(z V )N

N !
= exp(eμ/T z V ),

(2)

where V is the total volume of the system and μ is the chemi-
cal potential. The number of particles N is fixed in the CE, and
has the Poisson distribution P (N ) = 〈N〉N exp(−〈N〉)/N !‘
in the GCE with average value 〈N〉 = exp(μ/T )zV .

A. van der Waals excluded-volume model

In the van der Waals excluded-volume model (vdW-EV)
the volume V is substituted by the available volume Vav =
V − vN , where v = 16πr3/3 is the eigenvolume parameter
and r is the effective hadron radius parameter. This results in
the following GCE partition function:

ZEV(V, T , μ) =
∞∑

N=0

exp

(
μN

T

)
(V − vN )N

N !
θ (V − vN )zN,

(3)

where the θ function ensures that the sum of eigenvolumes of
the particles does not exceed the total system volume. In the
thermodynamic limit, i.e., when V → ∞, the system pressure
is calculated as [15]

P (T ,μ) ≡ T
∂ lnZEV

∂V

V →∞� T

V
lnZEV = P id (T ,μ∗),

μ∗ = μ − v P (T ,μ), (4)

where P id (T ,μ) = T nid(T ,μ) = exp (μ/T )T z is the GCE
pressure of the ideal gas, and nid is the ideal gas particle
number density. The particle number density in the EV model
can be calculated as

n(T ,μ) ≡
(

∂P

∂μ

)
T

= nid (T ,μ∗)

1 + v nid (T ,μ∗)
. (5)

In the GCE one finds that the particle number N fluctuates
around its average value 〈N〉 = V n. A useful measure of the
particle number fluctuations is the scaled variance ω[N ]. It
was calculated analytically in Ref. [39]:

ω[N ] ≡ 〈N2〉 − 〈N〉2

〈N〉 = (1 − vn)2; (6)

see also Ref. [40]. Note that analytical expressions in Eqs. (4)–
(6) are obtained in the thermodynamic limit V → ∞. At v = 0
they are reduced to the ideal gas expressions. In particular,
the particle number distribution P (N ) is transformed to the
Poisson distribution with ω[N ] = 1.

B. Carnahan-Starling model

One can go beyond the standard vdW-EV procedure. The
Carnahan-Starling (CS) model [41] leads to a better consis-
tency with the equation of state for classical system of hard
spheres. This model has recently been applied to hadronic
systems [42–44]. The GCE partition function in the CS model
can be written as

ZCS(V, T , μ) =
∞∑

N=0

exp

(
μN

T

)
exp

(
− (4 − 3η)η

(1 − η)2
N

)

× (V z)N

N !
θ

(
V − 1

4
vN

)
, (7)

where η = v N/(4V ) is the packing fraction.
In the thermodynamic limit the pressure is

P (T , n) = T n
1 + η + η2 − η3

(1 − η)3
. (8)

The GCE particle number density n(T ,μ) and scaled
variance ω[N ] can be calculated in the framework of the
thermodynamic mean field approach [42,45,46]

n(T ,μ) = nid

[
T ,μ − T

(
3 − η

(1 − η)3
− 3

)]
, (9)

ω[N ] ≡ T

n

(
∂n

∂μ

)
T

= (1 − η)4

(1 − η)4 + 8 η (1 − η/4)
. (10)

In what follows we consider both the CS and vdW-EV ap-
proaches in order to demonstrate the flexibility of our MC
procedure with regards to the variations in the EV mechanism.

C. Diagonal eigenvolume model

The single-component vdW-EV model was generalized
to the multicomponent case in Ref. [16]. It was assumed
that the available volume is the same for each hadron and
equals the total volume minus the sum of the eigenvol-
umes of all hadrons in the system. The GCE partition func-
tion has then the following form for the f hadron species
(i, j = 1, . . . , f ):

ZDE(V, T , μ1, . . . , μf )

=
∞∑

N1=0

· · ·
∞∑

Nf =0

f∏
i=1

exp

(
μiNi

T

)

×
[
(V − ∑

j vjNj ) zi

]Ni

Ni!
θ

⎛
⎝V −

∑
j=1

vjNj

⎞
⎠. (11)

We refer to Eq. (11) as the diagonal eigenvolume (DE) model.
It gives a simple expression for the pressure as a function of
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temperature and hadron densities in the thermodynamic limit:

P (T , n1, . . . , nf ) = T

f∑
i=1

ni

1 − ∑
j vjnj

, (12)

where the sums go over all types of particles included in the
model, and where vi = 16πr3

i /3. In the GCE one has to solve
one nonlinear equation for the pressure,

P (T ,μ1, . . . , μf ) =
f∑

i=1

P id
i (T ,μ∗

i ),

μ∗
i = μi − vi P (T ,μ). (13)

The GCE number densities are then calculated as

ni (T ,μ1, . . . , μf ) = nid
i (T ,μ∗

i )

1 + ∑
j vj nid

j (T ,μ∗
j )

. (14)

The DE model (12)–(14) is the most commonly used one
in the thermal model analysis. For f = 1, the DE model
is reduced to the vdW-EV model and reproduces correctly
the second virial coefficient for the system of hard spheres.
However, the DE model does not treat correctly the cross-
terms in the virial expansion of the multicomponent gas of
hard spheres.

