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Neutron matter in the hole-line expansion
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We calculate the binding energy of pure neutron matter up to third order in the Brueckner-Bethe-Goldstone
hole-line expansion, employing various modern nucleon-nucleon potentials. At that order all results appear well
converged to within a few percent up to a density of 0.8 fm−3. We analyze the potentials in terms of the strength
of their hard core. Comparison with results of other theoretical methods is made.
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I. INTRODUCTION

The idealized environment of strongly interacting pure
neutron matter (PNM) has always represented a benchmark
scenario to test theoretical many-body methods and models
for the nucleon-nucleon (NN) interaction [1], apart from its
importance for the physics of neutron stars [2]. This is because
the interaction is weaker in this system compared to symmet-
ric nuclear matter (SNM), mainly due to the absence of the
dominant very strong interaction in the 3SD1 channel. This
renders PNM in general more accessible to various theoretical
many-body methods.

We have recently analyzed SNM [3,4] in the Brueckner-
Bethe-Goldstone expansion [5–7] with particular attention to
newly developed chiral potentials [8], and demonstrated that
the binding energy per particle appears well converged at
third order in the hole-line parameter κ . Qualitative differ-
ences between traditional hard-core meson-exchange-inspired
potentials and the soft-core chiral potentials have been pointed
out, namely the wound parameter κ is naturally larger in
the former case, which is correlated to saturation of SNM
at smaller density and less binding. In any case the satura-
tion points keep lying on the Coester band [9,10] and good
saturation of SNM cannot be achieved without considering
three-nucleon forces, which have to be rather strong for the
soft-core NN potentials.

The purpose of the present paper is to extend this analysis
to PNM, and investigate the differences between hard-core
and soft-core potentials in the same manner. We thus compute
the binding energy per nucleon in the hole-line expansion
(HLE),

B/A = T + E2 + E3 + . . . , (1)

where T is the kinetic energy, E2 = EBHF is the two-hole-line
(2HL) contribution at Brueckner-Hartree-Fock (BHF) level,
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and E3 is the three-hole-line (3HL) contribution, which will
be the main focus of this paper. Since a consistent theory
of 3HL contributions and three-nucleon forces is not yet
available, we perform here the standard analysis of the HLE
based on two-nucleon forces only.

In Refs. [3,4] we employed the Argonne V18 [11], the
CDBONN [12], and the N3LO chiral potentials [13] with
two values of the chiral cutoff � = 450, 500 MeV. In the
meantime N4LO chiral potentials of the same (EM) family
have appeared [14] for cutoff values � = 450, 500, 550 MeV,
which will also be analyzed in this work.

II. FORMALISM

We only briefly repeat here the essential points of the
formalism, which is exposed in detail in Refs. [3,4,6,15]. The
HLE parameter κ can be defined in several equivalent ways,
in particular from the depletion of the physical momentum
distribution n(k),

κ ≡
∑
k<kF

[1 − n(k)]

/ ∑
k<kF

n0(k) =
∑
k>kF

n(k)

/ ∑
k<kF

n0(k),

(2)

where n0(k) = θ (kF − k) is the occupation number for the
free Fermi gas, or from the wound of the NN defect function
η(r ) [4,16–18],

κ = ρ

∫
d3r〈|η(r )|2〉S,T ≡ Vcore

V/N
=

(
c

d

)3

, (3)

which expresses most clearly the correlation parameter as the
ratio of the (hard-)core volume to the volume per particle, or
equivalently, the cubed ratio of core diameter c to average
nucleon distance d. Since the core volume or diameter defined
in this way from the density-dependent defect functions are
not constant, but in general shrink with increasing density,
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the result is a nonlinear density dependence of the correlation
parameter κ .

We stress that both definitions Eqs. (2) and (3) are equiv-
alent under certain approximations, see, e.g., the derivation
in Ref. [3]. In particular, the approximation Q2 ≈ Q for
the angle-averaged Pauli operator appearing in Eq. (12) is
used. This implies values typically 20% smaller predicted by
Eq. (3), but qualitative conclusion are not affected.

