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Evolution of the moments of multiplicity distributions

Radka Sochorová,1 Boris Tomášik,1,2 and Marcus Bleicher3,4,5
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Measured moments of the multiplicity distribution for a given sort of particles are used in the literature for
the determination of the phase transition parameters of hot QCD matter in ultrarelativistic heavy-ion collisions.
We argue that the subsequent cooling in the hadronic phase, however, may drive the multiplicity distribution
out of equilibrium. We use a master equation for the description of the evolution of the multiplicity distribution
to demonstrate how the different moments depart away from their equilibrium values. If such moments were
measured and interpreted as if they were equilibrated, one would obtain different apparent temperatures from
different moments.
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I. INTRODUCTION

Event-by-event fluctuations of the identified particle num-
ber observed in relativistic heavy-ion collisions carry the
promise to exactly locate the state of the created QCD matter
on the phase diagram at the time of hadron production [1–9].
The moments of the number distribution can be related to
the susceptibilities which are expressed as derivatives of the
partition function [6,10].

The susceptibilities are usually related to a conserved
quantum number, e.g., the baryon number or strangeness.
A large variety of susceptibilities are currently determined
by lattice QCD methods up to the fourth order [11]. On
the experimental side, moments of the net proton num-
ber distribution are also measured up to the fourth order
[12–14]. Unfortunately, baryon number cannot be measured,
as neutrons are not detected in many current experimen-
tal set-ups. Nevertheless, there are arguments that claim
that the protons are a good proxy for the baryon num-
ber [15,16]. In real collision events, the observed proton
number fluctuations, however, are also influenced by con-
servation laws [17,18]. In addition to net baryon number,
the fluctuations of the number of strange particles are also
measured [13,30].

From a comparison of experimental data to theoretical pre-
dictions of various moments of the multiplicity distribution,
temperature, and chemical potentials of the created matter
can be determined [19–21]. Note however, that the theoretical
treatments—be it lattice QCD or the statistical model—use
the grand-canonical formalism and assume equilibrium. The
results obtained from such analyses show some disagreement
between temperatures obtained from fitting the first moments
(i.e., the yields) [22] and those obtained from fitting the higher
moments [19].

Our study is directly motivated by such a mismatch. We
qualitatively show that in an ensemble of expanding and
cooling fireballs different moments of the number distribution
may acquire values that seemingly do not correspond to each
other if one tries to understand them with single temperature
and chemical potential.

To clarify this point, let us stress that after hadronization
inelastic collisions among hadrons still continue. Due to the
decrease of the reaction rates they are unable to maintain
the chemical composition so that it would fully respond to
the changing temperature. In fact, the inelastic reactions
alter the numbers of individual species and drive them off
equilibrium. Our treatment thus goes beyond [23] where no
inelastic collisions after chemical freeze-out were assumed.

Note further, that since we want to study the fluctuations
of multiplicities, we inherently study an ensemble of fireballs
and the time evolution of multiplicity distribution across the
ensemble. As the distribution drops out of equilibrium, its
moments may not be described by universal values of tem-
perature and chemical potentials. This is the essence of the
argument presented in this paper.

The appropriate tool for studying the evolution of multi-
plicity distributions is a master equation. Generally, in con-
trast to rate equations, master equations describe the evolution
of the whole discrete probability distribution and not just
the evolution of the mean values. The description is related
to the microscopic processes which can change multiplicity
of the studied kind of particles. In Sec. II we use a specific
master equation which also respects exact U (1) charge con-
servation [24] and derive the equilibrium values for the first
four moments. Then, in Sec. III we look at how the formal-
ism describes relaxation towards equilibrium. Phenomenolog-
ically relevant scenario of cooling is investigated in Sec. IV.
Conclusions are presented in Sec. V.
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II. THE MASTER EQUATION

