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High-energy nuclear reactions enable us to produce a large variety of hypernuclei through the capture of
hyperons by nuclear residues. We explore the statistical disintegration of such hypernuclear systems and the
connection of fragment production to the binding energies of hyperons. It has been demonstrated that the hyperon
binding energies can be effectively evaluated from the yields of different isotopes of hypernuclei by using the
double ratio method. The advantages of this procedure are its universality and the possibility to involve many
different isotopes. This method can also be applied for multistrange nuclei, for which binding energies were
very difficult to measure in previous hypernuclear experiments. Corrections caused by secondary deexcitation
processes are also discussed.

DOI: 10.1103/PhysRevC.98.064603

I. INTRODUCTION

A promising way to produce hypernuclei is to use the
copious production of hyperons (�,�,�,�) in relativistic
nuclear reactions and their subsequent capture by nuclei,
e.g.„ in the fragmentation region. Compared to the time
scale of a heavy-ion reaction, hypernuclei can be considered
stable. Baryons with strangeness embedded in the nuclear
environment allow us to explore the many-body aspects of
the strong three-flavor interaction (i.e., including u, d, and
s quarks) at low energies. Hypernuclei can also serve as a
tool to study the hyperon-nucleon and potentially the hyperon-
hyperon interactions. The investigation of reactions leading to
the formation of hypernuclei and the structure of hypernuclei
have been a growing field of nuclear physics. It provides a
complementary method to improve traditional nuclear studies
and opens new horizons for studying particle physics and
nuclear astrophysics (see, e.g., Refs. [1–6] and references
therein).

Traditionally, hypernuclear physics has been focused
mainly on spectroscopic information and restricted by a quite
limited set of lepton- and hadron-induced reactions [1,2]. In
these reactions the hyperons produced in the first interaction
are directly captured by nuclei in their ground states and low
excited states. Kaons have often been used for tagging this
production channel. Within this method it was possible to
obtain the binding energies of hyperons inside nuclei by mea-
suring nearly all products of the reaction exactly. However,
there are severe limitations on such methods, since the targets
should be mainly stable (not radioactive). Therefore many
hypernuclear isotopes are not reachable experimentally in this
case.

We emphasize another possibility to form hypernu-
clei in the relativistic deep-inelastic reactions leading to

fragmentation processes, as they were discovered long ago
[7]. One can form hypernuclei of all sizes and isospin content
when these hyperons are captured by nucleons and nuclear
fragments produced in the same reaction events. Many exper-
imental collaborations (STAR at RHIC [8], ALICE at LHC
[9], PANDA [10], CBM [11], HypHI, Super-FRS, R3B at
FAIR [12,13], BM@N, MPD at NICA [14]) plan to inves-
tigate hypernuclei and their properties in reactions induced
by relativistic hadrons and ions. The limits in isospin space,
particle unstable states, multiple strange nuclei and precise
lifetime measurements are unique topics of these fragmenta-
tion reactions. A capture of hyperons by large nuclear residues
is especially interesting since it provides a natural way to
study large bulbs of hypermatter and its evolution, for exam-
ple, the liquid-gas-type phase transition. It was theoretically
demonstrated [5,15–21] that in such a way it is possible to
produce all kinds of hypernuclei including multistrange ones.
There were also experimental confirmations of such processes
leading to hypernuclei [12,22,23].

Below, we consider deep-inelastic reaction processes
caused by relativistic projectiles in nuclear matter leading to
abundant production of hyperons in primary and secondary
hadron collisions. In the following we take into account the
capture of these hyperons by the matter with producing hy-
permatter in chemical equilibrium. This is a typical situation
for fragmentation and multifragmentation reactions initiated
in relativistic peripheral nucleus-nucleus collisions, as well
as in high-energy hadron/lepton reactions on large targets.
The possibility to obtain many kinds of hypernuclei in the
same reaction opens new opportunities for their investigation
in comparison with previous methods. Complex multihyper-
nuclear systems incorporating more than two hyperons can
be created in the energetic nucleus-nucleus collisions [16,19].
This may be the only conceivable method to go beyond
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double hypernuclei, and obtain new experimental information
on properties of multihyperon systems. In this paper we
continue the theoretical investigation of this kind of reaction
and propose a new double ratio method demonstrating how
the important knowledge on the hyperon binding energies,
including in multistrange nuclei, can be extracted from the
analyses of relative yields of hypernuclei.

II. STATISTICAL PRODUCTION OF HYPERNUCLEI
FROM EXCITED HYPERNUCLEAR SYSTEMS

The hyperons are abundantly produced in high-energy
particle reactions, e.g., nucleus-nucleus, hadron-nucleus, and
lepton-nucleus collisions. This production of strangeness cor-
relates with particle production and it is usually accompanied
by many nucleons emission within such explosive events.
An initial nucleus can lose many nucleons, and, as known
from normal nucleus interactions, these processes can lead
to a high excitation of remaining residual nuclei, see, e.g.,
Refs. [24–26]. Therefore, the capture of a produced hyperon
will be also realized mostly at the excited nuclei. As a result,
such deep-inelastic processes can form large hyperresidues
with very broad distribution in mass and excitation energy. As
was demonstrated in our previous works [17–19], the yields
of the hypernuclear residues in peripheral ion collisions will
saturate with energies above 3–5 A GeV (in the laboratory
frame).

