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Isovector and isoscalar proton-neutron pairing in N > Z nuclei
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We propose a particle number conserving formalism for the treatment of isovector-isoscalar pairing in nuclei
with N > Z. The ground state of the pairing Hamiltonian is described by a quartet condensate to which is
appended a pair condensate formed by the neutrons in excess. The quartets are built by two isovector pairs
coupled to the total isospin T = 0 and two collective isoscalar proton-neutron pairs. To probe this ansatz for the
ground state we performed calculations for N > Z nuclei with the valence nucleons moving above the cores
16O, 40Ca, and 100Sn. The calculations are done with two pairing interactions, one state-independent and the
other of zero range, which are supposed to scatter pairs in time-reversed orbits. It is proven that the ground-
state correlation energies calculated within this approach are very close to the exact results provided by the
diagonalization of the pairing Hamiltonian. Based on this formalism we have shown that moving away from the
N = Z line, both the isoscalar and the isovector proton-neutron pairing correlations remain significant and that
they cannot be treated accurately by models based on a proton-neutron pair condensate.

DOI: 10.1103/PhysRevC.98.064319

I. INTRODUCTION

In spite of many years of theoretical and experimental
studies, the role of neutron-proton pairing in nuclei is still a
matter of debate (for recent reviews, see Refs. [1,2]). One of
the most debated issues is whether in nuclei the isoscalar (T =
0) spin-triplet neutron-proton pairs could form a deuteronlike
pair condensate and if this condensate would coexist with
the condensates of spin-singlet isovector (T = 1) pairs [3–7].
Most of the studies have been carried out for heavy nuclei
close to the N = Z line in which the spin-triplet pairing is
expected to be stronger and less suppressed by the spin-orbit
field. Some calculations predict that a spin-triplet phase might
exist, alone or mixed with the isovector pairing phase, in
the ground state of some nuclei [5,7], but it is not clear yet
how much these predictions are affected by the employed
approximations. On the experimental side, so far there is
no clear evidence for the fingerprints of the proton-neutron
pairing phase on measurable quantities [1].

The majority of the theoretical studies mentioned above
have been done by treating the pairing in the framework of the
generalized Bogoliubov approach, as outlined many years ago
by Goodman [8]. This approach is very convenient because
it can treat all types of pairing correlations, isovector and
isoscalar, on an equal footing. It has, however, the drawback
that it does not conserve exactly the particle number and
the isospin. An isospin conserving theory can be formulated
in terms of alphalike four-body structures (called hereafter
alphalike quartets or, simply, quartets) built by coupling two
protons and two neutrons to total isospin T = 0. One of the
first attempts on this line was the treating of the isovector
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pairing by a BCS-like state based on alphalike quartets [9].
Similar BCS trial states have been employed to study the
competition between pairing and quartetting in nuclei [10,11].
Alphalike quartets have been also used to treat pairing in
particle number conserving formalisms [12,13]. One of the
first such formalisms, employed for the treatment of isovector
pairing, was based on quartets built by two neutrons and two
protons sitting in the same single-particle orbit [12]. Since this
formalism is using noncollective quartets, its application to
large systems is cumbersome. An alternative alphalike quartet
formalism, based on collective quartets, was proposed in
Refs. [14,15]. In this formalism the ground state of isovector
paring Hamiltonians is described as a condensate of collective
quartets in the case of N = Z nuclei [14], and as a condensate
of quartets to which is appended a condensate of neutron
pairs in the case of N > Z nuclei [15]. Recently this quartet
condensation formalism (QCM) was extended to treat both
isovector and isoscalar pairing interactions in N = Z nuclei
[16,17]. The scope of this paper is to extend further this
approach to N > Z nuclei and to probe the validity of the new
approach for isovector and isoscalar pairing Hamiltonians,
which can be solved exactly by diagonalization.

