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Extrapolation of scattering data to the negative-energy region. III. Application to the p-16O system
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The problem of analytic continuation of the scattering data to the negative-energy region to obtain information
on asymptotic normalization coefficients (ANCs) of bound states is discussed. It is shown that a recently
suggested � method [O. L. Ramírez Suárez and J.-M. Sparenberg, Phys. Rev. C 96, 034601 (2017)] is not
strictly correct in the mathematical sense since it is not an analytic continuation of a partial-wave scattering
amplitude to the region of negative energies. However, it can be used for practical purposes for sufficiently large
charges and masses of colliding particles. Both the � method and the standard method of continuing of the
effective range function are applied to the p-16O system, which is of interest for nuclear astrophysics. The ANCs
for the ground 5/2+ and excited 1/2+ states of 17F are determined.
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I. INTRODUCTION

Using scattering data may give valuable information on
the features of bound states, particularly on asymptotic nor-
malization coefficients (ANCs), which, in contrast to binding
energies, cannot be directly measured. The ANCs are funda-
mental nuclear characteristics that are important, for example,
for evaluating cross sections of peripheral astrophysical nu-
clear reactions [1–4]. One of the direct ways to extract ANCs
from experimental data is the analytic continuation in the
energy plane of the partial-wave elastic scattering amplitudes,
obtained by the phase-shift analysis, to the pole corresponding
to a bound state. Such a procedure, in contrast to the method of
constructing optical potentials fitted to scattering data, allows
one to circumvent an ambiguity problem associated with the
existence of phase-equivalent potentials [5,6].

The conventional procedure for such extrapolation is the
analytic approximation of the experimental values of the
effective-range function (ERF) Kl (E) with the subsequent
continuation to the pole position (l is the orbital angular mo-
mentum). The ERF method has been successfully employed to
determine the ANCs for bound (as well as resonant) nuclear
states in a number of works (see, e.g., [7–9] and references
therein).

The ERF is expressed in terms of scattering phase shifts.
In the case of charged particles, the ERF for the short-range
interaction should be modified. Such modification generates
additional terms in the ERF. These terms depend only on
the Coulomb interaction and may far exceed, in the absolute
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value, the informative part of the ERF containing the phase
shifts. This fact may hamper the practical procedure of the
analytic continuation and affect its accuracy. It was suggested
in Ref. [10] to use for the analytic continuation the quantity
�l (E) (which is defined below in Sec. II) rather than the
ERF Kl (E). The �l (E) function does not contain the pure
Coulomb terms. We call the continuation method, which uses
the � function, the � method. In [11] this method is called
the reduced ERF method.

Note that the validity of employing �l (E) was not ob-
vious, which resulted in some discussion. The authors of
Refs. [12,13] claimed that they proved the mathematical cor-
rectness of the � method. However, this assertion contradicts
the results of Refs. [11,14].

In the present work, we consider the question of the validity
and applicability of the � method. It is shown that the �

method in the strict mathematical sense is not an analytic
continuation of a partial-wave scattering amplitude to the re-
gion of negative energies; however, it can be used for practical
purposes for sufficiently large charges and masses of colliding
particles. Then both ERF and � methods are employed to
analyze the p-16O system and determine the ANCs for ground
and excited states of 17F in the p-16O channel. Note that
the knowledge of these ANCs is important for evaluating the
astrophysical S factor of the 16O(p, γ )17F reaction, which is
one of the processes of the CNO cycle of nucleosynthesis in
stars [15]. The analysis is based on using the experimental
phase shifts with corresponding experimental errors. It is
demonstrated here that the extrapolation of the elastic scatter-
ing data to the bound state poles provides a practical method
to determine the ANCs. The ANCs, which are determined by
the extrapolation of the elastic scattering data to the bound
state poles, can be called experimental ANCs because they
are obtained from experimental data.
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The paper is organized as follows. Section II contains
the general formalism of the elastic scattering for the su-
perposition of a short-range and the Coulomb interactions
which is necessary for the subsequent discussion. The validity
and applicability of the � method is discussed in Sec. III.
Experimental p-16O phase shifts are used to determine the
ANCs for 17F in Sec. IV. Throughout the paper we use the
system of units in which h̄ = c = 1.