The reactions of formation of excited nuclear residues in
high-energy nucleus-nucleus and hadron-nucleus collisions
were intensively studied in connection with fragmentation and
multifragmentation processes. In particular, masses and exci-
tation energies of the residues are known from experimental
and theoretical works, e.g., Refs. [19,25]. At high excitation
energies, the dominating decay mode is corresponding to a
multifragmentation process [24,27,28]. The interactions of a
hyperon in a nucleus are similar to normal nuclear ones, and
its potential is expected to be around two-thirds of the nucleon
potential. Therefore, the general picture of disintegration reac-
tions with a large energy deposition in a big piece of nuclear
matter does not change in the presence of few hyperons.
According to the present understanding, multifragmentation
is a relatively fast process, with a characteristic time around
100 fm/c, where, nevertheless, a high degree of equilibration
(chemical equilibrium) is reached. This is a consequence of
the strong interaction between baryons located in the vicinity
of each other in the freeze-out volume.

The statistical models have demonstrated very good
agreement with fragmentation and multifragmentation data
[24,25,27,29]. It is naturally to extend the statistical ap-
proach for hypernuclear systems. It is also instructive that
the same numerical methods used previously for execution
of the models can be extended. The statistical multifragmen-
tation model (SMM), which was very successfully applied
for description of normal multifragmentation processes, was
generalized for hypernuclei in Ref. [15]. A transition from
the compound hypernucleus to the multifragmentation regime
was also under investigation [5,15]. In the SMM, the break-up
channels are generated according to their statistical weight.
The grand canonical approximations leads to the following

average yields of individual fragments with the mass (baryon)
number A, charge Z, and the �-hyperon number H :

YA,Z,H = gA,Z,H · Vf

A3/2

λ3
T

exp

[
− 1

T
(FA,Z,H − μAZH )

]
,

μAZH = Aμ + Zν + Hξ. (1)

Here T is the temperature, FA,Z,H is the internal free energies
of these fragments, Vf is the free volume available for the
translation motion of the fragments, gA,Z,H is the spin de-

generacy factor of species (A,Z,H ), λT = (2πh̄2/mNT )
1/2

is the baryon thermal wavelength, mN is the average baryon
mass. The chemical potentials μ, ν, and ξ are responsible
for the mass (baryon) number, charge, and strangeness con-
servation in the system, and they can be numerically found
from the corresponding conservation laws accounting for the
total baryon number A0, the total charge Z0, and the total
hyperon number H0 in the system. In this model the statistical
ensemble includes all break-up channels composed of baryons
and excited fragments. The primary fragments are formed in
the freeze-out volume V . We use the excluded volume approx-
imation V = V0 + Vf , where V0 = A0/ρ0 (ρ0 ≈ 0.15 fm−3 is
the normal nuclear density), and parametrize the free volume
Vf = κV0, with κ ≈ 2, as taken in description of experiments
in Refs. [25,27,29].

The following model prescriptions depend on the physi-
cal processes, which are the most adequate to the analyzed
reactions. In many cases nuclear clusters in the freeze-out
volume can be described in the liquid-drop approximation:
Light fragments with mass number A < 4 are treated as
elementary particles with corresponding spins and translation
degrees of freedom (nuclear gas). Their binding energies were
taken from experimental data [1,2,24]. The fragments with
A = 4 are also treated as gas particles with table masses,
however, some excitation energy is allowed Ex = AT 2/ε0

(ε0 ≈ 16 MeV is the inverse volume level density parameter
[24]), that reflects a presence of excited states in 4He, 4�H,
and 4�He nuclei. Fragments with A > 4 are treated as heated
liquid drops. In this way one can study the nuclear liquid-gas
coexistence of hypermatter in the freeze-out volume. The
internal free energies of these fragments are parametrized as
the sum of the bulk (FB

A ), the surface (FS
A), the symmetry

(F sym
AZH ), the Coulomb (FC

AZ), and the hyperenergy (F hyp
AH ):

FA,Z,H = FB
A + FS

A + F
sym
AZH + FC

AZ + F
hyp
AH . (2)

Here, the first three terms are written in the standard liquid-
drop form [24]:

FB
A =

(
−w0 − T 2

ε0

)
A , (3)

FS
A = β0

(
T 2

c − T 2

T 2
c + T 2

)5/4

A2/3 , (4)