II. FORMALISM

Since the present formalism is an extension of the model
introduced in Ref. [16], for the sake of completeness we
start by briefly presenting this approach. As in Ref. [16], we
consider systems formed by neutrons and protons moving
in axially deformed mean fields and interacting by isovector
and isoscalar pairing forces, which scatter pairs of nucle-
ons in time-reversed single-particle states. These systems are
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described by the Hamiltonian

H =
∑

i,τ=±1/2

εiτNiτ +
∑
i,j

V
(T =1)
i,j

∑
t=−1,0,1

P
†
i,tPj,t

+
∑
i,j

V
(T =0)
i,j D

†
i,0Dj,0, (2.1)

where εi,τ are single-particle energies associated with the
mean field of neutrons (τ = 1/2) and protons (τ = −1/2)
while Ni,τ are the particle number operators. The second term
is the isovector pairing interaction expressed by the isovec-
tor pair operators P

†
i,1 = ν

†
i ν

†
ī
, P

†
i,−1 = π

†
i π

†
ī
, P

†
i,0 = (ν†

i π
†
ī

+
π

†
i ν

†
ī
)/

√
2. The third term is the isoscalar pairing interaction

and D
†
i,0 = (ν†

i π
†
ī

− π
†
i ν

†
ī
)/

√
2 is the isoscalar pair operator.

By ν
†
i and π

†
i are denoted the creation operators for neutrons

and protons while ī is the time conjugate of the state i.
It is worth emphasising that the Hamiltonian (1), which

is employed in many nuclear structure calculations (e.g., see
Ref. [19] and the references quoted therein), describes the
correlations associated to the pairs built on time-reversed
axially deformed states. As such, these pairs have Jz = 0
but not a well-defined angular momentum J . In fact, the
isovector and isoscalar pairs with Jz = 0 can be written as a
particular superposition of pairs with J = {0, 2, 4, . . .} and,
respectively, with J = {1, 3, 5, . . .}. Therefore the intrinsic
Hamiltonian (1) is not physically equivalent with the standard
pairing Hamiltonians, which take into account only J = 0
and J = 1 pairing correlations. By analogy with the J = 1
spherically symmetric pairing interactions, in the Hamiltonian
(1) one can eventually introduce a more general isoscalar pair-
ing force, which includes also pairs with Jz = ±1. The role of
such pairs in the intrinsic system is an open and interesting
question. However, the study of this issue is beyond the scope
of this paper.

In most of the studies the Hamiltonian (1) is solved in BCS-
like approximations based on the generalized Bogoliubov
transformation. An alternative approach, which conserves ex-
actly the particle number and the isospin, was proposed in
Ref. [16] for the case of even-even N = Z systems. In this
approach, called the quartet condensation model (QCM), the
ground state of the Hamiltonian (1) is approximated by the
trial state

|QCM〉 = (
A† + �

†2
0

)nq |0〉, (2.2)

where nq = (N + Z)/2 while |0〉 is the vacuum state repre-
sented by the nucleons, which are supposed to be not affected
by the pairing interactions (e.g., an even-even closed core).
The operator A† is the isovector quartet built by two isovector
noncollective pairs coupled to the total isospin T = 0, i.e.,

A† =
∑
i,j

xij [P †
i P

†
j ]T =0. (2.3)

Assuming that the mixing coefficients are separable, i.e.,
xij = xixj , the isovector quartet takes the form

A† = 2�
†
1�

†
−1 − (�†

0)2, (2.4)

where

�
†
t =

∑
i

xiP
†
i,t (2.5)

are collective pair operators for neutron-neutron pairs (t = 1),
proton-proton pairs (t = −1), and proton-neutron pairs (t =
0). The isoscalar degrees of freedom are described by the
collective isoscalar pair

�
†
0 =

∑
i

yiD
†
i,0. (2.6)

The trial state (2.2) is called a quartet condensate. The term
condensate has here the same meaning as in the case of pair
condensate: a state obtained by acting many times with the
same operator on a vacuum state.