At the 2HL level of approximation the energy per particle
of nuclear matter in Eq. (1) is given by

E2 = 1

2A

∑
12

n0(1)n0(2)〈12|G(e1 + e2)|12〉, (4)

where each variable 1, . . . stands for (k, σ, τ )1, i.e., the
three-dimensional momentum k and the spin-isospin variables
σ, τ . Antisymmetrization of the matrix elements is always
understood. In the BBG expansion the bare NN two-body
interaction V is systematically replaced by the G matrix,
which satisfies the Bethe-Goldstone equation

〈12|G(W )|1′2′〉 = 〈12|V |1′2′〉
−

∑
1′′2′′

〈12|V |1′′2′′〉 Q

E − W
〈1′′2′′|G(W )|1′2′〉. (5)

The energy W is the so-called starting energy, which appears
as a parameter in the equation. The Pauli operator Q projects
the intermediate states 1′′, 2′′ with energy E = e1′′ + e2′′

above the Fermi momenta. As is well known, the G matrix
sums up the ladder diagrams in the particle-particle scattering
and takes into account most of the short-range correlations
introduced by the hard core of the interaction, if present. It
is therefore much softer than the original bare interaction and
an expansion in terms of the G matrix is expected to have an
improved rate of convergence [6].

This convergence rate also depends on the choice of the
single-particle spectrum,

e1 = k2
1

2m1
+ U (1) , U (1) =

∑
2

〈12|G(e1 + e2)|12〉, (6)

which might be enforced for any momentum (continuous
choice) or only for hole states, setting U (k > kF ) ≡ 0 (gap
choice). Equations (5), (6) imply a self-consistent procedure
for the calculation of the single-particle (s.p.) potential U (k),
which will then be used also to calculate the 3HL diagrams.

The computation of the 3HL energy E3 is a considerable
numerical effort, which involves evaluating different diagram-
matic contributions visualized in Fig. 1,

E3 = EBubble + ERing + EHigher, (7)

among which strong cancellations occur, typically between
repulsive bubble and attractive ring+higher contributions. We
refer to Refs. [4,6,15] for a complete documentation.

3HL PNM calculations have so far been performed for
the Urbana V14 and Argonne V18 [19,20], the CDBONN
[21], the Argonne V8,V6,V4 [22], and the fss2 [23] poten-
tials. We now present our results for the N3LO(450,500) and
N4LO(450,500,550) EM chiral potentials in comparison with

G

(a) (b)

(c) (d)

(e)

T(3)

(f)

FIG. 1. Different Goldstone diagrams contributing to the binding
energy of nuclear matter: Diagrams (a) and (b) correspond to the
2HL (BHF) calculation. The sum of the other diagrams, (c), (d)
bubble, (e) ring, (f) higher, gives the 3HL contribution. T (3) is the
three-body in-medium scattering matrix. For a detailed discussion,
see Refs. [4,6,15].

the AV18 and CDBONN forces, which can be considered
representative of highly accurate traditional meson-exchange-
inspired potentials.

III. RESULTS

A. Potential matrix elements

In order to have a first idea of the general characteristics
of the different potentials, we examine in Fig. 2 the diagonal
momentum-space potential matrix elements VSJLL′ (k, k) in
the most important 1S0 and coupled 3PF 2 partial waves. In
the case of r-space potentials they are defined as

VSJLL′ (k, k′) =
∫ ∞

0
dr r2jL(kr )VSJLL′ (r )jL′ (k′r ). (8)

One notes immediately the qualitative difference between
the meson-exchange potentials (AV18, CDBONN), which
exhibit a pronounced hard-core tail at large momenta, and
the chiral potentials, which are cut off around k ≈ 3 fm−1.
The variation due to the different values of the chiral cutoff
� = 450, 500, 550 MeV is also clearly evident. One may also
note that the N3LO450 and N4LO450 interactions (and to
some extend also N3LO500 and N4LO500) are actually very
similar, which is also reflected in the results discussed in the
following.
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FIG. 2. Diagonal matrix element V1S0
(k, k) and V3PF2

(k, k) for various NN potentials. Note the different energy scales.

B. Momentum distribution

In BHF approximation the momentum distribution can be
obtained from the mass operators M1 and M2 (BHF and
rearrangement contributions to the s.p. potential) as [3,24–26]

n(k < kF ) = 1 + ∂M1(k, ω)

∂ω

∣∣∣∣
ω=ek

, (9)

n(k > kF ) = −∂M2(k, ω)

∂ω

∣∣∣∣
ω=ek

, (10)

and the results for PNM are shown in Fig. 3, where the
bottom panels show more clearly the long-range tails of the
distributions by weighting with a factor k2, which helps us to
see clearly the discrepancy between various potentials at large
momenta.