II. BASIC FORMALISM

In this section, we recapitulate basic equations which
are necessary for the subsequent discussion. The Coulomb-
nuclear amplitude of the elastic scattering of particles 1 and 2
is given by

fNC (k) =
∞∑
l=0

(2l + 1) exp(2iσl )
exp(2iδl ) − 1

2ik
Pl (cos θ ).

(1)

Here k is the relative momentum of particles 1 and 2, θ
is the center of mass (c.m.) scattering angle, σl = arg �(l +
1 + iη) and δl are the pure Coulomb and Coulomb-nuclear
phase shifts, respectively, and �(z) is the gamma function.
The Coulomb parameter for the 1+2 scattering state is
given as

η = Z1Z2e
2μ/k, (2)

where the relative momentum k is related to the relative
energy of these particles E by k = √

2μE, μ = m1m2/(m1 +
m2), and mi and Zie are the mass and the electric charge of
particle i, i = 1, 2.

The behavior of the Coulomb-nuclear partial-wave am-
plitude fl = [exp(2iδl ) − 1]/2ik is irregular near E = 0.
Therefore, one can introduce renormalized Coulomb-nuclear
partial-wave amplitude f̃l [16–18] according to

f̃l = exp(2iσl )
exp(2iδl ) − 1

2ik

[
l!

�(l + 1 + iη)

]2

eπη. (3)

Equation (3) can be rewritten as

f̃l = exp(2iδl ) − 1

2ik
C−2

l (η), (4)

where Cl (η) is the Coulomb penetrability factor (or Gamow
factor) determined by

Cl (η) =
[

2πη

exp(2πη) − 1
vl (η)

]1/2

, (5)

vl (η) =
l∏

n=1

(1 + η2/n2) (l > 0), v0(η) = 1. (6)

It was shown in Ref. [16] that the analytic properties of f̃l on
the physical sheet of E are analogous to the ones of the partial-
wave scattering amplitude for the short-range potential, and
it can be analytically continued into the negative energy
region.

The amplitude f̃l can be expressed in terms of the
Coulomb-modified ERF Kl (E) [16,18] by

f̃l = k2l

Kl (E) − 2ηk2l+1h(η)vl (η)
(7)

= k2l

k2l+1C2
l (η)(cot δl − i)

(8)

= k2l

v2
l k

2l�l (E) − ik2l+1C2
l (η)

, (9)

where

Kl (E) = k2l+1
[
C2

l (η)(cot δl − i) + 2ηh(k)vl (η)
]
, (10)

h(η) = ψ (iη) + 1

2iη
− ln(iη), (11)

�l (E) = kC2
0 (η) cot δl, (12)

and ψ (x) is the digamma function. �l (E) is the � func-
tion introduced in [10]. It was shown in [16] that function
Kl (E) defined by Eq. (10) is analytic near E = 0 and can
be expanded into a Taylor series in E. In the absence of the
Coulomb interaction (η = 0), Kl (E) = k2l+1 cot δl (k).

If the 1 + 2 system has a bound state 3 = (1 2) with the
binding energy ε > 0 in the partial wave l, then the amplitude
f̃l has a pole at E = −ε. The residue of f̃l at this point is
expressed in terms of the ANC C

(l)
3→1+2 [17] as

resf̃l (E)|E=−ε = lim
E → −ε

[(E + ε)f̃l (E)] (13)

= − 1

2μ

[
l!

�(l + 1 + ηb )

]2[
C

(l)
3→1+2

]2
, (14)

where ηb = Z1Z2e
2μ/κ is the Coulomb parameter for the

bound state 3 and κ is the bound-state wave number.