In what follows we extend this approach to even-even
systems with N > Z (the case N < Z is treated in the same
manner). As in the QCM approach presented above, by N and
Z we denote the numbers of neutrons and protons moving
above a self-conjugate core, which plays the role of the
reference (vacuum) state. To describe the ground state of the
systems with N > Z we use the following ansatz: (i) we
assume that the protons together with an equal number of
neutrons are forming a four-body condensate with the same
structure as in Eq. (2.2); (ii) we assume that the neutrons in
excess are forming a pair condensate, which is appended to
the four-body condensate. The trial state that corresponds to
these assumptions is given by

|QCM〉 = (�̃†
1)nN

(
A† + �

†2
0

)nq |0〉, (2.7)

where nN = (N − Z)/2 gives the number of neutron pairs in
excess while nq = (N + Z − 2nN )/4 denotes the maximum
number of quartets, which can be formed with Z protons. The
extra neutrons are represented by the collective neutron pair

�̃
†
1 =

∑
i

ziP
†
i,1. (2.8)

As can be seen, the structure of the extra pairs, expressed by
the mixing amplitudes, is different from the structure of the
neutron pairs, which enter in the definition of the isovector
quartet (2.4). It is worth mentioning that in the particular
case when the isoscalar pairs are absent, the state (2.6) is the
ansatz employed in Ref. [15] for the description of the ground
state of N > Z systems interacting by an isovector pairing
interaction.

The state (2.6) has a very complicated structure when it is
expressed in terms of pairs. Thus, replacing the quartet oper-
ator by (2.4) one can see that the state (2.6) is a superposition
of pair condensates, each of them formed by various types of
pairs. Among these terms of special interest are the following
ones:

|Civ〉 = (�̃†
1)nN

(
�
†2
0

)nq |0〉, (2.9)

|Cis〉 = (�̃†
1)nN

(
�

†2
0

)nq |0〉. (2.10)

As can be seen, in the first (second) state it is supposed that
the proton-neutron correlations are described by a condensate
of isovector (isoscalar) proton-neutron pairs. The validity of
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FIG. 1. The errors for the energy correlations as a function of neutron number for various isotopes. The results correspond to the QCM
state [Eq. (2.6)] and to the approximations Civ [Eq. (2.8)] and Cis [Eq. (2.9)]. The labels 1 and 2 in the brackets refer to the results obtained
with the state-independent force and zero-range force, respectively. The errors are calculated relative to the exact results.

these assumptions will be tested below against the full ansatz
(2.6).

The trial state (2.6) depends on the mixing amplitudes
of the collective pair operators. They are determined varia-
tionally by minimizing the average of the Hamiltonian un-
der the normalization condition imposed to the trial state.
Details about the calculation scheme are presented in the
Appendix.

III. RESULTS

To probe the accuracy of the approach presented above we
use the same examples as in Refs. [15,16]. Namely, we con-
sider three sets of nuclei with the valence neutrons and protons
moving above the cores 16O, 40Ca, and 100Sn. We start by the
even-even N = Z systems obtained by adding to each core
one, two, and three quartets, which are described by the trial
state (2.2). Then, on the top of these N = Z nuclei we add up
to three neutron pairs; these N > Z systems are described by
the trial state (2.6). The nucleons are supposed to move in the

lowest ten single-particle states above the closed cores men-
tioned above. These states are generated by axially deformed
Skyrme-HF calculations performed for the N = Z nuclei. In
the mean-field calculations we have employed the Skyrme
functional SLy4 [20] and we have neglected the Coulomb
interaction. The deformed mean field in which the nucleons
are moving is determined self-consistently by the Skyrme
functional, which takes also into account all the degrees of
freedom, which are not associated to the pairing channel.

What remains to be chosen are the pairing interactions.
How to fix these interactions for nuclei with neutrons and
protons in the same valence shell is not clearly established,
especially for the case of isoscalar pairing force. The simplest
interaction that is usually taken in the isovector pairing chan-
nel is a state-independent force. Here we have chosen such an
interaction of strength V1 = −24/A, where A is the atomic
mass of the nucleus. For the isoscalar interaction we use the
same force as in the isovector channel but of different strength,
i.e., V0 = wV1, where w is a scaling factor. For the latter
many values have been employed in the literature, ranging
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FIG. 2. Pairing energies, defined by Eqs. (3.11)–(3.12), as a function of neutron number, for various nuclei. ET
pn, Enn, and Epp denote,

respectively, the proton-neutron, neutron-neutron, and proton-proton pairing energies while T is the isospin.

from w = 1.5 [2,7] to values smaller than 1 [18]. To cover
these situations, here we have chosen two values, w = 1.2 and
w = 0.8. The first value we have employed for sd-shell nuclei
and the latter for the heavier nuclei. We have made this choice
because it is expected that in pf -shell nuclei the isoscalar
pairing interaction is more suppressed than in sd-shell nuclei
due to the spin-orbit splitting.