F
sym
AZH = γ

(A − H − 2Z)2

A − H
, (5)

where w0 = 16 MeV, β0 = 18 MeV, Tc = 18 MeV, and γ =
25 MeV are the model parameters, which are extracted from
nuclear phenomenology and provide a good description of
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multifragmentation data [24,25,27,29]. The Coulomb inter-
action of fragments is described within the Wigner-Seitz
approximation, and FC

AZ is taken as in the Refs. [15,24]:

FC
AZ (V ) = 3

5

[
1 −

(
V0

V

)1/3
]

(eZ)2

r0A1/3
, (6)

where r0 = 1.2 fm and e denotes the electron charge.
For our purpose the free hyperenergy term F

hyp
AH is very

important. We assume that it is determined only by the binding
energy of hyperfragments. Presently, only the masses of a few
ten single hypernuclei (mostly light ones) are experimentally
established [1,2], and only a few single-event measurements
of double hypernuclei exist. Still, there are theoretical esti-
mations of their masses including hyperon binding energies
based on this limited amount of available data. In Ref. [15]
we have suggested a liquid drop hyperterm:

F
hyp
AH = (H/A) · (−10.68A + 21.27A2/3) MeV. (7)

Such a term is proportional to the share of hyperons in matter
(H/A). The second part is the volume contribution minus the
surface one, which is a normal liquid-drop parametrization
assuming saturation of the nuclear interaction. The linear
dependence at small H/A is in agreement with theoretical
predictions [30] for hypermatter. As was demonstrated in
Refs. [5,15] this parametrization of the hyperon free energy
describes available experimental data on the hyperon separa-
tion energy quite reasonably. It is important that two boundary
physical effects are correctly reproduced: The binding ener-
gies of light hypernuclei (if a hyperon substitutes a neutron)
can be lower than in normal nuclei, since the hyperon-nucleon
potential is smaller than the nucleon-nucleon one. However,
since the hyperon can take the lowest s state, it can increase
the nuclear binding energies, especially for large nuclei. There
were also suggested other phenomenological hyperformulae
(e.g., Ref. [31]), and their sensitivity for fragment production
was under investigations [15].

III. DOUBLE RATIO METHOD FOR EVALUATION
OF THE HYPERON BINDING

The advantage of the following suggested method [32] is
that it does not depend on the theoretical assumptions on
the nuclear hyperterms, e.g., formula (7), and is determined
mainly by the fragment yields obtained in the reactions.
The experimental information on hypernuclei is very limited,
therefore, there is an urgent need to increase the number of
known hypernuclei by involving new reactions for experi-
mental measurements. The deep-inelastic fragmentation and
multifragmentation reactions are very promising since they
lead to the production of both strangeness and large frag-
ments. One can also use different assumptions on fragment
parameters in the statistical freeze-out state depending on
the reaction/production mechanisms. As established in the
analysis of normal multifragmentation experiments, there are
methods to identify both nuclear fragments and the processes
of their production in the same events. Within the statistical
approaches we demonstrate below how the hypernuclei yields
can be used for addressing the hyperon binding energies.

A. Standard multifragmentation picture

As the standard case we can use the formulas (1) and (2).
It is convenient to rewrite the above statistical expressions
in order to show separately the binding energy Ebh

A of one
hyperon at the temperature T inside a hypernucleus with
(A,Z,H ) as follows:

Ebh
A = FA,Z,H − FA−1,Z,H−1. (8)

Since � hyperon is usually bound, this value is negative. Then
the yield of hypernuclei with an additional � hyperon can be
recursively written by using the former yields as follows:

YA,Z,H = YA−1,Z,H−1 · CA,Z,H · exp

[
− 1

T

(
Ebh

A − μ − ξ
)]

,

(9)

where CA,Z,H = (gA,Z,H /gA−1,Z,H−1) · (A3/2/(A − 1)3/2)
depends mainly on the ratio of the spin factors of (A,Z,H )
and (A − 1, Z,H − 1) nuclei, and very weakly on A.
Since we assume in the liquid-drop approximation that
the fragments with A > 4 are excited and do populate
many states above the ground ones according to the given
temperature dependence of the free energy, then we take
gA,Z,H = 1. Within SMM we can connect the relative yields
of hypernuclei with the hyperon binding energies. It is
interesting that in this mathematical formulation one can use
other parametrizations to describe nuclei in the freeze-out.
This statistical approach is quite universal, and only small
corrections such as the table-known spins and energies may
be required for more extensive consideration.