D. Nondiagonal eigenvolume model

In order to get consistency with the virial expansion for
a multicomponent system of hard spheres we use the model
proposed in Refs. [28,47]. The GCE partition function in this
model reads

ZNDE(V, T , μ1, . . . , μf )

=
∞∑

N1=0

· · ·
∞∑

Nf =0

f∏
i=1

exp

(
μiNi

T

)[
(V − ∑

j b̃j iNj ) zi

]Ni

Ni!
θ

×
⎛
⎝V −

∑
j=1

b̃j iNj

⎞
⎠, (15)

where

b̃ij = 2 bii bij

bii + bjj

, bij = 2π

3
(ri + rj )3, (16)

with bij being the components of the symmetric matrix of the
second virial coefficients [48]. We refer to the model given
by Eqs. (15) and (16) as the nondiagonal eigenvolume (NDE)
model.1

The pressure of the NDE model has the following form in
the thermodynamic limit:

P (T , n1, . . . , nf ) =
f∑

i=1

Pi = T

f∑
i=1

ni

1 − ∑
j b̃j inj

, (17)

where the Pi quantities can be regarded as “partial” pressures.
In the GCE formulation one has to solve the following system
of nonlinear equations for Pi :

Pi = P id
i

⎛
⎝T ,μi −

f∑
j=1

b̃ij Pj

⎞
⎠, i = 1, . . . , f, (18)

Hadronic GCE densities ni can then be recovered by solving
the system of linear equations connecting ni and Pi :

T ni + Pi

f∑
j=1

b̃j inj = Pi, i = 1, . . . , f. (19)

III. CANONICAL ENSEMBLE

In the CE, the conserved charges are conserved in each
microscopic state of the system. This can be achieved by
adding the corresponding Kronecker delta functions in the
GCE partition function. For the four EV models described
in the previous section one has the following CE partition
functions:

ZEV(V, T ,N ) = (V − vN )N

N !
zNθ (V − vN ), (20)

ZCS(V, T ,N ) = 1

N !

[
zV exp

(
− (4 − 3η)η

(1 − η)2

)]N

θ

(
V − 1

4
vN

)
, (21)

ZDE(V, T , {Q}) =
∞∑

N1=0

· · ·
∞∑

Nf =0

f∏
i=1

[(
V − ∑

j vjNj

)
zi

]Ni

Ni!
θ

⎛
⎝V −

∑
j

vjNj

⎞
⎠ c∏

k=1

δ

⎛
⎝Qk −

∑
j

q
(j )
k Nj

⎞
⎠, (22)

ZNDE(V, T , {Q}) =
∞∑

N1=0

· · ·
∞∑

Nf =0

f∏
i=1

[(
V − ∑

j b̃j iNj

)
zi

]Ni

Ni!
θ

⎛
⎝V −

∑
j

b̃j iNj

⎞
⎠ c∏

k=1

δ

⎛
⎝Qk −

∑
j

q
(j )
k Nj

⎞
⎠. (23)

1In Ref. [28] it is called the “Crossterms” EV model.
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In Eqs. (22) and (23) for multicomponent systems, {Q} =
Q1, . . . ,Qc are the set of conserved charges and q

(j )
k is the

kth charge of the particle species j . For a single-component
case there we identify the single conserved charge Q with the
particle number N , i.e., Q ≡ N .

For the ideal gas, i.e., for vi ≡ 0 in (22) or b̃ij ≡ 0 in (23),
the thermodynamic properties can be calculated analytically
[37]. To our knowledge, no approach has been developed to
calculate the moments of the multiplicity distribution for the
EV models in the CE formulation of HRG.

IV. MONTE CARLO APPROACH

A. Grand canonical ensemble

The GCE partition functions listed in Sec. II determine
the probability distribution of particle numbers at given val-
ues of the thermodynamic parameters for the corresponding
excluded-volume models. In most general case, the proba-
bility of having a microstate with a set of particles numbers
(N1, . . . , Nf ) has the form

P (N1, . . . , Nf ; V, T , {μQ}) ∝ F (N1, . . . , Nf ; V, T , {μQ})

×�(N1, . . . , Nf ; V ), (24)

where �(N1, . . . , Nf ; V ) ensures that only the microstates
where the sum of all proper particle eigenvolumes does not
exceed the total volume of the system are considered, and
{μQ} ≡ μ1, . . . , μc corresponds to the independent chemical
potentials which regulate the conserved charges Q1, . . . , Qc

in the system. The function F (N1, . . . , Nf ; V, T , {μQ}) is a
smooth function of particle numbers within the domain of
allowed microstates. The chemical potential of ith particle
species is

μi =
c∑

k=1

q
(i)
k μk, (25)

where q
(i)
k is the kth charge of the ith particle. In the HRG the

number of conserved charges is normally much smaller than
the number of particle species (i.e., c 
 f ). It is evident that
F is defined up to a multiplicative factor which may depend
on thermodynamic variables but is independent of the particle
numbers.

