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The intimate relation between the Gamow-Teller part of the matrix element M2 and the 2vA8 closure matrix
element M?’ is explained and explored. If the corresponding radial dependence C% (r) would be known, M’
corresponding to any mechanism responsible for the OvB88 decay can be obtained as a simple integral. However,
the M2’ values, and therefore also the functions C%’(r), sensitively depend not only on the properties of the first
few 17 states but also of higher-lying 1" states in the intermediate odd-odd nuclei. We show that the 8~ and
BT amplitudes of such states typically have opposite relative signs, and their contributions reduce severally the
M?’ values. We suggest that demanding that M%’ = 0 is a sensible alternative way, within the QRPA method,
of determining the amount of renormalization of isoscalar particle-particle interaction strength g;pzo. Using such
prescription, the matrix elements M are evaluated; their values are not very different (<20%) from the usual

QRPA values when gl;o is related to the known 2vp8 half-lives. We note that vanishing values of M2’ are signs

of a partial restoration of the spin-isospin SU(4) symmetry.
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I. INTRODUCTION

Neutrinos are the only known elementary particles that
may be Majorana fermions, i.e., identical with their antipar-
ticles. They are also very light, suggesting that the origin of
their mass could be different from the origin of mass of all
other fermions that are much heavier and charged, support-
ing such hypothesis. Study of the neutrinoless double beta
decay (OvBp), the transition among certain even-even nuclei
when two neutrons bound in the ground state are transformed
into two bound protons and two electrons with nothing else
emitted, is the most straightforward test whether neutrinos are
indeed Majorana fermions. Obviously, observing such decay
would mean that the lepton number is not a conserved quantity
as required by the standard model.

There is an intense worldwide effort to search for the Ovg8
decay. No signal has been observed so far, but impressive half-
life limits of more than 10—-10%° years have been achieved in
several experiments on several target nuclei. Larger, and even
more sophisticated experiments are being developed and/or
planned. Search for the OvB8 decay is at the forefront of the
present-day nuclear and particle physics.
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While observation of the OvB88 decay would constitute a
proof that neutrinos are massive Majorana fermions [1], it is
obviously desirable to be able to relate the observed half-life
to some beyond the standard model particle physics theory.
To do that, however, requires understanding of the nuclear
structure issues involved in the (Z, A)gs. — (Z + 2, A)gs. +
2e~ transition. The problem at hand is the evaluation of the
corresponding nuclear matrix elements. This is a longstanding
issue, with a plethora of papers devoted to this subject. A
recent review [2] summarizes the present status.

Here we explore in more detail the relation between the
nuclear matrix elements of the Ov88 decay and of the allowed
and experimentally observed 2v8f decay, treated, however, in
the closure approximation. This is a continuation and expan-
sion of the earlier paper [3]. We concentrate primarily on the
expression of these matrix elements as functions of the relative
distance r between the two neutrons that are transformed into
the two protons in the 88 decay. Naturally, we keep in mind
that the closure approximation is not applicable for the 2v88
mode of the 8 decay.

Very generally, the observable OvBf decay rate is ex-
pressed as a product of three factors

Ti — GY(Z, Eo)(M" V¢, (1)
12
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where G%(Z, Ey) is the calculable phase space factor that in
this case also includes all necessary fundamental constants,
and that depends on the nuclear charge Z and on the decay
endpoint energy Eog. M is the nuclear matrix element that
depends, among other things, on the particle physics mecha-
nism responsible for the OvB8 decay, as does the phase-space
factor G%(Z, Ey). And by ¢ we symbolically denote the
corresponding particle physics parameter that we would like
to extract from experiment.

For any mechanism responsible for the decay, the matrix
element M consists of three parts, Fermi, Gamow-Teller,
and tensor

0 0 My 0
M™ = Mgy — —— + M7, 2)
84
where g4 is the nucleon axial current coupling constant. And,
in turn, the GT part, evaluated in the closure approximation,
is

My = (f1%:,6: - 6,7, T Hor (rij. EDli).  (3)

The Fermi part, again in closure, is given by an analogous
formula

My = (f1Zi,5 T Hr (rij, E)li). @)
And the tensor part is
MJ” = (f15i;13(3; - #j)(G; - i)
—Gi 6,15t Hr (ryj, E)li). )

Here |i), | f) are the ground-state wave functions of the initial
and final nuclei. Hgr(rij, E), Hr(rij, E) and Hr(r;j, E) are
the neutrino potentials that depend on the relative distance
rij of the two nucleons. The sum is over all nucleons in the
nucleus. We discuss the validity of the closure approximation
for the OvBB mode in the next section.

The paper is organized as follows. After this introduc-
tion, in the next section the so-called neutrino potentials are
described, and their dependence on the distance r between
the decaying neutrons. Next, the two neutrino (2v8f) decay
matrix elements in closure approximation and their relation
to the OvBpB-decay matrix elements are discussed. In the
following section advantages of the LS coupling scheme are
described and symmetry consideration are applied. In Sec. V
the OvBB matrix elements, based on previous considerations,
are evaluated and their values are compared to the previously
published ones. The partial restoration of the spin-isospin
symmetry SU(4) is also discussed there. Finally, Sec. VI
(Summary) concludes the paper.

II. NEUTRINO POTENTIALS

Neutrino potentials in Egs. (3), (4), and (5) are typically
defined as integrals over the momentum transfer g. They
cannot be expressed by an analytic formula as functions of the
internucleon distance r;;. In the following we will concentrate
on the standard scenario, where the OvS8 decay is associated
with the exchange of light Majorana neutrinos. In that case the

particle parameter ¢ in Eq. (1) is the effective neutrino mass

3

2 1o
> Ui e m],

i=1

mpg = (6)

where U,; are the, generally complex, matrix elements of the
first row of the PMNS neutrino mixing matrix with phases «;,
and m; are the masses of the corresponding mass eigenstates
neutrinos. The present values of the mixing angles and mass
squared differences Amizj are listed, e.g., in Ref. [4].