We propose the following recipe for obtaining information
on the binding energies of hyperons inside nuclei from the
hypernuclei yields. Let us take two hypernuclei with dif-
ferent masses, (A1, Z1,H ) and (A2, Z2,H ), together with
nuclei, which differ from them only by one � hyperon. We
consider the double ratio (DR) of YA1,Z1,H /YA1−1,Z1,H−1 to
YA2,Z2,H /YA2−1,Z2,H−1. Then, one can obtain from the above
formulas

DRA1A2 = YA1,Z1,H /YA1−1,Z1,H−1

YA2,Z2,H /YA2−1,Z2,H−1

= αA1A2 exp

[
− 1

T

(
�Ebh

A1A2

)]
, (10)

where

�Ebh
A1A2

= Ebh
A1

− Ebh
A2

, (11)

and the ratio of the C coefficients is denoted by

αA1A2 = CA1,Z1,H /CA2,Z2,H . (12)

We see that the double ratio depends only on the tempera-
ture of the system and the difference between the hyperon
separation energies of the fragments. We can also control a
small uncertainty coming from the Coulomb interaction of
fragments in the freeze-out (see below Sec. III B).

One can simply deduce from Eq. (10) that the logarithm
of the double ratio is directly proportional to the difference
of the hyperon binding energies in A1 and A2 hypernuclei,
�Ebh

A1A2
, divided by temperature. Therefore, we can finally
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rewrite the relation between the hypernuclei yields and the
hyperon binding energies as

�Ebh
A1A2

= T · [
ln

(
αA1A2

) − ln
(
DRA1A2

)]
. (13)

Sometimes we expect a large difference in hyperon binding
energies of both involved nuclei. For example, according to
the liquid-drop approach [see Eq. (2)], it can happen when
the difference between A1 and A2 is considerable (i.e., the
mass number A2 is much larger than A1). The influence
of the preexponential αA1A2 coefficients is small and it can
be directly evaluated depending on the selected hypernuclei.
This opens a possibility for the explicit determination of the
binding energy difference from the yields measured in the
experiments. Within this method, it is necessary to measure
a certain number of the hypernuclei in one reaction and select
the corresponding pairs of hypernuclei. One has to identify
such hypernuclei, for example, by the correlations and vertex
technique. However, there is no need to measure very pre-
cisely the momenta of all particles produced in the reaction
(including after the week decay of hypernuclei) to obtain their
binding energy, as it must be done if one use direct processes
of the hyperon capture in the ground and slightly excited states
of the target nuclei (e.g., in missing mass experiments [2,33]).
Therefore, our procedure perfectly suits for investigation of
hypernuclei in the high-energy deep-inelastic hadron- and
ion-induced reactions.

B. Application of the method

It is clear from Sec. III A that the suggested double ratio
approach can be applied to hypernuclei with any number of
hyperons. Obviously, Eqs. (1), (10), and (13) can be used for
H > 1. In heavy-ion nuclear reactions one can obtain a multi-
strange residues with a quite large probability [19], and a very
wide mass/isospin range will be available for examination. As
a result, one can get direct experimental evidences for hyperon
binding energies in double/triple hypernuclei and on influence
of the isospin on hyperon interactions in multihyperon nuclear
matter.

The connection between the relative hyperon binding en-
ergies �Ebh

A1A2
and their absolute values can be done straight-

forwardly such that it will be sufficient to make normalization
to the binding energy of a known hypernuclei (e.g., A2)
obtained with other methods. However, even relative values
are extremely important, when we pursue a goal to investi-
gate the trends of the hyperon interaction in exotic nuclear
surroundings, e.g., neutron-rich or neutron-poor ones, and
investigate multistrange hypernuclei.

To illustrate the last point in Fig. 1, we present the
dependence of the difference in hyperon binding energies
�Ebh

A1A2
(the notation is shortened to �Ebh) divided by

the temperature, versus �A = A2 − A1 the mass number
difference of the isotopes. The calculations were performed
with the hyper-SMM version (see Refs. [5,15]) outlined
in Sec. II, for the system with baryon number A0 = 200,
charge Z0 = 80, and containing H0 = 4 � hyperons.
The formulas (10) and (13) are applied to extract this
difference. We have plotted nine various double ratios of
isotopes by suggesting hyper-13C nucleus as A1. Other

FIG. 1. The difference of binding energies of hyperons in nu-
clei extracted from the double yield ratio (�Ebh) divided by the
temperature T versus the mass number difference of these nuclei
�A, as calculated with the statistical model at different temperatures
relevant for multifragmentation reactions. Baryon composition and
temperatures (for groups of curves) of the initial system are given
in the figure. The results for involved isotopes (see the text) are
demonstrated by different color symbols connected with lines, where
circles (solid lines) are for single hypernuclei, inverse triangles
(dotted lines) are for double hypernuclei, squares (dashed lines) are
for triple hypernuclei.