Both the F and � functions are well defined for the models
listed in Sec. II:

FEV(N ; V, T , μ) =
[
(V − vN ) z eμ/T

]N

N !
, (26)

�(N ; V ) = θ (V − vN ); (27)

FCS(N ; V, T , μ) = 1

N !

[
zV exp

(
− (4 − 3η)η

(1 − η)2

)
eμ/T

]N

, (28)

�(N ; V ) = θ

(
V − 1

4
vN

)
; (29)

FDE(N1, . . . , Nf ; V, T , {μQ}) =
f∏

i=1

[(
V − ∑

j vjNj

)
zi e

μi/T
]Ni

Ni!
, (30)

�(N1, . . . , Nf ; V ) = θ

⎛
⎝V −

∑
j

vjNj

⎞
⎠; (31)

FNDE(N1, . . . , Nf ; V, T , {μQ}) =
f∏

i=1

[(
V − ∑

j b̃j iNj

)
zi e

μi/T
]Ni

Ni!
, (32)

�(N1, . . . , Nf ; V ) =
f∏

i=1

θ

⎛
⎝V −

∑
j

b̃j iNj

⎞
⎠. (33)

In the ideal gas limit the probability P (24) is reduced to a product of the f independent Poisson distributions, i.e., P ∝ �,
where

�({Ni}; V, T , {μQ}) =
f∏

i=1

〈Ni〉Ni

Ni!
e−〈Ni 〉. (34)

The probability function P (24) cannot be decomposed into a product of independently distributed variables in the presence of
finite eigenvolumes in a multicomponent system. Thus, a straightforward sampling of particle numbers looks problematic. To
avoid this problem we rewrite the probability P (24) in the following form

P ({Ni}; V, T , {μQ}) ∝ F ({Ni}; V, T , {μQ})

�({Ni}; V, T , {μQ})
× �({Ni}; V, T , {μQ}) × �({Ni}; V ), (35)
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where �({Ni}; V, T , {μQ}) is an auxiliary function, taken
in the form of Eq. (34) with Poisson rate parameters 〈Ni〉
which can, in general, be chosen arbitrarily and differently
for different values of V , T , and {μQ}. The Monte Carlo
(MC) sampling of the particle numbers can be then performed
with the help of the importance sampling technique (see, e.g.,
[49]). In practical calculations, the parameters 〈Ni〉 should be
chosen in a way so that the auxiliary distribution � resembles
the true distribution F as closely as possible. This helps
to avoid oversampling of the “unimportant” low-probability
regions and makes the statistical convergence faster. In our
calculations we will utilize the multi-Poisson distribution in
Eq. (34) with parameters 〈Ni〉 calculated within the corre-
sponding analytic models defined in Sec. II. Of course, it is
also possible to use an auxiliary distribution which is different
from the multi-Poisson distribution in Eq. (34), especially if it
improves the statistical convergence.

Denoting the ratio F/� as a weight w, the probability
distribution can be written

P ({Ni}; V, T , {μQ}) ∝ w({Ni}; V, T , {μQ})

×�({Ni}; V, T , {μQ}) ×�({Ni}; V ).

(36)

The MC sampling procedure includes the following steps:

(1) Sample the numbers (N1, . . . , Nf ) from the auxiliary
multi-Poisson distribution � (34).

(2) If the indicator function � (24) fails for the sampled
numbers, then reject the event and go back to the first
step. If � passes, then go to the next step.

(3) Calculate the weight w = F/� and accept the event
with this weight.

(4) Go back to step 1 to generate a new event, or terminate
the procedure if the desired number of the generated
events is achieved.

Let us have l = 1, . . . ,M samples of particle numbers
{Ni}l with weights wl . The sample mean of any function
f (N1, . . . , Nf ) of the particle numbers is calculated in the
following way:

〈f (N1, . . . , Nf )〉M =
∑M

l=1 wlf ({Ni}l )∑M
l=1 wl

. (37)

In the limit M → ∞ the sample mean will converge to the
GCE expectation value, i.e.,

〈f (N1, . . . , Nf )〉M −−−→
M→∞

〈f (N1, . . . , Nf )〉GCE. (38)

The statistical error estimate for 〈f (N1, . . . , Nf )〉M reads

σ 2
f =

∑M
l=1 w2

l [f ({Ni}l ) − 〈f 〉M ]2(∑M
l=1 wl

)2 . (39)

B. Monte Carlo method in the canonical ensemble

In the CE, the conserved charges {Q} = Q1, . . . ,Qc in the
system are fixed to their exact values in each microscopic
state. The exact charge conservation is enforced by adding the
corresponding Kronecker delta functions into the probability

distribution, i.e.,

P ({Ni}; V, T , {Q})

∝ F ({Ni}; V, T , {μQ = 0})

×�({Ni}; V ) ×
c∏

k=1

δ

⎛
⎝Qk −

∑
j

q
(j )
k Nj

⎞
⎠. (40)

Similarly to the GCE, the MC approach within the CE pro-
ceeds by introducing the product of auxiliary Poisson distri-
butions, i.e.,

P ({Ni}; V, T ) ∝ w({Ni}; V, T , {Q}) × �({Ni}; V, T , {Q})

× �({Ni}; V ) ×
c∏

k=1

δ

⎛
⎝Qk −

∑
j

q
(j )
k Nj

⎞
⎠.