For this mechanism, the dimensionless neutrino potential
forthe K = GT, F, and T parts is

_ 2 o0 hx(q2)qd
Hy(ria, B) = f2(r0)—5 R / i (qrip) 59494
g4 0 q + E

@)

here R is the nuclear radius added to make the poten-
tial dimensionless. The functions fr cr(qri2) = jo(gri2) and
fr(gri2) = —ja(qry2) are spherical Bessel functions. The
functions g (¢?) are defined in Ref. [5]. The potentials de-
pend rather weakly on average nuclear excitation energy E.
The function f.(r12) represents the effect of two-nucleon
short-range correlations. In the following we use the f.(r12)
derived in Ref. [6]. The phase-space factors for this mecha-
nism are listed, e.g., in Ref. [7].

However, the exchange of light Majorana neutrinos is not
the only way OvBg decay can occur. Many particle physics
models that contain so far unobserved new particles at the
~TeV mass scale also contain AL =2 higher-dimension
operators, changing the total lepton number L by two units,
that could lead to the OvBB decay with a rate comparable
to the rate associated with the light Majorana neutrino ex-
change. These models also explain why neutrinos are so light.
Moreover, some of their predictions can be confirmed (or
rejected) at the LHC or beyond. Examples of these models
are the left-right symmetric model (LRSM) or the R-parity
violating supersymmetry. In them, heavy (M > M,, M, is
the proton mass) particles are exchanged between the two
neutrons that are transformed into the two protons. There is
a large variety of neutrino potentials corresponding to such
mechanism of OvBg decay. A list of them, and of the corre-
sponding phase-space factors, can be found, e.g., in Ref. [8].
For a complete description of the OvBf decay it would be,
therefore, necessary to evaluate ~20 different nuclear matrix
elements. We show below how this task could be substantially
simplified.

The matrix elements defined in the Egs. (3), (4), and (5)
are evaluated in the closure approximation. In that case only
the wave functions of the initial and final ground states are
needed. The validity of this approximation can be tested in
QRPA, where the summation over the intermediate states is
easily implemented as done in Ref. [3]. There it was shown
that the closure approximation typically results in matrix
elements that are at most 10% smaller than those obtained
by explicitly summing over the intermediate virtual states.
The dependence on the assumed average energy E is weak;
it makes little difference if E is varied between 0 and 12 MeV.
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FIG. 1. Functions C%;(r) evaluated in the QRPA for a number
of OvBp candidate nuclei.

Similar conclusion was reached using the nuclear shell model
(see Ref. [9] and references therein).

Better insight into the structure of matrix elements can
be gained by explicitly considering their dependence on the
distance r between the two neutrons that are transformed into
two protons in the decay. Thus we define the function Cg"r r)
(and analogous ones for M and M) as

Cor(r) = (f1%16i - 6,7 T 8(r — riy)H(rij, E)i).  (8)

This function is, obviously, normalized as
o0
MY = f C2.(r)dr. 9)
0

In other words, knowledge of C%VT (r) makes the evaluation
of Mg”T trivial. The function C(r) was first introduced in
Ref. [5].

As one can see in Fig. 1 the function Cg"T(r) consists
primarily of a peak with the maximum at 1.0-1.2 fm and a
node at 2-2.5 fm. The negative tail past this node contributes
relatively little to the integral over r and hence to the value of
MY2’.. The shape of the function C%(r) is almost the same
for all OvBB-decay candidates. The magnitude of the matrix
element Mg“T is determined, essentially, by the value of the
peak maximum, which can be related, among other things, to
the pairing properties of the involved nuclei.

This characteristic behavior of the function C?;VT (r) repeats
itself when it is evaluated instead in the nuclear shell model;
same peak, same node, little effect of the tail past the node
[10]. The same function was also evaluated in Ref. [11] for
the hypothetical decay "He — !°Be using the ab initio
variational Monte Carlo method. The function C g”T (r) has,
again even in this case, qualitatively similar shape with a
similar peak and same node, but the negative tail appears to
be somewhat more pronounced. We might conclude that, at
least qualitatively, the shape of Cg"T (r) is universal; it does
not depend on the method used to calculate it, even though
the methods mentioned here, QRPA, nuclear shell model, or
the ab initio variational Monte Carlo are vastly different in the
way the ground-state wave functions |i) and | f) are evaluated.
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FIG. 2. Functions cgvT (r) evaluated in the QRPA for several Ca
isotopes. *8Ca is a real A8 decay candidate. It decays into **Ti and the
isospin T changes in the decay by two units (AT = 2). The other two
Ca isotopes cannot S8 decay; nevertheless the corresponding matrix
elements can be evaluated. The transition *Ca — “*Ti connects
mirror nuclei, the isospin does not change, AT = 0.

In all B-decay candidate nuclei the isospin T of the initial
nucleus is different, by two units, from the isospin of the final
nucleus; thus AT = 2. To study theoretically nuclear matrix
element evaluation it is not necessary to consider only the g8
transitions allowed by the energy conservation rules. Thus,
transitions within an isospin multiplet (AT = 0), such as
2Ca — *Tior®He —° Be can be, and are, considered. The
corresponding radial dependence C%”T(r) is different in that
case. There is no node, the function remain positive over the
whole r range. For QRPA this is illustrated in Fig. 2. Again,
in the ab initio evaluation [11] for the hypothetical transition
®He — °Be that feature is there as well, even though the
shape of the curve is rather different than for the **Ca case.
The fact that the functions C g”T (r) are quite different when
AT =2 and AT = 0 cases are considered, suggests that it is
not obvious whether the experience obtained from the latter
cases in light nuclei can be easily generalized to the decays of
real OvgBB-decay candidate nuclei, which are all AT = 2.