One observes that for the hard-core potentials, the devia-
tions from the Fermi distribution increase with density due to
increased excitation over the Fermi surface. This is not the
case for the softest chiral potentials, which do not provide
the necessary scattering amplitude at large momenta. The
depletion of the momentum distribution is smaller than in
SNM at the same density [3], due to the weaker overall in-
teraction strength. (For example, the depletion with the AV18
at k = 0 is about 0.2 in that case, nearly density independent).
This obviously implies also smaller values of the correlation
parameter κ defined as average depletion, Eq. (2).

C. Defect functions

The r-space defect functions in the partial waves α =
1S0,

3PF 2,

ηα (r ) = jα (r ) − uα (r ) (11)

=
∫

dq ′ q ′2

2π2
jα (q ′r )

Q(p̄, q ′)Gα (p̄, q̄, q ′)
E(p̄, q̄, q ′)

, (12)

with the free wave function (Bessel function) jα , the corre-
lated wave function uα , Pauli operator Q, energy denominator
E, and G matrix evaluated at averaged total and relative
momenta p̄, q̄ [3], are shown in Fig. 4 for different densities.
In the dominant 1S0 channel, the hard core of the meson-
exchange potentials is clearly evident, whereas the defect of
the chiral potentials diminishes with decreasing cutoff and
with increasing density, consistent with the features of the
momentum distributions in Fig. 3. This behavior is the same
as in SNM, see Fig. 3 of Ref. [3].

The HLE condition c < d is well fulfilled for all potentials
and densities. This is not the case for the coupled 3PF 2 wave
defect, which even at low density extends beyond the average
particle distance d, in particular for chiral potentials with low
cutoff. However, its overall magnitude is completely negligi-
ble compared to the 1S0 wave. This is in contrast to SNM [3],
where the 3SD1 channel (absent in PNM) is actually dominant
at low density and its competition with the other partial
waves determines the overall density dependence of the total
correlation parameter κ = ∑

α κα , which we discuss now.
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FIG. 3. Deviation of the momentum distribution in PNM from the bare Fermi distribution n0(k) = θ (kF − k) for all potentials at different
densities (ρ0 = 0.17 fm−3). The bottom panels are weighted with a factor k2 in order to emphasize the long-range tail of the distributions.

D. Correlation parameter

The hole-line parameter κ (ρ) = ρVcore(ρ), computed from
Eq. (2), is shown in Fig. 5. Mainly due to the absence of the
3SD1 channel, it is smaller in PNM than in SNM, where val-
ues of above 0.25 are reached with the AV18 potential [3]. The
hard core Vcore(ρ) of the meson-exchange potentials resists
well when increasing the density, and therefore κ continues
to rise with increasing density. On the contrary, the absence
of a hard core for the soft chiral potentials causes Vcore(ρ) to
shrink faster than linearly with density, and therefore also κ
decreases with increasing density in this case.

The density in Fig. 5 extends to a fairly high value ρ =
0.8 fm−3, corresponding to kF = 2.87 fm−1 ≈ 570 MeV, be-
yond the range of validity of the chiral forces. Nevertheless
the density dependence of the results is regular, apart from
the N4LO550 model, which features bad convergence for
ρ � 0.5 fm−3, i.e., the BHF iterative procedure fails to have
a stable solution. In any case the correlation parameter is
rather small, κ � 0.1 for the chiral potentials, and therefore,
since also the condition c < d is well fulfilled, a very good
convergence of the HLE is to be expected, which we verify
now.

E. Binding energies E2 and E3

Figure 6 shows the binding energy per neutron obtained at
second (left panel) or third (right panel) order of the HLE. We

just mention that in the BHF calculations we use Jmax = 9
in the partial-wave decomposition and kmax = 7.5 fm−1 for
the computation of the single-particle potential U (k). Just as
in SNM [4], the meson-exchange potentials yield naturally
more repulsion at high density, whereas the results of the
chiral potentials are ordered according to their cutoff value.
Indeed the N3LO and N4LO models give very similar results
for the same cutoff. The largest discrepancy is about 4%
at ρ = 0.8 fm−3 for the N*LO500 models with continuous
choice, but much less at lower density and for the N*LO450
forces.

It is obvious that the difference between gap-choice and
continuous-choice results, which is an indicator for the con-
vergence of the expansion, is strongly reduced when going
from second to third order. This indicates that the third-order
(or the second-order continuous-choice) results for PNM are
practically converged in the HLE up to the high densities
considered here. This feature is clearly consistent with the
smallness of the correlation parameter κ , as pointed out
before. We give a typical example: For the AV18 at ρ =
0.17 fm−3, the width of the error band between gap- and
continuous-choice results is 1.10 and 0.21 MeV at 2HL and
3HL level, respectively. Therefore the convergence is im-
proved by 0.21/1.1 ≈ 0.2, which is of the same order as the
hole-line parameter κ ≈ 0.08. For the other potentials quite
similar values are obtained.