For our study we shall investigate multiplicity distributions
of species that conserve an Abelian charge, e.g., strangeness,
and undergo the reaction a1a2 ↔ b1b2. Here, none of the in-
volved species are identical to each other and it is understood
that the b’s carry the conserved charge while the a’s do not.
Also, it will be assumed that there is a sufficiently large pool
of a’s which is basically untouched by this chemical process.1

In [24] the master equation for such a process has been
derived which describes the time evolution of the multiplicity
distribution Pn of species b. Here, Pn is the probability to have
n pairs of those species. The master equation is formulated as

dPn

dt
= G

V

〈
Na1

〉〈
Na2

〉
[Pn−1 − Pn]

− L

V
[n2Pn − (n + 1)2Pn+1] , (1)

where V is the effective volume and G, L stand for
the momentum-averaged cross section of the gain pro-
cess (a1a2 → b1b2) and the loss process (b1b2 → a1a2),
respectively,

G = 〈σGv〉,
L = 〈σLv〉 .

We suppressed writing out explicitly that the Pn’s are func-
tions of time.

Equation (1) can be solved in order to obtain the evolution
of all Pn’s. If G, L, and V are constant, then it must describe
the approach towards equilibrium. This is best studied if the
master equation is put into dimensionless form

dPn

dτ
= ε[Pn−1 − Pn] − [n2Pn − (n + 1)2Pn+1] , (2)

by scaling the time with relaxation time τ0

τ = t

τ0
, (3)

where

τ0 = V/L, (4)

ε = G

L

〈
Na1

〉〈
Na2

〉
. (5)

The equilibrium distribution can be then derived with the help
of the generating function [24]

g(x, τ ) =
∞∑

n=0

xnPn(τ ) , (6)

where x is an auxiliary variable.

1For too small numbers of a’s, e.g., in collisions at lower energies
within the RHIC Beam Energy Scan program, this assumption may
not necessarily be warranted. This would lead to a modification of the
master equation. We shall come to this point again in the discussion
section.

The generating function is instrumental in calculating the
factorial moments of the multiplicity distribution. It obeys the
normalization condition

g(1, τ ) =
∞∑

n=0

Pn(τ ) = 1 , (7)

and gives

g′(1, τ ) =
∞∑

n=0

nPn(τ ) = 〈n〉, (8a)

g′′(1, τ ) =
∞∑

n=0

n(n − 1)Pn(τ ) = 〈n(n − 1)〉, (8b)

g(3)(1, τ ) =
∞∑

n=0

n(n − 1)(n − 2)Pn(τ )

=
〈

n!

(n − 3)!

〉
, (8c)

g(4)(1, τ ) =
∞∑

n=0

n(n − 1)(n − 2)(n − 3)Pn(τ )

=
〈

n!

(n − 4)!

〉
. (8d)

In order to find the equilibrium distribution, one derives
from the master equation (2) the equation for the time evolu-
tion of g(x, τ ) [24]

∂g(x, τ )

∂τ
= (1 − x)

(
x

∂2g

∂x2
+ ∂g

∂x
− εg

)
. (9)

The equilibrium solution is found if the right-hand side is set
equal to 0 [25]:

x
∂2g

∂x2
+ ∂g

∂x
− εg = 0. (10)

It reads

g0(x) = I0(2
√

εx )

I0(2
√

ε)
(11)

which fulfils the normalisation condition (7). Here, I0(x) is
the modified Bessel function.

The equilibrium distribution is then

Pn,eq = εn

I0(2
√

ε)(n!)2
. (12)

Through equations (8) the factorial moments can be
calculated2:

〈n〉eq = √
ε
I1(2

√
ε)

I0(2
√

ε)
, (13a)

〈n(n − 1)〉eq = −1

2

√
ε
I1(2

√
ε)

I0(2
√

ε)

+ 1

2
ε
I2(2

√
ε) + I0(2

√
ε)

I1(2
√

ε)
, (13b)

2The first and second factorial moments have been calculated in
[24,25].
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〈
n!

(n − 3)!