The radial functions C% (r) and C%’(r) corresponding to
the Fermi, Eq. (4), and tensor, Eq. (5), matrix elements are
obtained in an analogous way. A typical example is shown in
Fig. 3. The function C g" (r) has very similar shape as Cg"T (r),
but has opposite sign [see, however, the sign in Eq. (2)]. The
relation of CY(r) and C2 (r) will be discussed in detail in
Sec. IV.

III. 2vBB MATRIX ELEMENTS IN CLOSURE
APPROXIMATION

It would be clearly desirable to find a relation between
the OvBB matrix elements and another quantity that does not
depend on the unknown fundamental physics and that, in an
ideal case, is open to experiment. Here we wish to make a step
in that direction.

If one would skip the neutrino potential H(ri;, E) in
Eq. (3) the resulting matrix element is just the matrix element
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FIG. 3. Functions C%(r) evaluated in the QRPA for a the [ =
Gamow-Teller, Fermi, and tensor matrix elements for **Ca OvBS
decay.

corresponding to the allowed 2v88 mode of decay evaluated,
however, in the closure approximation. The half-lives of 2vS8
decay have been experimentally determined for most candi-
date nuclei. They are related to the matrix elements by

w = G (Z, E))(M™ ), (10)
i)
where G?"(Z, Ey) is the calculable phase-space factor that

in this case includes all necessary fundamental constants,
including the factor gi. The 2vB8 matrix element, in turn, is

(fllot*Im){mlloc*]li)

MZI):Em
Em _(Mi +Mf)/2

) Y

where the summation extends over all 17 virtual intermediate
states. The presence of the energy denominators in Eq. (11)
is essential, it reduces the dependence on the poorly known
higher-lying 1% states. Thus, if the 2v88 half-life is known
experimentally, the values of M?" can be extracted. (Actually,
keeping in mind a possible renormalization, i.e., quenching,
of the g4 value in complex nuclei, the quantity g5 M>" can be
extracted from the experimental half-life value.)
Evaluation of the 2v38 closure matrix element

MG = (f1%:,0; -6t T i)
= X, (fllott|lm)(mlloT™||i) (12)

implicitly requires the knowledge of all 17 intermediate states
and the GT amplitudes connecting them to the initial and final
ground states. The expression (12) is a product of amplitudes
corresponding to the 8~ strength of the initial nucleus and the
B strength of the final one. The total strengths are connected
by the Ikeda sum rule S(87) — S(8") = 3(N — Z) which is
automatically fulfilled in QRPA and in NSM when the model
space involves both spin-orbit partners of all single-particle
states. In Fig. 4 the radial dependence of these strengths,
i.e., the C(r) functions corresponding to (i |%;; rfrj_ai - 0i),
i.e., the S(B87), and (f|2,-jtfr;ro,- -0l f), ie., the S(BT),
are shown for the case of '°Ge and "®Se. Note not only
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FIG. 4. Functions C(r) corresponding to the total strengths
S(B~)and S(B8+) for the initial nucleus "®Ge and for the final nucleus
76

Se.

the different scales of the two panels, but also the substan-
tial cancellation between the r < 2.5 fm and » > 2.5 fm in
the Bt case. The S(B*) strength is suppressed because the
BT operator connects states that belong to different isospin
multiplets.

While the total strengths represent sums over positive
contributions from all 17 states in the corresponding odd-odd
nuclei, the M’ (11) and M2, (12) matrix elements both
depend on the signs of the two amplitudes involved in the
product and thus have both positive and negative contribu-
tions. In fact, the calculations suggest that, as a function of
the 17 excitation energy, the contributions are positive at first,
but above 5-10 MeV negative contributions turn the resulting
values of both M?” and M2, sharply down as illustrated
in Fig. 5. That behavior seems to be again universal. Not
only qualitatively similar curve are obtained in QRPA for
essentially all B8-decay candidate nuclei, but very similar plot
was obtained for **Ca within the nuclear shell model [12].

In this context it is worthwhile to discuss the so-called
single-state dominance (SSD) (or low-lying states dominance)
often invoked in the analysis of the 2v88 decay [13,14]. The
staircase plot for M?” evaluated within QRPA as seen in the
top panel of Fig. 5 have the drop at higher energies that is not
as steep as in the case of M2 ;; its magnitude is reduced by
the energy denominators.
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FIG. 5. Cumulative contributions to the M?” (11) and M2, (12)
as a function of the intermediate state excitation energy. This is for
the case of *Ge.

The contributions to M?" are positive at first, followed
at energies >5 MeV by several negative ones. Due to this,
the true value of M?" (0.14 MeV~' in the case of "°Ge,
assuming g4 = 1.269) is reached twice as a function of the
excitation energy, once at relatively low E,,. and then again
at its asymptotic value. This is a typical situation encountered
in most 2vBB-decay candidate nuclei. In the charge exchange
experiments, e.g., in Ref. [15], the GT strength exciting sev-
eral low-lying 17 states is determined in both the 8~ and 8+
directions. Assuming that all contributions to the M?" from
these states are positive, one usually soon reaches a value
that is close to the experimental one. That is considered as
indication of the validity of the low-lying states dominance
hypothesis. The single (or low-lying) state dominance is also
invoked in Refs. [16,17] where also a good agreement with
the experimental M 2V matrix element was reached. However,
according to our evaluation, some more positive contributions
to the M2’ in such a case are missed, as well as negative
contributions from the higher-lying 1" states. Thus, the low-
lying states, while giving by themselves the correct (or almost
correct) value of M?”, miss other contributions which, in
particular, are decisively important for the closure matrix
element MZ,.