III. ON THE VALIDITY AND APPLICABILITY
OF THE � METHOD

In this section, we discuss general properties of the �

method suggested in Ref. [10]. Within this method, one
uses for the analytic continuation the quantity �l (E) given
by Eq. (12) rather than the ERF Kl (E) of Eq. (10). The
reasons for introducing the � method are outlined above in
the introduction. However, the validity of employing �l (E)
was not obvious since �l (E), in contrast to Kl (E), possesses
an essential singularity at E = 0.

For brevity, the subsequent formulas in this section are
written for the s-wave case and index l = 0 is omitted. Never-
theless, all reasonings are valid for arbitrary l.

Consider the partial-wave amplitude f̃ . We write

f̃ (E) = 1

D(E)
, (15)

where

D(E) = kC2(η) cot δ − ikC2(η) ≡ �(E) − ig(E). (16)

If the Coulomb interaction is switched off, then
C2(η) = 1, D(E) = k cot δ − ik. (17)

Denote E = E+ if E > 0 and E = E− if E < 0.
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Note that ig(E+) is purely imaginary. At E = 0 the latter
has the essential and square-root singularities. On the other
hand, ig(E−) is complex. Also, Im �(E+) = 0 and, at E = 0,
�(E) possesses the essential singularity. For E− the imagi-
nary parts of �(E−) and ig(E−) cancel each other and the
essential singularity in Eq. (15) is canceled as well. As a
result, Im D(E−) = 0.

It should be emphasized that D(E+) and D(E−) are
different parts of the same analytic function. The analytic
continuation of D(E) from E+ to E− implies, as in the case
of neutral particles [see Eq. (17)], that the whole function
D(E+) = �(E+) − ig(E+) should be continued rather than
only �(E+). Note that in the � method �(E+) is approx-
imated by polynomials or rational functions in E and then
continued to E− where the approximated �(E−) is equated
to the whole denominator D(E−) and the position of the pole
of f̃ (E) corresponding to a bound state is determined by the
condition �(E−) = 0.

Obviously, such a procedure cannot be regarded as math-
ematically correct. In particular, it does not reproduce the
square-root singularity (the normal threshold) of f̃ (E) at E =
0. The analytic continuation of �(E−) thus obtained back to
E+ results in a wrong equation, Im f̃ (E+) = 0.

We note, however, that in the case of a purely short-range
interaction Im D(E+) decreases as

√
E at E → 0, and in

the presence of a repulsive Coulomb potential it decreases
exponentially:

Im D(E+)|E→0 ∼ e−γ /
√

E, γ = π
√

2μZ1Z2e
2. (18)

And not only Im D(E+) but all its derivatives tend to zero at
E → +0, which is distinct from the case of neutral particles
scattering. Hence, in the presence of the Coulomb interaction
there is a range of values of E in the vicinity of E = 0 in
which one can neglect Im D(E+) and consider that D(E+) ≈
�(E+). Within this range D(E+) can be approximated by a
polynomial or a rational function of E and then continued to
E−. The size of this range can be qualitatively determined by
the condition

|E| � γ 2. (19)

The problem of the validity and applicability of the �

method was discussed in Refs. [11,14,19]. It was stated in
Refs. [11,14] that the � method can be employed to obtain
information on bound states if their energy and the energy of
scattering states used to approximate the � function satisfy
the condition

|E| � (Z1Z2e
2)2μ/2. (20)

As is noted in [11], the right-hand side of (20) is just the
nuclear Rydberg energy: 1 Ry = (Z1Z2e

2)2μ/2. For systems
d + α and α + 12C considered in [14], 1 Ry = 0.13 MeV
and 10.7 MeV, respectively. These values clearly illustrate the
conclusion made in [14] that the � method is quite appropriate
for α + 12C but fails for d + α due to a very narrow range of
allowed energy values.

Inference. In the strict mathematical sense the � method
is not an analytic continuation of the denominator of the
amplitude f̃ from the region E > 0 to the region E < 0,

TABLE I. The experimental proton ANCs C0 for the excited state
and C2 for the ground state of 17F.