〉
eq

= 3

4

√
ε
I1(2

√
ε)

I0(2
√

ε)

− 3

4
ε

(
1 + I2(2

√
ε)

I0(2
√

ε)

)

+ 1

4
ε3/2 I3(2

√
ε) + 3I1(2

√
ε)

I0(2
√

ε)
, (13c)

〈
n!

(n − 4)!

〉
eq

= −15

8

√
ε
I1(2

√
ε)

I0(2
√

ε)

+ 15

8
ε

(
I2(2

√
ε)

I0(2
√

ε)
+ 1

)

− 3

4
ε3/2 3I1(2

√
ε) + I3(2

√
ε)

I0(2
√

ε)

+ 1

8
ε2

(
3 + 4I2(2

√
ε) + I4(2

√
ε)

I0(2
√

ε)

)
. (13d)

These analytical expressions for equilibrium values of the
factorial moments allow us to assess separately the departure
from equilibrium for different orders.

Other characteristics of the distribution, like the central
moments, cumulants, skewness, or kurtosis, etc., can be cal-
culated by combinations of these factorial moments.

To scale out the total number of particles, we shall also
study the scaled factorial moments

F2 = 〈n(n − 1)〉
〈n〉2

, (14a)

F3 =
〈

n!
(n−3)!

〉
〈n〉3

, (14b)

F4 =
〈

n!
(n−4)!

〉
〈n〉4

. (14c)

III. THERMALIZATION

The goal is to study why and how different moments of
multiplicity distribution may indicate different temperatures.
We therefore first study how the various moments relax to-
wards their equilibrium values in an environment with con-
stant temperature.

If the temperature and cross section are fixed, then the only
time scale in the problem does not change and we can use
Eq. (2) for the evolution of the multiplicity distribution.

The presented results have been obtained from a simulation
with binomial initial conditions:

P0(τ = 0) = 1 − n0, (15a)

P1(τ = 0) = n0, (15b)

Pi (τ = 0) = 0 for i > 1 , (15c)
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FIG. 1. Relaxation of the scaled factorial moments as functions
of dimensionless time τ . Binomial initial conditions with ε = 0.1
and n0 = 0.005 have been used.

where

n0 = 〈n〉(τ = 0)

is the mean multiplicity of species b at the beginning.
The evolution of second to fourth scaled factorial moments

divided by their equilibrium values [from Eqs. (13)] is shown
in Fig. 1.

The value of the parameter ε has been set to 0.1 and
the initial mean to n0 = 0.005. Note that we have obtained
qualitatively similar results also with other sets of parameters.
Initial conditions which follow the Poisson distribution lead
to similar rates of relaxation although the initial part of the
dependence is different.

The higher moments are more sensitive to the shape of
the distribution function beyond just its width. Thus one
might have anticipated, that they more easily depart from their
equilibrium values and it might take longer time for them to
reach equilibrium. While the first statement holds, the second
assertion is not fulfilled. Higher moments indeed depart fur-
ther away from the equilibrium values in a nonequilibrium
situation. However, they actually relax in the same time as
the lower moments.

IV. NONEQUILIBRIUM COOLING

The fireballs produced in ultrarelativistic heavy-ion col-
lisions cool down rapidly. It is therefore expected that the
number distribution departs from equilibrium. In our simu-
lation we shall assume that the system is equilibrated at the
hadronization temperature T = 165 MeV. Due to subsequent
expansion, the temperature decreases quickly. For a system
that stays in equilibrium a lower temperature would corre-
spond to a different multiplicity distribution. However, a pre-
requisite to maintain equilibrium is to ensure that the creation
and annihilation reactions are capable of running at rates
comparable to the expansion rate, otherwise the equilibrium
will be lost. We explore what this means for the values of the
moments.

To set up the environment, we shall assume Björken
one-dimensional boost invariant expansion, where the proper
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volume grows linearly

V (t ) = V0
t

t0
(16)

and the temperature drops according to

T 3(t ) = T 3
0

t0

t
. (17)

In the calculations we have set V0 = 125 fm3. The temperature
will start at the value of 165 MeV and drop down to 100 MeV.
The latter is typically the temperature of the kinetic freeze-
out.3 Motivated by the femtoscopic measurements we set the
final time to 10 fm/c. This then leads to t0 = 2.2 fm/c.