It would be clearly desirable to confirm, or reject, the
behavior illustrated in Fig. 5. In particular, to check that the
BT amplitudes above ~5 MeV are nonvanishing and that their
contribution to M?" is indeed negative.
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FIG. 6. Functions C?’(r) for several B8 candidate nuclei evalu-
ated within the QRPA.

The single-state dominance (SSD) in the 2v88 decay can
be tested by observing the two- and single-electron spectra
[18], in particular at low electron energies. This was done,
for example, in the case of 82Se in Ref. [20], indicating its
validity. Does it really mean that only low-lying intermediate
states contribute to the M?” and M2’ ,? As was shown in
Ref. [19], the deviation of the electron spectrum from the
standard form can be described by the Taylor expansion of
the energy denominators when the phase-space factors are
evaluated. The leading correction, called &5} there, contains
the third power of the energy denominator in the expression
analogous to (11). Thus, the quantity &5 is dominated by
the low-lying states and insensitive to the higher-lying ones.
[In the case of higher states dominance (HSD) this quantity
is practically zero. But, its absolute value depends on the
position of the lowest 17 state of the intermediate nucleus and
on the Q value of the process.] The indication of SSD validity,
such as those in Ref. [20], does not mean that there are
no higher-lying contributions, and in particular a significant
cancellations in the M2 ;.

The radial dependence Cfl"(r) corresponding to the 2v8f
closure matrix element (12) can be obtained, again, by in-
serting the Dirac 6 function in between the brackets. Note
that while the closure matrix element (12) itself depends only
on the 17 intermediate states, presence of the § function
means that all multipoles participate. In Fig. 6 we show the
resulting radial function for a number of nuclei. The peak at

064325-5



FEDOR SIMKOVIC, ADAM SMETANA, AND PETR VOGEL

PHYSICAL REVIEW C 98, 064325 (2018)

1-6fHHHH TITTTTTTT o ooTTTTTT “"H“‘\‘H“““\:“““‘U‘“HHE
1L4F =+ E_(1)<5MeV J
12F == B_(1)< 10 MeV 3
o (l)g? ——- E_(1)<15MeV 3
=) OF no restriction E
= 06 E
= 04F =
265 02fF E
0.0F E
02F 3
-04F 3
-0.6 H
1L4F = =
12E — Eex<]0MeV{
— 10F ——- B _<15MeV 3
= 0.8; -\ no restriction é
= 0.6F[/ - E
= 04 E E
&5 02F =
© 0.0F E
02F 3
-0.4F 3
B T S S B R TR

r [fm]

FIG. 7. Dependence of the C2%,(r) on the cutoff in the 1F
excitation energy (top panel) and all J”™excitation energies (bottom
panel) evaluated for "*Ge decay.

r < 2.5 fm is almost fully compensated by the negative tail
at larger r values. The actual value of M2, while always
small, depends sensitively on the input parameters (isovector
and isoscalar pairing coupling constants).

It is important to add properly the contribution of all J*
states when evaluating M2} ,. In Fig. 7 we show how the
corresponding Cfl”(r) depends on the possible energy cutoff
of 17 states in the top panel and on the cutoff of all J™ states
in the bottom panel. The negative tail becomes deeper, and
thus the magnitude of Mg, becomes smaller as more excited
states are included. Thus, when the M., is evaluated in the
shell model using incomplete oscillator shells, with missing
spin-orbit partners, as done, e.g., in Ref. [21] for the Bf
candidate nuclei (except **Ca), the results might be uncertain.

From the way the functions C2(r) and CZ'(r) were
constructed, it immediate follows that they are related by

CY.(ry=H(r, E)- C¥(r), (13)

as already pointed out in Ref. [3]. Therefore, if Cf,” (r) were
known, the C ?}VT (r) can be easily constructed and hence also
the Ov matrix element Mg”T. The analogous procedure can
be followed, of course, also for MY and M?". But Eq. (13)
is much more general. Knowing C2’(r) makes it possible to
evaluate the corresponding matrix element for any neutrino

potential Hgr(r, E) like all of those listed in Ref. [8]. That
represents, no doubt, a significant practical simplification.

For example, one of the short-range nuclear matrix ele-
ments [see Ref. [8], Eq. (20d)] involving the heavy neutrino
exchange is characterized by the neutrino potential

2R, 2y 2
Hern(r) = Fore) | 84(g7)jo(qrig=dq. (14)
TMem
The corresponding matrix element is therefore simply

Merw = f Horw(r)- C2(r). (15)

The same procedure can be used for any GT-type nuclear
matrix elements.

IV. USING THE LS COUPLING SCHEME

From the discussion above it is clear that the determination
of the correct value of the 2v closure matrix element M2,
and its radial dependence function Cfl”(r) is of primary im-
portance. Insight into this issue can be gained by considering
the LS coupling scheme.

Let us divide the M2, and M%), into two parts, corre-
sponding to the S = 0 and S = 1, where S is the spin of the
two decaying neutrons (or spin of the created protons) in their
center-of mass system. The corresponding expression is rather
complex so we leave it to the Appendix. Having the decom-
position of the M2, and its corresponding radial dependence
CCZIU (r) into their spin components, we can establish a relation
between the GT and F parts.

ME, = (851 + 850) X (s152: S || Op.gr || s1s2: )
MZ,. = (851 — 3850) X (s152: S || Opgr || s152: S). (16)

Therefore, for the closure matrix elements
2 2 2 2
Mgy soo=—3xMp's.y Mgrs_y =Mps_. (A7)

These are exact relations. The radial functions C %”GT‘C,(r)(S )
obey them as well. o

Example of this separation are shown in Fig. 8. Clearly, the
S = 0 represents the main part, its amplitude is everywhere
dominating over the S = 1 component. Note that the standard
like nucleon pairing supports the dominance of the S =0
component.