nuclei (A2 = 21, 25, 33, 41, 50, 60, 81, 101, 125)
are selected in order to provide a broad and representative
range of �A. In particular, we consider the yield ratios of
21OH�/20O(H−1)�, 25MgH�/24Mg(H−1)�, 33PH�/32P(H−1)�,
41SH�/40S(H−1)�, 50CaH�/49Ca(H−1)�, 60CrH�/59Cr(H−1)�,
81GeH�/80Ge(H−1)�, 101ZrH�/100Zr(H−1)�, 125SnH�/
124Sn(H−1)�, to 13CH�/12C(H−1)�, where H = 1, 2, 3.
We investigate the sensitivity of our results to the primary
excitation of the system by assuming temperatures T = 2, 4,
and 6 MeV, which cover the expected temperature range
in fragmentation and multifragmentation reactions. One
can see that the extracted �Ebh/T increases regularly with
�A, as follows from the hyperterm (7) adopted in the
model. It is interesting that in our case this difference in
the multistrange hypernuclei is close to single hypernuclei.
This is an obvious consequence of the model formula for
hyperons in nuclei. Naturally, this function might be another
one reflecting modified hyperon binding energies, and it
could be investigated via the double ratios from experimental
data. In such a way we can get also an interesting possibility
to improve phenomenological formulae for hypernuclei
according to the observed trends.

If we take into account the temperature we can get very
instructive curves of �Ebh versus �A shown in Fig. 2. For
simplicity, only the results obtained via double ratio of single
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FIG. 2. The difference of binding energies of hyperons in nuclei
(�Ebh) versus the mass number difference of these nuclei �A

for single hypernuclei. The statistical calculations are performed
involving the double ratio yields shown in the figure for temperatures
T = 2 MeV (dashed line), 4 MeV (thin solid line, circle symbols),
and 6 MeV (dotted line). The stars (thick solid line) are the direct
calculation of �Ebh according to the adopted hyperfragment formula
(2)–(7) at T = 0 and V → ∞. The initial parameter of the hypernu-
clear system are as in Fig. 1.

hypernuclei and normal nuclei are shown. However, as is
clear from Fig. 1 an involvement of multiple hypernuclei lead
to similar trends. The demonstrated regularities are again
obviously consistent with the adopted hypermass formula
(see also Fig. 1 in Ref. [5]). For a detailed comparison,
with the solid dark curve connecting the star symbols we show
the results for the differences in hyperon binding energies of
the selected isotopes obtained directly from this mass formula.
One can see within SMM that by decreasing temperature we
approach the real formula values. The physical reason of the
deviations is in the temperature corrections of the bulk and
surface fragment energies (in the liquid-drop approximation,
see Sec. II). Nevertheless, they decrease with temperature
and are under control in the model. Another reason for
the deviation is the Coulomb interaction of fragments in
the freeze-out volume, see formula (6). The Coulomb term
influences the fragment yields and their double ratios,
especially if large fragments are involved. In the model, when
we increase this volume our results for small T become very
close to the mass formula ones. The results at all temperatures
are regular and close to each other within 10%, and this gives
us a confidence that the method is reliable.

The comprehensive analysis of double hypernuclei and
multihyperon nuclei is possible within this approach, and it

seems a realistic way to address experimentally the hyperon
binding also in multistrange nuclei. This is an important
advantage over the standard hypernuclear measurements. Ac-
tually, the disintegration of hot hyperresidues best suits this
analysis since all kinds of normal and hyperfragments can be
formed within the same statistical process. As was previously
established in multifragmentation studies [34,35], the selec-
tion of adequate reaction conditions can be experimentally
verified.

IV. APPROXIMATION OF COLD FRAGMENTS
IN THE FREEZE-OUT STATE

In the first statistical approaches, the production of final
(cold) fragments in the freeze-out volume were considered
(see, e.g., Ref. [36]). In this case the sophisticated description
of the hot fragments is omitted, and we consider only fixed
fragment binding energies without a temperature dependence.
This physical condition may still be adequate for the forma-
tion of lightest fragments in the high-energy nuclei collisions
with a large energy deposition. Then, after disintegration
of nuclear systems, the grand-canonical yields of a normal
nucleus in the ground state can be written as

YA,Z = gA,Z · Vf

A3/2

λ3
T

exp

[
− 1

T

(
Eb

A,Z − μA,Z

)]
,

μA,Z = Aμ + Zν, (14)

where A,Z are the nucleon number and charge, gA,Z is the
standard spin factor, and Eb

A,Z is the nucleus ground-state
binding energy.

It is obvious that this case can be easy generalized for
hypernuclei, with the same expression (1), if we take into
account the binding energy of hyperons and introduce the total
(temperature independent) nucleus binding energy Eb

A,Z,H

instead of FA,Z,H . Then all our formulas (8)–(12) remain
similar to the standard multifragmentation, however, with
new spin factors. In particular, the relation (13) can be also
used for evaluation of the hyperon binding energy from the
hypernuclei yields.