For the actual calculation we must also choose the partic-
ular inelastic process. Processes with too small cross-sections
will not be able to change anything on the multiplicity dis-
tributions while those with very large cross sections will
practically simultaneously adjust them to the decreasing tem-
perature. The relevant time scale is the relaxation time, given
in Eq. (4). The interesting regime is when the relaxation time
is comparable to the inverse expansion rate and the lifetime of
the fireball.

We consider the reaction π+n ↔ K+�. For the moment
we shall use a parametrization of the cross section [29]

σ�K
πN =

⎧⎪⎨
⎪⎩

0 fm2 √
s <

√
s0

0.090(
√

s−√
s0 )

0.091 fm2 √
s0 �

√
s <

√
s0 + 0.09 GeV

0.0090√
s−√

s0
fm2 √

s � √
s0 + 0.09 GeV

,

(18)

where
√

s0 is the threshold energy of the reaction and the
energies are given in GeV. Unfortunately, the flux-averaged
gain and loss terms with this cross section are too small
and lead to too low reaction rates. In order to proceed with
qualitative studies, the cross section has been scaled up by
hand so that the relaxation time is a few fm/c. Note that the
gain term [Eq. (2)] of this reaction is small due to the rather
high threshold, which is about 530 MeV above the masses of
the incoming particles, while the temperature is lower than
165 MeV. This indicates that the reaction rate might increase
considerably if the threshold is lowered, for example through
the decrease of the hyperon mass in baryonic matter. This
possibility will be investigated below.

In Fig. 2 we show how the relaxation time changes as
the fireball expands and cools down. The relaxation time
decreases with increasing temperature and/or with increasing
cross-section. We have performed calculations with all scales
of the cross sections indicated in Fig. 2.

First, we present in Fig. 3 the evolution of the scaled fac-
torial moments. Due to decreasing temperature the moments
change, but the reaction rate is too low to keep them in

3There is no general agreement in the literature concerning the
kinetic freeze-out temperature. While fits with the blast-wave model
without resonances yield temperatures around 120 MeV for col-
lisions at RHIC [26], fits with resonance decays included give
temperatures of 100 MeV [27] and lower [28], depending on the
details of the model.
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FIG. 2. Dependence of the relaxation time on temperature for
scaled cross sections. There are 15 pions and 10 neutrons and the
initial volume of 125 fm3 expands according to Eq. (16).

equilibrium. As observed above, the relative departure from
equilibrium is larger for moments of higher order.

We can now demonstrate the potential danger in case of
extraction of the freeze-out temperature from the different
moments. Suppose that the system breaks up at final (kinetic)
temperature of 100 MeV, i.e., the moments assume their final
values at this point. How does one usually infer the tempera-
ture from such a measurement? One assumes thermalization.
The moments of a thermalized system would have evolved
along the thin curves in Fig. 3. So the assumption of thermal-
ization means that one assumes that the thin lines provide the
correct description of the moments. However, in reality the
moments evolved along the thick lines in Fig. 3. The arrows
in that figure show how the apparent freeze-out temperature
would be extracted. The actual observed final value of a thick
line is projected horizontally on the corresponding thin line
(Fig. 3) and the apparent temperature is read off from the
projected point. We can see that such a procedure can lead to
different values of apparent temperature if different moments
are used.
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FIG. 3. Evolution of the scaled factorial moments. Thick lines:
values calculated through the master equation (1), thin lines: equilib-
rium values calculated from relations (13).
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Factorial moments are usually not measured. More com-
mon are the central moments

μ1 = 〈n〉 = M, (19a)

μ2 = 〈n2〉 − 〈n〉2 = σ 2, (19b)

μ3 = 〈(n − 〈n〉)3〉, (19c)

μ4 = 〈(n − 〈n〉)4〉 , (19d)

or their derived characteristics: the skewness

S = μ3

μ
3/2
2

(20)

and the kurtosis

κ = μ4

μ2
2

− 3 . (21)

Their equilibrium values can all be calculated from proper
combinations of the factorial moments and using the equilib-
rium values derived in Eqs. (13).