Isospin is a good quantum number in nuclei, T = (N —
Z)/2 in the ground states; the admixtures of higher values
of T is negligible for our purposes. From this it immediately
follows that M%, = 0. That relation is obeyed automatically
in the nuclear shell model where isospin is a good quantum
number by construction. In QRPA, however, the isospin is,
generally, not conserved. It was shown in Ref. [22] that
partial restoration of the isospin symmetry, and validity of the
M %‘él = 0, can be achieved within the QRPA by choosing the
isospin symmetry for the 7 = 1 nucleon-nucleon interaction,
i.e., by choosing the same strength for the neutron-neutron and
proton-proton pairing force treated within the BCS method,
and the isovector neutron-proton interaction treated by the
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FIG. 8. The functions C%},(r) separated into the spin S = 0 and
S =1 components, shown for several §8 decay candidate nuclei.
The functions were evaluated requiring that M%, = 0 using the
isospin conservation. The values of M%;, # 0 were obtained by
choosing the renormalization g/~ from the usual condition that the

half-life of the 2v88 decay is correctly reproduced by the QRPA.

QRPA equations of motion. (In practice, the five effective
coupling constants, corresponding to 7 =1, are close to
each other, but not exactly equal since the renormalization
of the pairing strength couplings dy,/ and dj; are adjusted
to reproduce the corresponding neutron and proton gaps and

the neutron-proton isovector coupling renormalization g} =!

is chosen to reproduce the M%, = 0 relation.) The values of

these parameters are shown in Table [

M?%, = 0 follows from the isospin conservation and im-
plies that Mg, (S =0) = —Mp, (S = 1), [see Eq. (17)] but
both could be, in principle, large in absolute value. However,
the plots in Fig. 8 suggest that the CZ;,(S = 1) = C#,(S =
1) [see again Eq. (17)] are negligibly small for all radii r;
hence the integrals Mg (S = 0) = —Mgr(S = 0)/3 should
be both negligibly small as well. This is in agreement with

the discussion in the preceding section, where we saw that
the Mé"hl values are numerically close to zero, actually
oscillating between the positive and negative values for dif-
ferent nuclei, and depending sensitively on the properties
of the poorly known higher-lying 11 states. We conclude,
therefore, that demanding that the MCZI" vanishes is a reason-
able assumption that reflects better physics of the problem.
Once the M2}, and M %, have been fixed, the corresponding
radial function Cczl" (r) can be obtained, and from them, using
Eq. (13), the values of Mg"T and M%” follow. The results are
described and discussed in the following section.

Vanishing of the M2, based on the discussion in the pre-
ceding paragraph is, at the same time, one of the requirements
of the spin-isospin symmetry group SU(4). In practice we
can fulfill the relation M2, = 0 by adjustment of the renor-
malization of the isoscalar neutron-proton coupling strength
g;pzo. As we effectively restored the isospin symmetry by the
proper choice of the g7, choosing the g7 0. so that M7’ =
0, corresponds to the partial restoration of the spin-isospin
symmetry SU(4).

Note that, obviously, choosing the renormalization pa-
rameter g,{io so that M2, = 0 is quite different from the
approach of Ref. [21] where the proportionality between the
M2 and M?% evaluated in the shell model is proposed.
According to our QRPA results, the shell model, with its
restricted single-particle basis, misses important negative con-
tributions to the closure matrix elements M7’

SU(4) symmetry in nuclei is broken mainly by the mean
field, in particular by the spin-orbit splitting. Yet, as far as the
GT response is concerned, many requirements of that symme-
try are actually present. The GT strength is concentrated in the
giant resonance, the § decays connecting low-lying states in
heavier nuclei, forbidden under SU(4), have log(ft) values
~5, while the superallowed g decays, which do not violate
SU(4), have log(ft) values ~3. And the ground state to
ground state 2v8 decay exhausts only about 10~ fraction of
the sum rule. Thus, it is perhaps natural to demand, following
the QRPA calculations described here, that one of the SU(4)
symmetry features, namely that Mé"m = 0 is obeyed.

TABLE I. Renormalization parameters of the pairing interaction d;;,f,; (i: initial nucleus; f: final nucleus; p: protons; n: neutrons) adjusted

to reproduce experimental pairing gaps. Renormalization parameters of the isovector g

71 . T—0 . S .
sy and isoscalar g, = particle-particle interactions

of the residual Hamiltonian adjusted to reproduce, respectively, M2, = 0 and MZ;, = 0, an effective restoration of the isospin SU(2) and
spin-isospin SU(4). The corresponding values of the 2v88-decay Fermi M2’ and Gamow-Teller M2, x g? matrix elements, where g = 0.712

is the effective quenching factor, g§T = g x gire

unquenched ga.