(41)

The MC sampling in the CE includes only one additional
step compared to the corresponding procedure in the GCE: if
the generated configuration does not satisfy the exact charge
conservation laws then it is rejected. Our approach is quite
similar to the importance sampling in an ideal HRG in the mi-
crocanonical ensemble performed previously in Refs. [50,51].

It should be noted that a naive, straightforward implemen-
tation of rejection sampling described above would be rather
inefficient and time-consuming, as the probability to choose
a set of random charges satisfying conservation laws is very
small. We therefore, use the multistep procedure of Ref. [51]
for sampling particle yields in the CE. In this procedure one
first separately generates the total number of baryons and
antibaryons from the Poisson distribution. If the generated net
baryon number does not satisfy the baryon number conserva-
tion then the configuration is rejected outright, without per-
forming the time-consuming generation of all the individual
hadron yields. If the baryon number conservation is fulfilled,
then the numbers of all individual (anti)baryons are sampled
from the multinomial distribution, and the whole procedure
is repeated in the same fashion for (anti)strange mesons, and
then for the remaining (anti)charged mesons. The fact that
most of the unsuitable configurations are rejected at an early
step in this procedure gives a significant performance boost as
compared to the straightforward independent sampling of all
particle multiplicities from a multi-Poisson distribution.

The procedure described above can also be applied to a
HRG with van der Waals interactions [52,53]. This model
contains, in addition to excluded-volume effects, the attractive
interactions between hadrons in the mean-field approxima-
tion. The details of the corresponding MC procedure are given
in the Appendix.

V. CALCULATION RESULTS

A. Finite-size effects in the grand canonical ensemble

Let us consider first a single-component gas with EV
interactions in the GCE in the vdW-EV model. When the EV
effects are present, the intensive quantities depend explicitly
on the total system volume. Most notably, the particle density
equals zero if the system volume V is smaller than the
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eigenvolume of a single particle. The finite-size effects cannot
be described by the analytic formulas presented in Sec. II, as
they all are derived under the assumption of the thermody-
namic limit. However, these effects can be studied with the
help of the MC procedure described in Sec. IV.

We consider a simple example to illustrate the finite-size
effect. We assume a single-component gas of particles with
the mass of 1 GeV, which is a typical energy scale for hadronic
systems. We consider the vanishing chemical potential, i.e.,
μ = 0, and a temperature of T = 150 MeV. In order to mimic
the presence of large number of hadron states in a realistic
HRG we use a rather high degeneracy factor of g = 150
in our calculation. This is important, as the magnitude of
the eigenvolume effects scales with the total number of the
finite-sized hadrons in the system.

The system-size dependence of the particle number den-
sity, n = 〈N〉/V , is calculated using the MC method. Addi-
tionally, we consider the scaled variance, ω[N ], of the particle
number fluctuations. The Poisson rate parameter 〈N〉 in the
auxiliary distribution � (34) is taken to be 〈N〉 = nEV(T ,μ =
0; r ) V , where nEV(T ,μ = 0; r ) is the particle number density
in the thermodynamic limit (V → ∞), calculated analytically
using Eqs. (4) and (5). The dependence of n on the total
system radius R (defined as V ≡ 4πR3/3) is depicted in
Fig. 1 for four different values of the effective particle radius
parameter (r = 0, 0.3, 0.5, and 1 fm). For each pair of the R
and r values we generate and perform an averaging over 105

MC events. The calculations show a consistent approach of
the particle density n to its limiting value with increasing R.
The resulting limiting values at large R in all cases appear to
coincide with the corresponding values in the thermodynamic
limit calculated from Eqs. (5) and (6). This is an expected
result.

The number of terms in the GCE EV partition function
(3) is finite due to the presence of the θ function. Thus, it
is also possible to calculate the moments of the multiplicity
distribution analytically, by explicitly summing over all N
states. More specifically, the GCE average of arbitrary func-
tion f (N ) of the particle number is calculated as

〈f (N )〉 =
∑�V/v�

N=0 f (N ) ZEV(T , V,N )∑�V/v�
N=0 ZEV(T , V,N )

. (42)

We have performed such a calculation in order to cross-check
our MC results. The results of these analytic calculations are
shown in Fig. 1 by solid lines, and they are fully consistent
with the MC results. Note that a calculation of a direct
sum over all states in the grand canonical partition function
becomes numerically intractable in the multicomponent gas
with a large number of components. The MC procedure, on
the other hand, does not suffer from such a complication.