Isobar double ratios

Another interesting method for this study is to use the
double ratios of yields with the same mass numbers for
light and heavy pairs. This case is easy to illustrate for cold
fragments. The so-called strangeness population factor S was
introduced in Ref. [37] for interpretation of light hypernuclei
production in relativistic heavy-ion collision (at momenta of
11.5 A GeV/c):

S = Y3H�
/Y3He

Y�/YP
. (15)

Generally, if we involve the pairs of nuclei which differ
by one proton instead of � hyperon, we can write the isobar
double ratio:

DRI
A1A2

= YA1,Z1,H /YA1,Z1+1,H−1

YA2,Z2,H /YA2,Z2+1,H−1
= αI

A1A2
exp

[
− 1

T

(
�Eb

X

)]
,

(16)
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where

αI
A1A2

= gA1,Z1,H /gA1,Z1+1,H−1

gA2,Z2,H /gA2,Z2+1,H−1
, (17)

and the binding energy difference between four fragments

�Eb
X = (

Eb
A1,Z1,H

− Eb
A2,Z2,H

)
− (

Eb
A1,Z1+1,H−1 − Eb

A2,Z2+1,H−1

)
. (18)

The expression (16) can not be factorized into the parts related
to the binding energies of nuclei with A1 and A2 and the parts
related only to the hyperon binding energy [as it was possible
by using the formula (8)], since it includes also the difference
of the hyperon energy in hypernuclei with Z + 1. Therefore,
such an extraction of the hyperon binding energy would
require a complicated solution of the coupled equations and
extra experimental isobar measurements. Still, the convenient
application of DRI can be found for single hypernuclei with
H = 1, when there are only normal nuclei (at H − 1 = 0 and
Z + 1) with known binding energies as the pair nuclei. In this
case one can rewrite the formula (13) as

�Ebh
A1A2

= T · [
ln

(
αI

A1A2

) − ln
(
DRI

A1A2

)] + �EGS
A1A2

, (19)

where �EGS
A1A2

is the difference of the ground-state binding
energies of nonstrange nuclei:

�EGS
A1A2

= (
Eb

A1,Z1+1 − Eb
A2,Z2+1

) − (
Eb

A1−1,Z1
− Eb

A2−1,Z2

)
.

(20)

In the above-mentioned example, as was obtained by AGS-
E864 collaboration [37], we have S = 0.36 (with large error
bars + − 0.26) for the most central collisions and for frag-
ments produced in the midrapidity region. Since the binding
energies of all nuclei in S factor (15) are known from other
experiments we can evaluate from formula (16), the tempera-
ture of the excited hypersource leading to production of these
fragments and hypernuclei. The found chemical temperature
is around T ≈ 5.5 MeV. This is typical for the nuclear liquid-
gas phase coexistence region in nuclear finite systems under
the condition that all available baryons are produced in dy-
namical nucleon collisions inside nuclei. It is also consistent
with the limited equilibrium of fragments reported previously
for central heavy-ion collisions [38].

V. PARAMETERS AND PROCESSES FOLLOWING
THE STATISTICAL FRAGMENTATION

The conception of the statistical formation of fragments
in the freeze-out volume suggests the existence of important
parameters, such as the temperature. In addition, the primary
fragments may be excited and it suggests some phenomena,
as secondary processes, which can finally change the baryon
composition of fragments after they leave the freeze-out vol-
ume. All these effects were under careful examination previ-
ously in multifragmentation reactions in normal nuclei. We
outline how it could be taken into account in the hypernuclear
case.

FIG. 3. The temperature versus the excitation energy for the
disintegration of the hypernuclear system with parameters given
in the figure. The statistical calculations including different initial
numbers of hyperons (0, 2, and 4) are shown by different symbols
and lines. (For better view the symbols are shifted slightly along the
horizontal axis being at the same E∗.) The helium-lithium isotope
temperature (see the text) calculated within the standard multifrag-
mentation model are represented by diamonds.

A. Temperature and the freeze-out state

In order to extract �Ebh
A1A2

from experiments within the
double ratio approach, we should determine the temperature
T of the disintegrating hypernuclear system. This quantity
was under intensive investigation in recent years in connection
with multifragment formation. There were various suggested
methods such as using the kinetic energies of fragments, ex-
cited states population, and isotope thermometers [28,39,40].
Usually, all evaluations give the temperature around 4–6 MeV
in the very broad range of the excitation energies (at E∗ >
2−3 MeV per nucleon), providing so-called a plateaulike be-
havior of the caloric curve [24,28]. The isotope thermometer
method is the most promising, since it allows for involving
a large number of normal measured isotopes in the same
reactions, which produce hypernuclei. The corresponding ex-
perimental and theoretical research were performed in pre-
vious years to investigate better the temperature and isospin
dependence of the nuclear liquid-gas type phase transition
[40–43].

In Fig. 3 we show the caloric curve (the temperature
versus the excitation energy) for the nuclear system with
the mass number of 200 and the charge of 80. The calcula-
tions were done in the framework of the above formulated
statistical model [5,15]. The cases with the initial hyperon
numbers of 0, 2, and 4 are considered. One can see that
a small hyperon admission in the system does not change
practically the caloric curve, but only the temperature be-
comes a little bit lower. We have calculated also the so-
called helium-lithium temperature (THeLi) within the normal
multifragmentation model. Similarly, we expect a negligible
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variation of the He and Li yields, and their yield ratios,
caused by the small hyperon admission. This temperature was
found from the standard prescription for isotope yields as it
was suggested in Ref. [28], and as performed in many other
works. Such an isotope temperature follows quite reason-
ably the normal temperature in the most important fragment
production region of excitation energy from 2–6 MeV per
nucleon. Therefore, the correction with 20% to 30% THeLi

can be used for the determination of temperatures in the
systems.