= 0.904. In the last column are the experimentally determined matrix elements M2" for

exp

Nucleus di, df, d, d/, g g0 M M2 x g* M%
MeV™) MeV™) MeV™)

BCa - 1.069 - 0.982 1.028  0.745 —0.003 0.019 0.046
5Ge 0.922  0.960 1.053 1.085 1.021  0.733 0.003 0.077 0.136
82Ge 0.861 0.921 1.063 1.108 1.016  0.737 0.001 0.071 0.100
%7 0.910  0.984 0752 0.938 0961  0.739 0.001 0.162 0.097
100p\ [ 1.000  1.021 0.926  0.953 0.985  0.799 —0.001 0.306 0.251
16cq 0.998 - 0.934  0.890 0.892  0.877 —0.000 0.059 0.136
128Te 0.816 0.857 0.889 0.918 0.965 0.741 0.017 0.076 0.052
130 0.847  0.922 0.971 1.011 0.963  0.737 0.016 0.065 0.037
136X e 0.782  0.885 - 0.926 0910  0.685 0.014 0.036 0.022
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The relation between SU(4) symmetry and 2vB8 decay
has been invoked repeatedly in many publications, starting
with Ref. [23]. Recently, in Ref. [24] partial restoration of the
symmetry, somewhat different than the one employed here,
was used in order to evaluate the matrix elements of both the
2vBp and OvBp decay. The M? evaluated in Ref. [24] are
similar, but further from the experimental values, than those
in our Table I.

Since we know the experimental values of the 2v88 matrix
elements M>", it is legitimate to ask whether the fact that they
do not vanish can be compatible with our assumption that
the closure matrix elements Mfl” vanish. Clearly, if E,,, is the
properly averaged energy denominator, then

Eup x M* =M%, (18)
must be obeyed. If the right-hand side of this equation is
vanishing, then one of the factors on the left-hand side must
vanish as well. In our case it must be the average energy
E,, reflecting the fact that in both M 2v and Mé”Tcl are both
positive and negative contributions to the corresponding sums
[by treating the negative sign in the numerator of (11) as
negative denominator].

In our approach the parameter g/ =" is fixed by the require-

ment that M2, = 0, it is thus straightforward to evaluate,
within QRPA, the M?' and compare them with their exper-
imental values derived from the observed 2vBf8 half-lives.
In agreement with the idea of g4 quenching, the calculated
matrix elements are typically larger than the experimental
values. That discrepancy can be, at least in part, remedied
by choosing the effective g4 value, g5 = ¢ x g'i*®. (Even
somewhat better agreement is achieved by assuming that g4
scales like 1/A'/2. We do not see any obvious justification for
such a dependence, and use g< independent of A.) Taking
the average ratio of the calculated and experimental matrix
elements, we arrive at ¢ = 0.712. The resulting quenched cal-
culated matrix elements are compared with the experimental
ones in Table I. The agreement is only within a factor of ~2,
f/eai;lsgzmg the known strong sensitivity of M?" on the ggp—o

V. 0vBB MATRIX ELEMENTS AND PARTIAL SU(4)
SYMMETRY RESTORATION.

The matrix elements M2’ of the 2vBB decay involve
only 171 virtual intermediate states. Within the QRPA they

TABLE II. The NMEs associated with light neutrino mass mechanism of the Ovg8g decay calculated within the proton-neutron QRPA using
two ways of fixing the strengths of residual interactions in the nuclear Hamiltonian: 1) ggpzl and g[fp:O are adjusted to reproduce M%’ = 0 and the
experimental 2v88 half-life, respectively (7/73); ii) g7~" and g7 =" are adjusted to reproduce M7!, = 0 and Mg, = 0 - an effective restoration
of the isospin SU(2) and spin-isospin SU(4) symmetry. In (i) and (ii) the sum over all virtual excitations is explicitly performed. The partial
Fermi, Gamow-Teller, tensor, and full OvBB-decay NMEs are presented for S = 0 and S = 1 channels and for the sum of them. Unquenched

value of axial-vector coupling constant (g4 = 1.269), Argonne two-nucleon short-range correlations and £ = 8 MeV are considered.

Nucl. par. S=0 S=1 full NME
M Mgr  Mr  M™ M Mqr My M M Mgr My M
8Ca le/‘é —-0.253 0.659 0.00 0816 —-0.027 -0.021 —-0.156 —0.161 —0.280 0.638 —0.156 0.656
SU4) —0.285 0.748 0.00 0.925 0.006 0.009 —-0.158 —-0.153 —0.280 0.757 —0.158 0.773
5Ge le/"z —1.719 4482 0.00 5.550 0.111 0.102 —0.588 —0.554 —1.608 4.584 —0.588 4.995
SU4) —1.705 4443 0.00 5502 0.097 0.089 —0.588 —0.559 —1.570 4455 —0.583 4.846
82Se T]Z/"2 —1.537 3995 0.00 4.949 0.037 0.035 —-0.544 —-0.532 —1.500 4.029 —0.544 4417
Su@4) —1.587 4.133 0.00 5.119 0.089 0.082 —0.540 —0.513 —1.499 4216 —0.540 4.606
HZr Su4) —-1.171 3.066 0.00 3.793 —-0.066 —0.050 —0.392 —-0.401 —1.237 3.016 —0.392 3392
%Zr TIZ/"2 —-0916 2359 0.00 2928 —-0.272 —-0.242 —-0420 —0494 —1.188 2117 —0420 2.435
Su4) —1.174 3.069 0.00 3.798 —0.008 —0.001 —0405 —0401 —1.182 3.068 —0.405 3.396
100Mo le/“z —-1,799 4.658 0.00 5775 —-0410 —-0362 —-0.707 —0.814 —2209 4296 —0.707 4.961
SU@4) —2.038 5327 000 6592 —-0.168 —0.136 —-0.692 —-0.724 —-2206 5.191 —-0.692 5.868
0pqd  SUM4) —1961 5115 0.00 6332 —0.174 —0.145 —0.607 —0.643 —2.135 4970 —0.607 5.689
H6Cd le/“2 —1.280 3.328 0.00 4.123 0274 —-0.235 —-0.290 —-0.355 —1.554 3.093 —-0.290 3.768
SU@) —1.272 3305 0.00 4.095 —-0.283 —-0243 —-0291 —-0.358 —1.555 3.062 —-0.291 3.737
124Sn SUM4) —1.096 2.862 0.00 3.543 0.032 0.031 —-0347 —-0336 —1.064 2894 —-0.347 3.207
128Te le/‘ﬁ —1.638 4248 0.00 5265 —0.146 —0.125 —0.604 —0.638 —1.784 4.122 —0.604 4.626
SU@4) —1.839 4784 0.00 5923 —-0.044 —-0.033 —-0.588 —-0.594 —1.878 4751 —0.588 5.329
130Te le/"z —1411 3.655 0.00 4531 -0.162 —-0.140 —-0.554 —-0.593 —1.573 3515 —0.554 3.939
SU4) —1616 4215 000 5219 —-0.053 —0.042 —-0536 —0.545 —1.669 4173 —0.536 4.673
34Xe  SU@) —1598 4163 000 5.156 —0.044 —0.034 —0.498 —0.504 —1.642 4129 —0.498 4.652
136Xe le/"z —0.780 2.009 0.00 2493 —-0.035 —-0.028 —-0.285 —-0.291 —-0.815 1980 —0.285 2.202
SU4) —-0927 2410 0.00 2985 0.022 0.022 —-0.274 —-0.266 —0905 2432 —-0.274 2.720
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sensitively depend on the magnitude of the isoscalar neutron-
proton interaction, conventionally denoted as g;pzo. On the