As seen from Fig. 1(a), both the analytical and the MC
calculations exhibit the presence of a small region where the
particle number density locally decreases with an increase of
the system volume for r = 1 fm. A pronounced presence of
such region(s) was also verified for larger values of particle
radius parameter r . This result seems counterintuitive. Recall,
however, that the particle density is given as the ratio n ≡
〈N〉/V . The number of terms Ntot = �V/v� in Eq. (42), which

FIG. 1. (a) The GCE particle number density n and (b) the scaled
variance ω[N ] as functions of the system radius R for the EV model
for particles of mass m = 1 GeV and degeneracy g = 150 at T =
150 MeV and μ = 0. Dots show the MC results for four different
values of the hard-core radius: r = 0, 0.3, 0.5, and 1 fm. Dashed
horizontal lines show the values of the particle density (a) and scaled
variance (b) calculated in the thermodynamic limit from Eqs. (5) and
(6), respectively. Solid lines show the analytic results obtained by the
direct summation of the GCE partition function.

is used to calculate 〈N〉, is finite. The Ntot increases by 1
once the ratio V/v reaches the next integer number. However,
until that happens, the Ntot value is fixed and this severely
limits the growth of 〈N〉 with V . For this reason, the ratio n =
〈N〉/V can locally be a decreasing function of V . The same
mechanism is responsible for appearance of nonmonotonic
regions in the V dependence of the scaled variance, ω[N ],
seen in Fig. 1(b). On the other hand, the dependence of 〈N〉
on V remains strictly monotonically increasing in all cases.

The nonmonotonic system volume dependence of the par-
ticle number density appears in the model for small systems,
when the eigenvolume of a single particle is not negligible
compared to the system volume, and when the EV effects
are strong. The appearance of nonmonotonicities with re-
spect to the overall system size was also reported in the
microcanonical ensemble calculation in Ref. [54], where the
effect was associated with the proximity to the production
energy threshold. Thus, the nonmonotonic behavior of ther-
modynamic observables might be a generic feature of small
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FIG. 2. The dependence of the GCE particle number density n

on the total system radius R calculated within the EV (black) and
Carnahan-Starling (red) models for hard-core radius of r = 1 fm.
The solid lines show the analytic results obtained by the direct
summation of the grand canonical partition function. All system
parameters are the same as for calculations shown in Fig. 1. The
inset shows the analytic Carnahan-Starling model calculations in the
vicinity of the threshold system radius R = 1 fm, on the logarithmic
scale.

systems, where the size or energy of a single constituent
particle is non-negligible compared to the total system size or
energy. It would be interesting to consider these effects in real
physical systems, not necessarily those created in high-energy
collisions.

The MC procedure is quite flexible to the variations in
the excluded-volume mechanism used. We perform the cal-
culations for the CS model in order to illustrate this fact.
The dependence of the particle number density on the system
radius R is shown in Fig. 2. A difference between the EV and
the CS models is most significant for large values of particle
radius parameter r and/or at high particle number densities.
Thus, we only show the results for the case r = 1 fm. In the
CS model, the particle number density n approaches from
below the corresponding limiting value (9) with increasing
system size R. The calculations also show that CS values of n
are generally larger then the EV ones at all values of R.

It is evident that there exists a minimum system volume,
characterized by the system radius Rmin, such that the particle
number density is strictly zero for R < Rmin. In the van
der Waals EV model one has Rmin = 41/3r . For r = 1 fm
one obtains Rmin � 1.59 fm, the calculations in Fig. 2 are
consistent with this expectation. For the CS model one has
a smaller value of the minimum system radius, Rmin = r .
However, there is a very strong suppression of the particle
number density for system volumes which are only slightly
larger than the minimum system volume in the CS model; this
fact is illustrated in the inset of Fig. 2.

B. Simultaneous effects of canonical ensemble
and excluded-volume

In order to study the excluded-volume effects in the CE
we consider a two-component system of particles and antipar-

FIG. 3. The MC results for (a) n± and (b) ω[N±] as functions
of R. The MC calculations are performed at m = 1 GeV, g± = 75,
T = 150 MeV, and Q ≡ N+ − N− = 0. Open symbols show the MC
results in the GCE and full symbols in the CE for four different values
of hard-core radius: r = 0, 0.3, 0.5, and 1 fm. Solid lines show the
analytic results obtained by the direct summation of the partition
function. The lines for r = 0 coincide with values (a) n± and
(b) ω[N±] calculated analytically in Ref. [37].

ticles. The degeneracy factor of g± = 75, the particle mass
of m± = 1 GeV, zero net charge, Q = N+ − N− = 0, and
the system temperature T = 150 MeV are employed. Using
the MC method we calculate the system-size dependence of
the (anti)particle number density n± and the scaled variance
ω[N±]. The MC CE and the MC GCE results for four different
values of the particle radius parameter are shown in Fig. 3.