C0 (fm−1/2) C2 (fm−1/2) Reference

75.5 ± 15 1.1 ± 0.33 [21]
81 ± 26 1.1 ± 0.10 [15]

73.0 1.0 [22]
77.21 0.91 [23]

79.3 ± 3.9 [24]

but it can still be used for practical purposes for sufficiently
large charges and masses of colliding particles. The assertion
about a strict mathematical proof of the correctness of the �

method [12] is incorrect. This inference agrees with the results
obtained in [11,14].

The � method was used in [13] to obtain ANCs for
resonant nuclear states. In this regard, we would like to
note that no special methods are needed for this purpose.
Both the ERF and � methods were introduced to overcome
the problem of the Coulomb singularity at E = 0. However,
the Coulomb-nuclear scattering amplitude does not possess
the Coulomb singularity in the vicinity of resonances. Hence,
one can simply continue analytically cot δl from the real
positive half-axis of E to the resonance pole.

IV. The p-16O SYSTEM

Consider the p-16O system. For this system m1 = mp =
938.272 MeV, m2 = m16O = 14 895.079 MeV, Z1Z2 = 8.
17F nucleus has two bound states: the ground state 5/2+
(l = 2) and the excited state 17F∗(0.4953 MeV; 1/2+), l = 0.
The binding energies ε of 17F(ground) and 17F∗(0.4953 MeV)
in the p-16O channel are 0.6005 MeV and 0.1052 MeV,
respectively [20].

In this section we present the proton ANCs of 17F for
the first excited state and for the ground state obtained by
extrapolation of the ERF and � functions to the bound state
poles of 17F. They should be compared with the experimental
proton ANCs C0 for the virtual decay 17F → 16O(2s1/2+ ) + p
and C2 for the virtual decay 17F → 16O(1d5/2+ ) + p shown
in Table I. These ANCs are obtained from analyses of the
astrophysical S1 16 factors [21], the peripheral proton transfer
reactions populating the ground and excited states of 17F
[15,22], and the radiative capture 16O(p, γ )17F reaction [23].
The table also shows C0 determined from fitting the effective
field theory (EFT) S factor to the experimental one [24].
Similar results for C0 and C2 were also obtained in Ref. [25].
Below we explore the extrapolation of the elastic scattering
data to the bound states of 17F to obtain the proton’s ANCs
of its excited and ground states. We demonstrate that the
method of the extrapolation of the elastic scattering data to the
negative energy region considered here can serve as another
very useful practical method to extract the ANCs from the
experimental data.

The proton ANCs of 17F were also calculated using var-
ious theoretical approaches; see, for example, [26,27]. In
particular, the results of microscopic calculations [26] are as
follows: C0 = 91.14 fm−1/2, C2 = 0.97 fm−1/2 for the V2
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TABLE II. ANC C0 for the excited state of 17F.

N ERF method � method

C0 (fm−1/2) χ 2 C0 (fm−1/2) χ 2

1 121.65596 0.070 54.06743 0.7911
2 101.86426 0.061 89.13841 0.0789
3 101.86559 0.065 89.13140 0.0846
4 101.86559 0.070 89.13140 0.0911
5 101.86559 0.076 89.13140 0.0986

potential and C0 = 86.42 fm−1/2, C2 = 1.10 fm−1/2 for the
MN potential.

According to [11,14], the larger the charges and masses
of colliding particles are, the less the error associated with
the use of the � method. The numerical parameter, which
characterizes the accuracy of the � method, is the value of
the Rydberg energy of the given system (see Sec. III above).
For the p-16O system 1 Ry = 1.503 58 MeV. This value is
between the values 0.13 MeV and 10.7 MeV corresponding
to the Rydberg energies for the d + α and α + 12C systems,
respectively. Recall that the � method turned out to be quite
successful for α + 12C but failed for d + α [14].

The ANC is obtained by analytic approximation of the ERF
and � function by polynomials in E and the subsequent ana-
lytic continuation of these polynomials to the negative energy
region. The coefficients of the polynomials are determined by
the χ2 method using the experimental phase shifts for p-16O
elastic scattering. To ensure the correct experimental position
of a bound-state pole, the values of ERF and � function
at E = −ε are added as fitting parameters to their values
at positive energies: Kl (E)|E=−ε = 2ηk2l+1h(η)vl (η)|E=−ε,
�l (E)|E=−ε = 0.