other hand, matrix elements M°” of the OvBp decay contain
many multipoles of the intermediate states. Among them
the 17, or GT, is particularly sensitive to the g,fpzo; other
multipoles are less dependent to its magnitude. That led to the
practice [25,26], commonly used in QRPA now, to adjust the
g;pzo so that the experimental half-life T12/"2 is correctly repro-
duced. That way the most sensitive multipole contributing to
M"® has been tied to the experimentally determined quantity.
(Also, it turns out that with this adjustment, the magnitude
of M® becomes essentially independent on the size of the
single-particle basis included.)

As explained above, in this work we propose to use the
condition M2}, =0, i.e., partial restoration of the SU(4)
symmetry, to adjust the value of the renormalization parame-

ter g;pzo. We are particularly interested to check how sensitive

the M values are to this change. The matrix elements M°”
evaluated by these two alternative methods are compared
in Table II together with the corresponding partial values
Mg, Mg, and M7 separated into the spin S =0 and § = 1
components. Few candidate nuclei (**Zr, ""OPd, '24Sn, and
134Xe), where the 2v decay has not been observed as yet, are
also included in Table II. All entries there were obtained when
the sum over the virtual intermediate states was explicitly
evaluated. When the closure approximation is used together
with the SU(4) adjustment, the results are similar, with the
final M% values about 10% smaller, similar to the previous
experience described above. Typically, the contributions of
the spin § = 1 component to the My and Mgr are indeed
negligible. However, the tensor mart, My gets its value only
from S = 1; it constitutes about 10% of the total M°" value.
Adjusting g7=° to the condition of partial restoration of

pp
the SU(4) symmetry means that the 2v matrix elements (and,

8 e SU(4) assumption _ E
g =127 3
2v-exp A E
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FIG. 9. M® evaluated with g;p:o adjusted such that M% = 0,
i.e., partial restoration of the SU(4) symmetry (red circles), or so
that the 2v88 decay experimental half-lives are correctly reproduced
(black squares). For several candidate nuclei (**Zr, '"°Pd, '**Sn,
and **Xe) instead the expected 2v88 half-lives were used for the
adjustment of the g/ = (empty blue squares).

naturally, the half-lives Tf/”2) are not any longer tied to their

experimental values. The theoretical values of M?" are only
in qualitative agreement with experiment, as we saw in the
previous section. However, remarkably, the new adjustment

of g;pzo causes only relatively small changes in the M°" as
T=0
pp

adjustment are compared. The largest effect, for '**Te and
136Xe is an increase of M%’ by ~20%. Note that both variants
shown in Fig. 9 were evaluated with g4 = 1.27, i.e., without

quenching.

one could see in Table II. In Fig. 9 the two ways of the g

VI. SUMMARY

In this work we discuss the importance of dependence of
the Ov and 2v nuclear matrix elements on the distance r;;
between the two neutrons that are transformed in two protons
in the double-beta decay. We show that, if this function,
C(r), is known for any particular mechanism of the decay,
evaluation of the matrix element for any other mechanism is
reduced to an integral using Eq. (13).

Further, we show that there is a close relation between
the GT part of the M and the matrix element of the ex-
perimentally observed 2vS8 decay, evaluated, however, in the
closure approximation, Mfl". Our work does not support the
conjecture in Ref. [21] of proportionality between the Mg”T
and MCZI". Instead, we argue that the positive contributions to
M?’ from the lower-lying 1" intermediate states is essentially
fully cancelled by the negative contribution of the higher-lying
17 states. We also show that the contribution of the triplet spin
S = 1 two neutron states is much smaller than the contribution
of the singlet S =0 states. (Note that when M7’ =0 the
S = 0 part is always three times larger that the S = 1 part.)
From these considerations follows a simple proportionality
between the Fermi and GT parts of the Mfl".

Based on these consideration we arrive at a new way of
adjusting the important QRPA parameter, the renormalization
of the isoscalar particle-particle interaction, g;p:(’. We propose
that its value should be determined from the requirement that
Mé‘}d = 0. Together with M%-‘Z,Z = 0, following from isospin
conservation, these two conditions are equivalent to partial
restoration of the spin-isospin SU(4) symmetry.