The MC results for n± and ω[N±] at r = 0 can be directly
compared to the analytical results for the ideal gas obtained in
Ref. [37]. Our MC calculations are fully consistent with these
analytical results (shown by black solid lines). In particular,
ω[N±] = 1/2 at R → ∞ for the CE. It is notable that while
ω[N±] → 1/2 in the CE, one has ω[N±] → 1 as volume goes
to infinity. This means that ω[N±] has different limiting values
between the CE and the GCE in the thermodynamic limit,
in contrast to the particle number densities [Fig. 3(a)], which
tend to the same limit in both ensembles. This difference may
seem counterintuitive in light of the expected thermodynamic
equivalence of different ensembles in the infinite volume
limit. Recall, however, that the thermodynamic equivalence
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of ensembles extends to mean values, but not to fluctuations,
hence the observed difference between the CE and the GCE.
We refer to Ref. [37] where this question was studied in great
detail in an analytic model.

The analytic results for r > 0, obtained from a direct
summation of the partition function, are also shown in Fig. 3
by the colored solid lines. They are fully consistent with the
MC results. The presence of the CE effects due to the exact
charge conservation leads to a further suppression of n± at
a finite R, in addition to the suppression resulting from the
EV effects. The same is generally true for ω[N±]. There
is, however, one important difference. The CE suppression
effects for n± disappear in the thermodynamic limit R → ∞
and only the EV suppression effects remain, whereas both
the CE and the EV suppression effects for ω[N±] survive.
In particular, at R → ∞ the CE values of ω[N±] shown in
Fig. 3(b) are smaller at r > 0 than the ideal gas CE value of
1/2. At R → ∞, the CE values of ω[N±] are also smaller
than the corresponding GCE limiting values at the same r
shown in Fig. 1(b).

It is seen from Fig. 3(a) that there is a minimum system
volume, below which the particle number density is strictly
zero, similar to the GCE case. However, this minimum volume
is approximately twice larger in the CE as compared to the
GCE. The reason is that no microstate with a single particle
is permitted in the CE since that would violate the exact
charge neutrality condition. The presence of an antiparticle
for each particle is required. Therefore, the minimum system
volume has to accommodate at least two particles with a finite
eigenvolume.

C. Hadron number fluctuations in HRG

The MC formulation of the full HRG model can be used
to describe the hadron yields and their fluctuations in the
presence of both the EV interactions and the exact charge
conservation effects.

To illustrate the role of both EV and exact charge conser-
vation effects in HRG a system with zero conserved charges,
B = S = Q = 0, will be considered at first. It may corre-
spond to hadron states created in pp or e+e− reactions. Three
values of the hadron hard-core radius, r = 0 (ideal HRG), 0.3,
and 0.5 fm, the same for all hadron species, are considered
within the MC formulation of the EV HRG, containing 361
different hadron species. We apply here the diagonal EV
model formulation; one should note here, however, that in
the considered case of equal radii for all hadron species, both
the diagonal and the cross-terms EV models are equivalent.
In Fig. 4(a) the scaled variance ω[N±] of the number of all
positively or negatively charged hadrons in HRG is shown as
a function of the system radius R. The system temperature is
fixed at T = 160 MeV. In these calculations we additionally
take into account contributions to N± from resonance decays.
Thus, the MC procedure contains one additional step at the
end: simulation of the chain of probabilistic decays of all
resonances.

From Fig. 4(a) one observes that both EV and exact charge
conservation effects suppress the N± fluctuations in the ther-
modynamical limit R → ∞. For r = 0.5 fm the numerical

FIG. 4. The MC results for (a) ω[N±] and (b) ω[Np] in full
HRG at T = 160 MeV as functions of R. Open symbols show the
MC results in the GCE with μB = μQ = μS = 0 while full symbols
depict the MC results in the CE for the B = Q = S = 0 system.
Three different values of hard-core radius are considered: r = 0, 0.3,
and 0.5 fm.

values of both suppression effects are rather similar. At small
R the fluctuations are additionally sensitive to the finite-size
effects.

In Fig. 4(b) the scaled variance ω[Np] for the fluctuations
of the number of protons is shown as a function of the
system radius R. Here the EV effects are defined by the total
number N

prim
tot of primary hadrons and resonances. The mean

number of protons 〈Np〉 is suppressed significantly by the
presence of the excluded volume vN

prim
tot . However, as 〈Np〉

is much smaller than 〈Nprim
tot 〉, the fluctuations of Np have

only a minor influence on the event-by-event values of the
total excluded volume. The magnitude of the EV effects on
ω[Np] scales approximately as 〈Np〉/〈Nprim

tot 〉 (see Ref. [39]),
and the Np fluctuations therefore do not deviate significantly
from Poisson distribution. This is not the case for the N±
fluctuations, as 〈N±〉 is comparable with 〈Nprim

tot 〉. We do note
that higher order proton number fluctuations, not considered
in this work, are more sensitive to both excluded-volume [55]
and exact charge conservation [56] effects.

The CE suppression effects for ω[Np] survive in the ther-
modynamic limit R → ∞, and they are not very sensitive to
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the value of the radius parameter r . The main source of the
CE suppression of ω[Np] is the exact conservation of the net
baryon number B = 0. It is interesting that the approach of
ω[Np] to the CE thermodynamic limit is slower when a larger
value of r is used, as seen in Fig. 4(b). The physical reason
is that, at a fixed system volume, the EV effects reduce the
number of particles in the system, thereby effectively moving
the system farther away from the thermodynamic limit.