In addition to measuring isotopes and hyper-isotopes it
would be instructive to select the reaction conditions leading
to similar multifragmentation freeze-out states. The freeze-out
restoration methods were extensively tested previously. In
particular, the masses and excitation energies of the hypernu-
clear residues can be found with a sufficient precision within
the methods developed in Refs. [34,35]. In the future one
can analyze the subsequent ranges of the excitation energy
of sources (from low to very high ones) to investigate the
evolution of the hypernuclei with the temperature and the
phase transition in hypermatter. It is especially interesting to
move into the neutron-rich domain of the nuclear chart, by
selecting neutron-rich target or projectiles.

B. Secondary deexcitation corrections

In many physical cases, the final fragments can be consid-
ered as produced statistically in the freeze-out volume. How-
ever, taking into account the experience accumulated for the
nuclear reactions so far, we may expect that the primary frag-
ments and hyperfragments (especially large ones) formed in
the freeze-out are excited. Therefore, they will quickly decay
after escaping the freeze-out stage. For low excited sources
this fragment excitation energy should roughly correspond
to the compound nucleus temperature. As was established in
theory and multifragmentation experiments [44], the internal
fragment excitations can reach around 2 MeV per nucleon
and even more if the residue sources are highly excited. The
secondary deexcitation influences all four fragments entering
the double ratio and the fragments will lose few nucleons.
Previous investigations of similar nuclear decay processes
of excited nuclei in normal multifragmentation reactions tell
us that this is a process of the continuous modification of
initial (mother) nuclei into final (daughter) ones by emitting
particles [24]. Following this deexcitation the mass num-
bers will change and we expect a smooth transformation of
�Ebh

A1A2
versus the variation of mass difference �A = (A2 −

A1). Therefore, modified yields and mass numbers should be
possible to use for the final estimate.

In order to evaluate this effect we have adopted the nuclear
evaporation model generalized for hypernuclei, which was
developed in Ref. [45]. In this case, the fragments at the
freeze-out are described as discussed in Sec. II. It was demon-
strated in Ref. [45] that mostly neutrons and other light normal
particles will be emitted from hot large hyperfragments, since
the hyperons have a larger binding energy. In Figs. 4 and 5 we
show how the secondary deexcitation can modify the results
on �Ebh

A1A2
(in the figures noted again as �Ebh) versus �A,

corresponding to single and double hypernuclei. For clarity

FIG. 4. Influence of the secondary deexcitation on the difference
of binding energies of hyperons in nuclei �Ebh as function of their
mass number difference �A, by taking single hypernuclei (which
are the same as in Fig. 2). The calculations of double ratio yields
for primary hot nuclei are shown for temperature 4 MeV (solid
line, color circle symbols). The triangles, squares, and stars stand
for the calculations with modified double ratios after the secondary
deexcitation (via nuclear evaporation) of primary nuclei at excitation
energies of 1.5, 2.0, and 3.0 MeV/nucleon, respectively. The same
color symbols show the modification of �Ebh and �A after the
deexcitation evolution of many nuclei leading to the same daughter
ones (see the text).

we use the same mother nuclei as presented in Figs. 1 and 2,
which are noted in Sec. III B. The typical temperature of T =
4 MeV is taken for initial fragment yields to be consistent with
the previous figures. As seen in Fig. 2, the results obtained
from double ratios of primary yields of nuclei change very lit-
tle with variation of the temperature in the multifragmentation
region. The realistic values of internal excitation energies of
these fragments, E∗ = 1.5 per nucleon (a low value), 2 MeV
per nucleon (a most likely value from experimental data [44]),
and E∗ = 3 MeV per nucleon were assumed. The last value is
the highest estimate taken to investigate the trend caused by
the secondary process. In the beginning we have calculated
which daughter nuclei can be produced after the evaporation
by taking into account their maximum yield. In this case, for
example, after deexcitation of 12C, 13C�, 124Sn, and 125Sn� at
E∗ = 3 MeV/nucleon we obtain 10B, 11B�, 99Pd, and 100Pd�

nuclei, respectively. As we know the same daughter nuclei
can be produced after evaporation of other nuclei close to
A and Z. We have also calculated the deexcitation of such
nuclei, that their numbers may reach few tens at the highest
excitation energy. We have taken into account the weight of
all primary nuclei after multifragmentation in the freeze-out
volume and evaluated their contribution in the final daughter
yield. Afterward, according to the formula (13) we found new
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FIG. 5. The same as in Fig. 4, however, for double hypernuclei
(see the text).