We then evaluate the true 2v matrix elements and compare
them to the corresponding experimental values. The calcu-
lated M?' values are mostly larger than the experimental
ones, suggesting on average a relatively modest quenching
gfff =0.712 x gf{ee. The agreement between the calculated
and experimental values of M?" is, however, only qualitative.
That is, perhaps, not surprising given the strong dependence
of the calculated M?” values on the g;p=0_

The Ov matrix elements, corresponding to the standard
light Majorana neutrino exchange are evaluated next using
the new adjustment of the gzp:(). When they are compared to
the the values obtained when g,fpzo is chosen so that the 2v
half-life is correctly reproduced, which was a QRPA standard
procedure until now, only relatively modest changes of the
MY are obtained. This shows that, within QRPA, the M®
values are quite stable. It also represents an alternative way to
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determine the parameter g/ =*, and through the corresponding

function CZ,(r) all possible Ov nuclear matrix elements.

ACKNOWLEDGMENTS

This work was supported by the VEGA Grant Agency
of the Slovak Republic under Contract No. 1/0922/16, by
Slovak Research and Development Agency under Con-
tract No. APVV-14-0524, RFBR Grant No. 16-02-01104,
Underground laboratory LSM - Czech participation to
European-level research infrastructure CZ.02.1.01/0.0/0.0/16
013/0001733. The work of P.V. is supported by the Physics
Department, California Institute of Technology.

APPENDIX: LS COUPLING SCHEME

In the QRPA the closure matrix element Mg [a = Ov, 2v
and K = F (Fermi), GT (Gamow-Teller), and T (tensor)] can
be written as a sum over two neutron (initial nucleus) and two
proton (final nucleus) states participating in the two virtual g
decays inside nucleus, angular momentum 7 to which they
are coupled, and angular momentum and parity J* of the
intermediate nucleus as follows:

L j in J
Mg =3 Y (1 T 1{’_” / }
Jn'

pnp'n’ J*J Jp' j
x D(p'n’, pn; )T (pp',nn'; J), (A1)
where
D(p'n’, pn, J™) =Y (0} Il [c)énls | T7ky)
./”,ki,k/
X STk |7 ki) (I ki | e, €a15110;7)
(A2)
|
TP
T2 | (pp',nn'; 7)
T
12 1,

AA A

=T Jniwipiy Y_@S+DQL+DI1/2 1y jy

SL S L

includes products of reduced matrix elements of one-body
densities c[fE” (¢, denotes the time-reversed state) connecting
the initial nuclear ground state with the final nuclear ground
state through a complete set of states of the intermediate
nucleus labeled by their angular momentum and parity, J7,
and indices k; and k. They depend on the BCS coefficients
u;,v; and on the QRPA vectors X, Y [22]. The coupling
(Isj) for each single-proton (-neutron) state is considered,
i.e., the individual orbital momentum /, (/,) and spin s,
(s4) is coupled to the total angular momentum j, (j,). The
nonantisymmetrized two-nucleon matrix element takes the
form

T (pp'.nn's ) = (p(1)p'(2); T| O% [n(Hn' 2); T),

(A3)
where
Oy =1, 0F =op, OF =5y
O (r12) = OF Hg(ria, E) (A4)

with K = F,GT, T, S, = 3(5’1 -flg)(a'z -T12) — 012, O12 =
O1 - Gy. F1o = T1 — Fa, 112 = |F12l, and P15 = Fi2/r12, where 7
and 7, are coordinates of nucleons undergoing 8 decay. For
the exchange of light Majorana neutrinos, the Ovgp-decay
mechanism we are considering here, the neutrino potentials
Hg (r12, E) are given in Eq. (7)

It practice, the calculation of nonantisymmetrized two-
nucleon matrix element in Eq. (A3) is performed in center-
of-mass frame by using a harmonic oscillator single-particle
basis set. The transformation from jj to LS coupling is used
and the Talmi transformation via the Moshinsky transforma-
tion brackets is considered. In the case of the OvpBB-decay
two-nucleon matrix elements we obtain

172 L
172 Ly jw
S L J

X > (. NL,Linyly.nyly, LYn'l \NL, Llnyly. nyly, L)Y (27" + 1)

nin'l!
NL

\/21121’11 LoLypr L

}(nl,S; J'|

Iz

(850 + 851)Hp(r12, E)
(=380 + 8s1)Hgr(ria, E) | In'l, S5 7).
SiHr (r12.E)

(A5)

Here, 7 = V27 + 1 and Jo = /2ju + 1 witha = p, p/,n, and n’. We note that in the case of the Fermi and Gamow-Teller
transitions there are both S = 0 an S = 1 contributions, unlike the case of the tensor transition where only S = 1 is allowed.
Due to the presence of neutrino potentials Hx (r12, E) (K = F, GT, and T) in two-body transition operators there is dominance
of the § = 0 contribution to M. There is a small difference between the Fermi and Gamow-Teller neutrino potentials due to a
different form factor’s cutoff and contributions from higher-order terms of the nucleon currents. If they would be equal, and the
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S = 1 contribution could be neglected, we would end up with

MY~ —3MY.

(A6)

The 2vpBB-decay Fermi and Gamow-Teller matrix elements can be decomposed into the S = 0 and S = 1 contributions as

follows [see Eq. (16)]:

MZ, = =3M32, + M,

The corresponding decomposition of the nonantisymmetrized two-nucleon matrix element is given by

2v
TGT SL

X an,,npr(sl,,ll,rannnnrSlnln/ X <

ngv 4 /. AT . .
(pp' s T) = T Judwipdy Y 2S+DQL+DI2 1y jytd1/2 by ju

MP = M32,+ M2, (A7)
2 1, j, 12 I, ju
S L J S L J
8s0 + 8s1 )
. A8
—38s0 + 851 (A8)

If M% = 0 because of isospin conservation (see Ref. [22]), then S =0 and S = 1 contributions are equal in magnitude but

opposite in sign.
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