D. Fit of the hadron yields in p + p collisions

The CE formulation of HRG can be used to describe
the hadron yield data in collisions of small systems, such
as (anti)proton-proton and e+ e− collisions. Previously, only
the noninteracting HRG was used in such studies [9,31–34].
Here we will demonstrate the effect of the finite hadron
eigenvolumes on chemical freeze-out parameters. For this
purpose we analyze the hadron yield data of the NA61/SHINE
Collaboration in inelastic proton-proton interactions at beam
laboratory momenta plab = 31, 40, 80, 158 GeV/c [57]. The
experimental data contains yields2 of π−, π+, K−, K+, and p̄.
These data were recently analyzed in Ref. [9] within the ideal
HRG in the CE. It was found that the data can be reasonably
well described with three chemical freeze-out parameters:
the temperature T , the system radius (volume) R, and the
strangeness undersaturation parameter γS .

To illustrate the effect of finite hadron eigenvolumes on
chemical freeze-out parameters, let us consider a simple case
when all hadrons have the same hard-core radius r . Hadron
densities become suppressed compared to the ideal gas. In
the GCE, the suppression factor is the same for all hadron
species. Thus, the extracted T and γS do not change. On the
other hand, due to the suppression of the densities the total
freeze-out volume will be larger compared to the ideal gas.
It is also likely that eigenvolume corrections will not cancel
out exactly within the CE formulation. Still, one expects the
system volume to be affected most strongly. Thus, we fix T
and γS to the values which were previously obtained within
the ideal HRG model and only vary the system radius R.
Three values of the hadron hard-core radius, r = 0, 0.3, and
0.5 fm are considered in the MC calculations. The presence of
the strangeness undersaturation parameter γS is implemented
by the substitution zi → γ

|si |
S zi in Eqs. (30) and (A4), where

|si | is the sum of strange quarks and antiquarks in hadron
species i. Note that direct analytic calculation of the average
hadron yields from the partition function is infeasible here due
to a very large number of components in the full HRG. This
is quite different from simple systems considered in previous
subsections.

The mean multiplicity 〈Ni〉 is calculated as a sum of the
primordial mean multiplicity 〈Nprim

i 〉 and resonance decay
contributions as follows:

〈Ni〉 = 〈
N

prim
i

〉 + ∑
R

〈ni〉R
〈
N

prim
R

〉
. (43)

2The newer data at some of the collision energies now also contain
the yields of p, �, and/or φ. In the present work we retain the same
hadron yield dataset which we previously analyzed in Ref. [9].

In contrast to analytic calculations, here the 〈Nprim
i 〉 and

〈Nprim
R 〉 are calculated by averaging over the sufficiently large

number of the weighted events in the MC approach.
The quality of the data description is quantified by χ2,

defined as

χ2 =
∑

i

(〈Ni〉 − N
exp
i

)2(
σ

exp
i

)2 , (44)

where i = π+, π−, K+, K−, p̄, the 〈N exp
i 〉 and σ

exp
i are,

respectively, the corresponding experimental yields and un-
certainties, and 〈Ni〉 is the total yield of hadron species i in
the HRG model calculated with Eq. (43).

The MC results for the dependence of the χ2 on the total
system radius (volume) R are presented in Fig. 5. The results
were obtained by generating 105 weighted events for each
configuration at each considered value of the system radius R.
First we note that the MC results for ideal HRG (r = 0) are
fully consistent with the corresponding analytic calculations,
depicted in Fig. 5 by solid black lines. The resulting values
of the χ2 at the global minimum for the ideal HRG case are
close to those found in Ref. [9]. The MC results for the EV
HRG model with r = 0.3 and 0.5 fm are depicted by red and
blue symbols, respectively. We fit our MC results for the R
dependence of the χ2 in the vicinity of the global minimum
(defined as the region where χ2 < 30) by a parabolic function.
This allows us to estimate the value and position of the
minimum. The result of the fits is depicted by dashed lines
in Fig. 5.

The minimum values of χ2 for r = 0.3 fm and r = 0.5
fm are very similar to the ones at r = 0, i.e., no significant
improvement or worsening of thermal fits is observed. The
minima, however, are located at notably higher values of R
compared to the ideal HRG model. This looks very similar
to GCE results where the EV corrections are canceled out in
the ratios of yields. Note, however, that both the temperature
T and the γS parameter were fixed and had the same values
at all R. Thus, the R dependencies of the χ2 shown in Fig. 5
should not be mistaken for the χ2 profiles of parameter R, as
neither T nor γS were fitted at each value of R. One should
simultaneously fit all three parameters (T , γS , R) in order to
make a stronger conclusion. Evidently, the χ2 profiles may
show wider minima. A more complicated picture can also be
expected in EV models with different eigenvolume parameters
for different hadron species. These extensions of the MC
calculations are beyond the scope of the present paper.