We plot the evolution of central moments for different
scales of the cross section in Fig. 4. As expected, larger
cross sections maintain the calculated values closer to the
equilibrium ones. Also, moments of different orders generally
indicate different apparent freeze-out temperatures, if inter-
preted as equilibrium values.

The skewness and kurtosis are even more interesting
(Fig. 5). Their equilibrium values grow as the temperature
decreases. This is not true, however, for the numerically
calculated curves. Only those with larger cross sections do
increase, while those with smaller cross-sections decrease.
Clearly, the apparent freeze-out temperature could only be
determined from those numerically calculated curves, which
increase with the temperature.

For the sake of completeness, we also look at the volume-
independent ratios which are often measured due to their
easier comparison with theory. These are

R32 = μ3

μ2
= Sσ, (22a)

R42 = μ4

μ2
− 3μ2 = κσ 2, (22b)

R12 = μ1

μ2
= M

σ 2
, (22c)

R31 = μ3

μ1
= Sσ 3

M
. (22d)

The evolution of these ratios for different cross sections,
together with the equilibrium values at actual temperatures,
are presented in Fig. 6. We find that some of the ratios,
notably R12 and R31, evolve qualitatively differently from the
equilibrium value for any value of the cross section.

In summary, simple factorial and central moments behave
so that for larger cross section we see how they approach
the equilibrium behavior. However, when they are combined
into more complicated observables, like skewness, kurtosis,
or the volume-independent ratios, the departure from the
equilibrium is considerable and even qualitative. We conclude
that these observables are actually very fragile with respect
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FIG. 4. Evolution of the first four central moments (from top to
bottom). Different curves on the same panel show results for different
cross sections. Solid lines show the equilibrium values.

to nonequilibrium chemical evolution and very easily depart
from values which can be interpreted in terms of equilibrium
distribution.

The previous studies presented in this work have been
performed with cross sections that were scaled unrealistically
high for the given reaction. The aim was to use this reaction
as a proxy for any other processes which can produce the b
species. This is acceptable, because our conclusions from the
study are only qualitative.

Nevertheless, it is also unrealistic to assume that the masses
and cross sections in hot and dense baryonic matter keep
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FIG. 5. Evolution of the skewness (upper panel) and the kurtosis
(lower panel). Different curves on the same panel show results for
different cross sections. Solid lines show the equilibrium values.

their vacuum values. Moreover, by lowering the mass of the
hyperon, also the threshold for the reaction is lowered, and its
rate may grow due to the increase of the available phase space.
We shall assume rather extreme and simplified dependence of
the hyperon mass on baryon density

m�(ρB ) = ρ0 − ρB

ρ0
m�0 + ρB

ρ0
mp (23)

so that the hyperon mass becomes identical to that of the
proton at the highest baryon density ρ0 at which our calcu-
lation starts, and returns to the vacuum value m�0 if baryon
density vanishes. The cross section in Eq. (18) is modified by
replacing the threshold

√
s0 by the new value mK + m�(ρB ).

Selected results from the scenario with density-dependent
mass of the hyperon are plotted in Fig. 7. The rate of the
reaction is clearly too small to keep the system in chemical
equilibrium. However, thanks to the increase of the cross
section at the highest baryon densities the system is clearly
driven away from the state which is present at the initial
temperature of 165 MeV. All central moments are slightly
decreasing, because the multiplicity of strange particles goes
down. The hierarchy of the departure from the initial value
is such that it grows with the order of the moment. Only
slight changes are seen for the skewness and the kurtosis and
somewhat stronger departure is observed for the volume in-
dependent ratios Sσ and κσ 2. Interestingly, for the latter even
the equilibrium values seem not to change much, although this
is rather accidental.