We note nevertheless that at the highest density, the error
bands defined in this way do (marginally) not overlap for
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FIG. 4. 1S0 and 3PF 2 defect functions in PNM at different densities (ρ0 = 0.17 fm−3) for all potentials. The vertical dashed lines indicate
the interparticle distance d ≡ ρ−1/3.

the AV18 results, which indicates that this criterion does not
provide exact limits on the energy at any given order. In fact
the difference between both choices is very large at 2HL level
for the AV18.

FIG. 5. Correlation parameter κ , Eq. (2), in PNM for all
potentials. The N4LO550 calculations do not converge well for
ρ � 0.5 fm−3.

On the other hand, the results (in particular at high density)
depend strongly on the chosen NN potential, which means
that the missing three-body forces also depend strongly on the
potentials, just as in SNM, where the chiral potentials require

FIG. 6. Energy per particle of PNM for different NN potentials
in 2HL (left panel) and 2HL+3HL (right panel) approximation with
continuous- (thick curves) or gap-choice (thin curves) s.p. potentials.
The N4LO550 calculations do not converge well for ρ � 0.5 fm−3.
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FIG. 7. Comparison of continuous-choice BHF results with
N4LO EM and EGM potentials. The relation between r-space regu-
lator and chiral cutoff is � = 2/R [27,28].

strong three-body forces in order to provide good saturation
properties of nuclear matter [4].

F. Comparison with other works

PNM has been a test bed for different theoretical compu-
tation schemes and NN interactions, and we therefore provide
now a short comparison with such previous results.

Figure 7 shows the binding energy per neutron of our well-
converged continuous-choice 2HL results with the N4LO EM
potentials in comparison with the equivalent BHF (no TBF)
results presented in Ref. [27] obtained with the EGM chiral
potentials [28] of the same order N4LO. We note substantially
lower values obtained with the EM potentials. Already above
normal density ρ = ρ0 the EM and EGM results do not
coincide for any of the chosen chiral cutoffs. This confirms
the important conclusion drawn in Refs. [27–29] that the
residual cutoff dependence of the energy per particle does not
allow for a reliable estimation of the theoretical uncertainty,
which could be much larger. This would mean for PNM an
uncertainty of more than 10 MeV at ρ = 0.4 fm−3 at fifth
order of chiral perturbation theory (no TBF), for example.

Finally, in order to visualize the current status of theoret-
ical calculations of PNM, Fig. 8 compares our 2HL+3HL
results with those obtained in other many-body approximation
schemes [30–34] (listed in the figure caption), all employing
chiral 2N+3N forces, i.e., including TBF. The plot thus
confirms essentially the importance of TBF, and it can be
concluded that repulsive effects of TBF are required for
all potentials, increasing with the softness of the interac-
tion. Although the plot gives a qualitative assessment of the

FIG. 8. Energy per particle of PNM in continuous-choice
2HL+3HL approximation for different NN potentials without 3N
forces (thin curves) in comparison with other calculations, all using
chiral 2N+3N forces (bold curves): many-body perturbation theory
[30,31]; BHF including � degrees of freedom [32]; diffusion Monte
Carlo [33]; quantum Monte Carlo [34].

importance of TBF and current theoretical accuracies, we do
stress again that the results compared in the figure are not
obtained on equivalent theoretical grounds: While the two-
body potentials are the same, our calculations do currently
not include any TBF, whereas the other frameworks do not
consider consistent 3HL corrections in a comparable way
(although we have shown here that those are very small). Both
items remain tasks for future improvements.

IV. CONCLUSIONS

We have carefully analyzed properties of pure neutron
matter in the BBG hole-line expansion at second and third
order in the correlation parameter κ . This parameter turns
out to be of the order of only a few percent up to high
density for all NN potentials analyzed, in particular for the
chiral potentials, which together with the validity of the c < d
condition implies excellent convergence of the HLE. This is
confirmed by explicit calculation, such that in practice the
BHF results with the continuous choice of s.p potentials can
be considered converged in the HLE.

The binding energy of PNM obtained in this way then
depends strongly on the hard-core features of the chosen NN
potentials, which implies important contributions of three-
nucleon forces in particular with the chiral models. This is still
a theoretical challenge for both meson-exchange and chiral
NN potentials.
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