In addition to the state-independent interactions men-
tioned above, we consider also a zero-range δ interaction
V T (r1, r2) = V T

0 δ(r1 − r2)P̂ T
S,Sz

, where P̂ T
S,Sz

is the projection
operator on the spin of the pairs, i.e., S = 0 for the isovector
(T = 1) force and S = 1, Sz = 0 for the isoscalar (T = 0)
force. For the strengths V T

0 we have chosen the values em-
ployed in Ref. [17], which provide a reasonable description
of the lowest T = 1 and T = 0 states in odd-odd N = Z
nuclei. These values are V T =1

0 = 465 MeV fm−3 and V T =0
0 =

wV T =1
0 , where w = 1.6 for sd-shell nuclei and w = 1.0 for

the heavier nuclei.
With the two pairing forces we have tested the ansatz (2.6)

for the ground-state energy of Hamiltonian (1) considering the

N > Z systems mentioned above. To evaluate the accuracy of
the approach we have analyzed the ground-state correlation
energies defined by Ecorr = E0 − E, where E is the ground-
state energy and E0 is the energy in the absence of the inter-
actions. The correlation energies are compared to the exact
values obtained by diagonalizing the Hamiltonian (1). The
errors, with respect to the exact results, are shown in Fig. 1.
One can observe that for all the systems the errors are small,
under 1%, which demonstrates that the QCM ansatz (2.6) is
describing very well the ground-state pairing correlations. In
Fig. 1 are shown also the errors corresponding to the pair
condensates given by Eqs. (2.8), (2.9). It can be seen that the
errors corresponding to these trial states are much larger. They
are the largest for the N = Z nuclei and then they decrease for
the systems with extra neutrons. These results indicate that
going off the N = Z line there is not a fast transition towards
a pure condensate of proton-neutron pairs, of isovector or
isoscalar kind.

To illustrate how the pairing correlations are affected by the
extra neutrons, in Fig. 2 are plotted, for the state-independent
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interaction, the average of the isovector and isoscalar pairing
forces. The latter are defined by

E
(T =1)
t = V1

∑
i,j,t

〈QCM|P †
i,tPj,t |QCM〉, (3.11)

E(T =0)
pn = V0

∑
i,j

〈QCM|D†
i,0Dj,0|QCM〉. (3.12)

The isovector pairing energies corresponding to isospin pro-
jections t = {1,−1, 0} are denoted by Enn, Epp, and E(T =1)

pn .
As seen in Fig. 2, with the chosen parameters are covered
two scenarios concerning the proton-neutron pairing energies,
i.e., nuclei with E(T =0)

pn > E(T =1)
pn and nuclei with E(T =0)

pn <

E(T =1)
pn . As expected, the proton-neutron pairing energies are

decreasing when extra neutrons are added. For the sd-shell
nuclei E(T =0)

pn is decreasing faster than E(T =1)
pn while for the

heavier nuclei the situation is opposite. However, although
the proton-neutron energies are decreasing, they remain sig-
nificantly large, even for the systems with six extra neutrons.
Similar features are observed for the zero-range δ interaction.
Thus, in variance to the predictions of many BCS-like stud-
ies, these calculations show that the isoscalar and isovector
proton-neutron pairing correlations: (i) coexist together in
both N = Z and N > Z nuclei; (ii) do not vanish quickly by
adding few extra neutrons pairs.

IV. SUMMARY

We have discussed the treatment of isovector and isoscalar
pairing Hamiltonians for the N > Z systems, with the va-
lence nucleons moving in the same single-particle orbits. The
ground state of these pairing Hamiltonians is described by
a condensate of quartets to which is appended a conden-
sate built with the neutron pairs in excess. The validity of
this ansatz for the ground state was checked for nucleons
moving above the cores 16O, 40Ca, and 100Sn, and for two
pairing interactions, one state-independent and the other a
state-dependent zero-range force. It is shown that the ansatz
used for the ground state provides correlation energies which
are very close to the results obtained by diagonalizing exactly
the pairing Hamiltonian. The present calculations show that
the pairing correlations remain significant, in both channels,
even in the case when six extra neutrons are added to a N = Z
nucleus.