To employ the χ2 criterion, the errors equal to ±1◦ are
applied to phase shifts δl (E). If δl + 1◦ exceeds 180◦, the
value 179.999 999 99◦ is used instead of δl + 1◦. We use
Eqs. (13) and (14) to find the ANCs.

A. ANC for the excited state of 17F

We begin with the analysis of the 1/2+ state of the p-16O
system (l = 0). For this state, we use the results of the latest
phase shift analysis obtained in Ref. [28], in which 16 values
of δ0 in the range of E = 0.3628–1.8738 MeV are presented.
First, let us consider the approximation of the ERF K0(E).
Our calculations are presented in the second and third columns
of Table II. In this table, as well as in the following Table III,
N denotes the power of the approximating polynomial. One
sees that the obtained ANC C0 is convergent with increasing
N . Convergence is achieved already with N = 3. Hence we
can consider the variant N = 3 as sufficient.

Figure 1 shows the polynomial approximation of the func-
tion K0(E). Note that the value of K0(E) at the origin is not
zero but is very small and cannot be distinguished from zero
in the scale of this figure.

Consider now the analytic continuation of the � function.
Function �0(E) is approximated by polynomials in the same
way as for K0(E). The polynomial approximation of �0(E)

TABLE III. ANC C2 for the ground state of 17F.

N ERF method � method

C2 (fm−1/2) χ 2 C2 (fm−1/2) χ 2

1 0.71537 0.16 0.52260 0.36
2 0.87884 0.18 2.35850 0.19
3 0.87881 0.20 2.33879 0.22
4 0.87881 0.23 2.33876 0.26
5 0.87881 0.28 2.33876 0.31

is shown in Fig. 2 and the results of the calculations are given
in the fourth and fifth columns of Table II. It is seen that,
similarly to the case of K0(E), the ANC C0 converges rapidly
with increasing N . Convergence is reached also with N = 3
and the result is C0 = 89.131 40 fm−1/2. This value does not
deviate much from C0 = 101.865 59 fm−1/2 obtained using
polynomial approximation of K0(E). The difference between
these values can be related to the approximate nature of the
� method. Note that the upper bound of the used energy
interval (E = 1.8738 MeV) slightly exceeds the value 1 Ry =
1.503 58 MeV for the p-16O system. As was mentioned in
Sec. III, 1 Ry can be considered as an upper bound for
employing the � method. Note that the extrapolated ANCs
are in a reasonable agreement with the experimental ANCs
from Table I.

B. ANC for the ground state of 17F

Owing to the absence of more recent phase shift analyses
of p + 16O scattering in the 5/2+ state, we use here the rather

−1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

−0.5 0.0 0.5 1.0 1.5 2.0

K
0(

E
) 

(1
0−

2  f
m

−
1 )

Ec.m. (MeV)

FIG. 1. Polynomial approximation of K0(E) for p + 16O scat-
tering in the J π = 1/2+ state. Black squares with error bars are the
results obtained from the experimental scattering phase shifts [28].
The solid red line is the polynomial approximation with N = 1,
the dashed blue line is the polynomial approximation with N = 2.
The lines corresponding to higher N are practically indistinguishable
from the N = 2 line due to fast convergence. Therefore, they are not
shown.
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FIG. 2. Polynomial approximation of �0(E) for p + 16O scatter-
ing in the J π = 1/2+ state. The notations are the same as in Fig. 1.

old results of the phase shift analysis [29] in which nine
values of δ2(5/2) in the interval of E = 2.35–6.60 MeV were
presented. The procedure is analogous to the one used for
the excited state described above. The corresponding ANC is
denoted by C2. The results of the polynomial approximation
of the ERF are shown in the second and third columns of
Table III and in Fig. 3.