�Ebh. In the figures the results of the calculations including
the evaporation are given by triangle, square, and star symbols
corresponding to the above-mentioned internal excitations.

To see clearly the general transformation of the initial
function, in Figs. 4 and 5 the values of �A and �Ebh

are shown with the same color symbols for the mother and
daughter isotopes. This connection can also be seen by the
corresponding groups in the �A axis, so that after evaporation
there is a regular shift of �A values to smaller ones as a result
of nucleon losses. This can be distinguished by comparing
the primary circles with the triangles, squares, and stars. This
shift is especially prominent in big nuclei because of their total
excitation energies are higher. There are also modifications of
�Ebh because of the isotope yield variations.

Finally, after the secondary processes and the sum of all
contributions the whole curve of �Ebh versus �A may look
shifted a little bit. We see that the deexcitation influence on
�Ebh values is rather moderate (the uncertainty is within
10%). The reason is that after the evaporation calculations
the yield ratios change small. As well known, the nuclei
initially close to A and Z are deexcited similarly. Also, the
involvement of the nuclei neighboring to primary ones does
smooth the possible fluctuations of the final yield, which can
occur in the case of separate nuclei. However, the general form
of this dependence does not change. In our case (T = 4 MeV)
the interesting effect is a noticeable decrease of extracted
�Ebh with increasing excitation energy. This is related to
the production of light primary fragments that contribute to
the 13CH�/12C(H−1)� ratio in the numerator of the double
ratio [Eq. (10)]. The yield distributions of light fragments
with H hyperons in multifragmentation increase faster with
A than for fragments with H -1 hyperons [5,15]. That leads to

moderate increasing the averaged yield ratio for the light
isotope pair.

If the freeze-out conditions were precisely known from the
analyses of experiments the model calculations could be used
for an adequate corrections of the experimentally extracted
�Ebh. It is similar to the procedures elaborated previously,
such as the evaluation of the isotope temperatures in normal
multifragmentation studies [28]. We conclude from the Figs. 4
and 5 that the initial difference in hyperon binding energies of
hypernuclei can be extracted by generating similar plots even
after the secondary deexcitation.

VI. CONCLUSION

During the last six decades there has been a permanent
increase in the number of measured hypernuclei with their
binding energies. However, the progress is slow such that the
traditional hypernuclear methods (e.g., involving the missing
mass spectroscopy) can address only a small number of iso-
topes, due to the special requirements on targets in hadron-
and lepton-induced reactions. Also the development of the
detectors for measuring practically all produced particles with
their exact kinetic energies is very expensive and not always
practical, which makes problems for a desirable acceleration
of the studies.

The suggested double ratio method is related to deep in-
elastic reactions producing all kinds of hypernuclei with suffi-
ciently large cross sections in the multifragmentation process.
This is a typical case for relativistic ion-ion and hadron-ion
collisions. Only the identification of hypernuclei is required,
and, as demonstrated in recent ion experiments, there are
effective ways to perform it. The experimental extraction
of the difference between the hyperon binding energies for
hypernuclei (�Ebh

A1A2
) via their yields is a novel and practical

way to pursue hypernuclear studies. The advantage of this
method over the traditional hypernuclear ones is that the
exact determination of all produced particle parameters (with
their decay products) is not necessary, and only the relative
measurements are necessary for this purpose. Therefore, for
comparison of various hypernuclei one can use similar weak-
decay chains and their products. For example, if we take the
pairs of the large hyper-isotopes, they undergo weak decay
in a nonmesonic channel that can be found by products
far from the collision point with the vertex technique. The
correlation between the produced isotopes and particles is
adequate information for the double ratio method.

It is even more interesting and important that one can
also determine the difference of hyperon binding energies in
double and multihypernuclei within this method. This gives an
access to hyperon-hyperon interactions and properties of mul-
tihyperon matter. It is very difficult to measure the hyperon
binding energies for exotic (neutron-rich and neutron-poor)
nuclear species within traditional hypernuclear experiments.
On the other hand, the hypernuclei with extreme isospin can
be easily obtained in relativistic fragmentation reactions. Most
of them may have the statistical origin and the suggested
method opens an effective way for extension of the hypernu-
clear chart. We believe that novel conclusions can be obtained
for neutron-rich and neutron-poor hypernuclei with the double
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ratio method. The isospin influence on the hyperon interac-
tions in matter (revealing in the hyperon binding energies)
will be possible to extract directly from experimental data.
Especially, multistrange nuclear systems would be interesting,
since they can give info on evolution of the hyperon-hyperon
interaction depending on strangeness. These measurements
are important for many astrophysical sites, for example, for
understanding the neutron star structure [46,47].

Such kinds of research may be possible at the new gen-
eration intermediate energy ion accelerator facilities such as
FAIR (Darmstadt), NICA (Dubna), and others. Hopefully,
the new advanced experimental installations for the fragment
detection will be available soon [48,49].
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