VI. SUMMARY

In summary, we have presented the Monte Carlo (MC)
procedure for sampling the hadron yields within the hadron
resonance gas (HRG) model in the grand canonical (GCE)
and canonical ensembles (CE). Both the excluded-volume
effects and the exact charge conservation effects are taken
into account simultaneously, with the help of the importance
sampling technique. The MC procedure allows one to calcu-
late arbitrary moments of the event-by-event hadron yields.
To the best of our knowledge, the CE formulation for the
excluded-volume HRG had previously been missing.
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FIG. 5. The dependence of the χ 2 (44) of the HRG description of proton-proton hadron yield data of the NA61/SHINE Collaboration at
plab = 31, 40, 80, and 158 GeV/c [57] on the system radius R. The MC formulation of the eigenvolume HRG in the CE is used. All hadrons
are assumed to have the same hard-core radii of r = 0 (black symbols), 0.3 fm (red symbols), and 0.5 fm (blue symbols). The solid black lines
show the results of the analytical calculation of χ2 within the ideal HRG. The dashed lines depict the parabolic fits to the corresponding MC
results in the vicinity of the χ 2 minimum (see text). The parameters T and γS are fixed at each collision energy and are taken from the ideal
HRG model fits performed in Ref. [9].

The MC simulations coincide with the previously known
analytical results for the limiting cases of the excluded-
volume HRG in the GCE for large enough system volumes
and for the CE of noninteracting particles. The MC results
for the CE excluded-volume model are new, as these sys-
tems were not discussed previously in the literature. Besides,
the finite-size effects are observed. These effects, usually
neglected in analytical models, exist for both, the particle
number densities and the event-by-event fluctuations, in the
CE and in the GCE.

We have applied the MC procedure within the full HRG
model to study the simultaneous excluded-volume and CE
effects on the description of hadron yields and event-by-
event fluctuations. In particular, it is shown that the excluded-
volume and the exact charge conservation effects on the
fluctuations of number of positively or negatively charged
particles are significant and of similar magnitude. Also, the
effects of excluded volume on the CE thermal fits to hadron
yield data of the NA61/SHINE Collaboration in proton-proton
collisions have been illustrated.

The simultaneous consideration of the effects related to
the hadronic interactions and the exact charge conservation

is important for analysis of the event-by-event fluctuations
measured in heavy-ion collisions. These effects have to be
taken into account for correct interpretation of the data. In
particular, this concerns already the second-order (and higher)
susceptibilities of net-charge fluctuations, as well as the higher
order susceptibilities of net-proton fluctuations. These fluctua-
tion measures are being measured by the STAR Collaboration
[58–60] in the search for the QCD critical point.

The implementation of the Monte Carlo approach pre-
sented here is available within the open source THERMAL-
FIST package [61].
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APPENDIX

This Appendix extends the Monte Carlo procedure to the case of the full van der Waals (vdW) equation, i.e., with the presence
of both the attractive and repulsive interactions between hadrons. Such an extension permits one to study the important effects
related to the nuclear liquid-gas criticality, in particular regarding the higher moments of the conserved charges fluctuations
[52,62].

The pressure of a multicomponent Boltzmann system with the vdW interactions reads [53]

p(T , n1, . . . , nf ) =
f∑

i=1

T ni

1 − ∑
j b̃j i nj

−
f∑

i,j=1

aij ni nj . (A1)

Here the parameters b̃j i correspond to the repulsive vdW interactions and have the same physical meaning as in the NDE model
in Sec. II D. The parameters aij correspond to the attractive vdW interactions, for each pair of particle species.

The pressure (A1) corresponds to the following GCE partition function:

ZvdW(V, T , μ1, . . . , μf ) =
∞∑

N1=0

· · ·
∞∑

Nf =0

f∏
i=1

exp

(
μiNi

T

)[(
V − ∑f

j=1 b̃j iNj

)
zi

]Ni

Ni!
exp

⎛
⎝ f∑

j=1

aijNj

V T
Ni

⎞
⎠

× θ

⎛
⎝V −

f∑
j=1

b̃j iNj

⎞
⎠, (A2)

The CE partition function is obtained by introducing the corresponding Kronecker delta functions (see Sec. III for details):

ZvdW(V, T , {Q}) =
∞∑

N1=0

· · ·
∞∑

Nf =0

f∏
i=1

[(
V − ∑f

j=1 b̃j iNj

)
zi

]Ni

Ni!
exp

⎛
⎝ f∑

j=1

aijNj

V T
Ni

⎞
⎠

× θ

⎛
⎝V −

f∑
j=1

b̃j iNj

⎞
⎠ c∏

k=1

δ

⎛
⎝Qk −

∑
j

q
(j )
k Nj

⎞
⎠. (A3)

The F and � functions, which define the MC procedure described in Sec. IV, are the following:

FvdW(N1, . . . , Nf ; V, T , {μQ}) =
f∏

i=1

[(
V − ∑

j b̃j iNj

)
zi e

μi/T e
∑f

j=1
aij Nj
V T

]Ni

Ni!
, (A4)

�vdW(N1, . . . , Nf ; V ) =
f∏

i=1

θ

⎛
⎝V −

∑
j

b̃j iNj

⎞
⎠. (A5)
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