Nevertheless, in realistic fireballs there are other channels
that can change the numbers of kaons and/or λs and so we
have to expect a variation of moments yet larger than indicated
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FIG. 6. Evolution of the volume-independent ratios. Different
curves on the same panel show results for different cross sections.
Solid lines show the equilibrium values.

by these calculations. We conclude that with a realistic sce-
nario the evolution of the composition of the fireball may be
capable of influencing the fluctuations of the particle number
distribution to a measurable extent.

V. DISCUSSION

In this work, we have explored one of the effects that may
influence the higher moments of the multiplicity distribution
of identified particles. In general, if hadronization is followed
by a rescattering phase, the multiplicity distribution may
become off-equilibrium. This means that not only the average
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dependent mass of �. Thick solid lines: numerically calculated evo-
lution; thin dotted lines: equilibrium values at the given temperature.

number of particles may change, but also the higher moments
depart from their equilibrium values.

The master equation (1) adopted from [24] and used
here is suitable for the description of single reaction chan-
nel which produces a U (1) conserved charge. It can be
used for the studies of rare species, like charm or bot-
tom. Of course, the measurement of moments of their mul-
tiplicity distribution is a challenge which is very hard to
overcome.

We have applied the formalism to one reaction channel
which produces strangeness, and we have studied the fluc-
tuations of strange particles. The higher moments of kaon
multiplicity distribution have been measured within the BNL
Relativistic Heavy Ion Collider (RHIC) Beam Energy Scan
program by the STAR collaboration [30]. We have made
an attempt to apply our calculations to the interpretation of
those data. However, this actually revealed that our calculation
is only a part of a more complex description. Firstly, there
are certainly other channels that influence the number dis-
tribution of strange particles. Secondly—and probably more
importantly—we do not know the initial conditions for the
evolution.

Let us also come to the point raised in the introduction
of the master equation: what would happen if we cannot
replace the numbers of a species just by their averages.
The master equation would slightly change, but the gen-
eral feature of our results remains: the different moments

of the number distribution depart from their equilibrium
values, and higher moments do that more than the lower
moments.

As a side project we have also looked at the isospin-
randomising reactions which turn protons into neutrons and
vice versa. Such reactions have large cross sections and no
threshold. Hence, they are very frequent. Consequently, we
observed that the moments of multiplicity distribution of
protons do not change even with decreasing temperature if
they are started in equilibrium. This is in line with the findings
of [15,16] and it is a good news for the measurements of
proton number fluctuations, which try to relate the measured
moments to the baryon number susceptibilities of the matter
at the point of hadronization.

It appears as an interesting question, whether the formalism
of master equations can be also used for the description
of the deconfined phase of the collision. Recall that the
evolution is interesting if the reaction rates are comparable
to the rate of temperature decrease. This rules out the de-
scription of light quarks, which are produced and destroyed
too easily. It also disqualifies the description of charm and
bottom, which are too heavy to be produced in the quark-
gluon plasma. What remains is the production of strange
quarks, which might be interesting in a regime where QGP
is produced, yet strangeness is not chemically equilibrated.
The treatment, however might not be easy. Firstly, a different
master equation must be derived which takes into account
production from qq̄ annihilations as well as gg reactions.
Secondly, it is expected that in this window of collision
energies the system may spent an important portion of its
time at temperatures just above the hadronization. There,
it is strongly coupled, interactions are nonperturbative, and
the microscopic description with quarks and gluons becomes
complicated [31].

Coming back to hadronic reactions investigated in this
paper, we conclude that inelastic reactions in a system with
decreasing temperature may alter the individual moments of
the multiplicity distribution differently. Importantly, they can
push the moments away from their values at the beginning
of cooling. Such moments are being measured with the hope
that their precise values will help us to better pinpoint the po-
sition of the strongly interacting matter on the phase diagram.
Therefore, a word of caution must be raised that the values
of the moments at hadronization may be severely altered in
subsequent evolution. Master equations are effective tools for
the investigation of these effects.
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