It is seen that, similar to the case of the excited state of 17F,
the ANC C2 quickly converges with increasing N . The con-
vergent result for ANC of C2 = 0.88 fm−1/2 is achieved with
N = 3. Note that the ANC obtained using K0(E) polynomial
approximation is close to the ANCs from Table I.

The results of the polynomial approximation of �2(E) are
shown in third and fourth columns of Table III and in Fig. 4.
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FIG. 3. Polynomial approximation of K2(E) for p + 16O scat-
tering in the J π = 5/2+ state. Black squares with error bars are the
results obtained from the experimental scattering phase shifts [29].
Other notations are the same as in Fig. 1.
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FIG. 4. Polynomial approximation of �2(E) for p + 16O scatter-
ing in the state J π = 1/2+. The notations are the same as in Fig. 3.

Although the results appear to converge, they converge to an
obviously wrong value. Most likely, this is due to the energy
interval used for the approximation (E = 2.35–6.60 MeV) far
exceeding the applicability limit of the � method for the
p-16O system of 1 Ry = 1.503 58 MeV as discussed above.

V. CONCLUSIONS

It is shown that the � method suggested in [10] is not
strictly correct in the mathematical sense since it is not an
analytic continuation of a partial-wave scattering amplitude
to the region of negative energies. However, it can be used for
practical purposes for sufficiently large charges and masses
of colliding particles. It was demonstrated in the previous
paper [14] that this method was effective for the α-12C system
(Z1Z2 = 12) but failed for the d-α system (Z1Z2 = 2). In
the present work, both the ERF and � methods of analytic
continuation of scattering data are applied to the p-16O system
(Z1Z2 = 8) which can be considered as intermediate between
d-α and α-12C systems. Both methods are used to determine
the ANCs for the ground 5/2+ and excited 1/2+ states of
17F nucleus in the p-16O channel. Possible errors are added
to experimental phase shifts.

The values of the ANC C0 for the excited 1/2+ state of 17F
obtained in the present paper on the basis of the phase-shift
analysis of Ref. [28] are 101.9 fm−1/2 and 89.1 fm−1/2 for the
ERF and � methods, respectively. They are not much different
from each other. Note that both ANCs are in reasonable
agreement with the experimental ANCs; see Table I. The ANC
C2 for the ground state 5/2+ extracted using the phase-shift
analysis of [29] is 0.88 fm−1/2 for the ERF method and
2.34 fm−1/2 for the � method. The value 0.88 fm−1/2 is
close to the experimental ANCs; see Table I. The polynomial
approximation of �2(E) for p-16O scattering in the state
Jπ = 5/2+ leads to the ANC C2 = 2.34 fm−1/2, which is
significantly higher than the range of this ANC available in the
literature and should be considered as erroneous. Such a large
discrepancy between the results of the ERF and � methods
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most likely is due to the fact that the energy interval used for
the polynomial approximation of �2(E) function far exceeds
the limit of the applicability of the � method.

Summarizing, in this paper we demonstrated that the
polynomial extrapolation of the ERF and � functions with
the preset experimental binding energy gives converging and
very reliable results for the proton ANCs of the ground and
first excited states of 17F. We presented a practical tool for
experimentalists to determine the ANCs from the measured
elastic scattering phase shifts. In nuclear astrophysics one
needs to know the neutron ANCs. However, it is difficult to
accurately measure the neutron elastic scattering phase shifts.
Using the methods described here one can determine the
proton ANCs from the proton elastic scattering phase shifts
and then using the mirror symmetry determine the neutron
ANCs of the mirror nuclei [30,31]. The same method can be
used to determine the α-particle ANC on an unstable nucleus
if the mirror α-particle ANC on a stable nucleus can be

determined using elastic scattering data. Another very promis-
ing application of the extrapolation method addressed here is
the effective field theory. In the EFT the elastic scattering data
are analyzed at positive energies and parametrized in terms of
the EFT parameters [24,32]. These parameters can be related
to the EFR ones and can be used to extrapolate the elastic
scattering phase shifts to bound state poles to determine the
ANCs [24].
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