In this paper the extended quartet condensation model
(QCM) was applied for a set of nucleons moving in a fixed
mean field generated by Skyrme-HF calculations. The same
formalism can be employed for performing self-consistent
Skyrme-HF + QCM calculations, iterating together the mean-
field and the pairing calculations. A similar calculation
scheme was applied in Ref. [21] for analyzing the effect
of isovector pairing on Wigner energy. The extended QCM
formalism presented in this paper is well suited to study how
the Wigner energy is affected by both the isovector and the
isoscalar pairing correlations. This study is the scope of a
future publication.
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APPENDIX

In what follows we present the calculation scheme
for evaluating analytically the average of the Hamiltonian
〈QCM|H |QCM〉 and the norm 〈QCM|QCM〉. The calcu-
lations are performed in the basis spanned by the states

|n1n2n3n4n5〉 = �
†n1
1 �

†n2
−1 �

†n3
0 �

†n4
0 �̃

†n5
1 |0〉, (A1)

where ni denotes the numbers of collective pairs of a certain
type, which can take any value from zero to the maximum
number of pairs considered in the pairing Hamiltonian. In this
basis the trial state |QCM〉 [Eq. (2.7)] can be written as

|QCM〉 =
nq∑

k1=0

nq−k1∑
k2=0

(
k1

nq

)(
k2

nq − k1

)
2nq−k1−k2 (−1)k2 |nq − k1

− k2, nq − k1 − k2, 2k2, 2k1, nN 〉,
where nq is the number of quartets and nN is the number of
neutron pairs in excess.

To calculate the matrix elements of the Hamiltonian in the
basis (1) one needs to evaluate the action of the basic operators
Ô ≡ {Ni,τ , Pj,t , Dj,0} on a generic state |n〉 ≡ |n1n2n3n4n5〉.
To determine these actions we make use of the commutation
relation

[Ô,G†ni ] = niG
†(ni−1)[Ô,G†]

+ ni (ni − 1)

2
[[Ô,G†],G†]G†(ni−2), (A2)

where G† denotes the collective pair operators, which appear
in the definition (1). The right-hand side of Eq. (2) involves the
commutation relations between the noncollective pair opera-
tors and between the latter and the particle number operators,
which are provided below.

The commutators between the isovector pair operators
are [Pk,±1, P

†
l,±1] = (1 − Nk,±1/2)δkl , [Pk,±1, P

†
l,∓1] = 0,

[Pk,0, P
†
l,0] = [1 − 1

2 (Nk,+1/2 + Nk,−1/2)]δkl , [Pk,0, P
†
l,±1] =

±Tk,±1δkl , [Pk,±1, P
†
l,0] = ∓Tk,∓1δkl . The last two

commutators generate the isospin operators Tk,±1

defined by Tk,1 = −(ν†
i πi + ν

†
ī
πī )/

√
2 and Tk,−1 =

+(π †
i νi + π

†
ī
νī )/

√
2.

The commutator between the isoscalar pairs
is [Dk,0,D

†
l,0] = [1 − 1

2 (Nk,+1/2 + Nk,−1/2)]δkl . The
commutators between isovector and isoscalar pair operators
are: [Pk,p,D

†
l,0] = (−1)p+1Wk,0,−pδkl and [Dk,0, P

†
l,p] =

−Wk,0,pδkl . In these expressions the W operators are
given by Wk,0,+1 = (−ν

†
i πi + ν

†
ī
πī )/

√
2, Wk,0,−1 = (π †

i νi −
π

†
ī
νī )/

√
2, and Wk,0,0 = (ν†

i νi − π
†
i πi − ν

†
ī
νī + π

†
ī
πī )/2.

In order to close the commutator algebra, one needs also
the commutators involving the particle number, the isospin
and the W operators. These commutators are [Nk,±1/2, P

†
l,p] =
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(1 ± p)P †
l,pδkl , [Nk,±1/2,D

†
l,0] = D

†
l,0δkl ; [Tk,p, P

†
l,p′ ] = 0,

for p = p′, [Tk,1, P
†
l,−1] = −P

†
k,0δkl , [Tk,−1, P

†
l,1] = P

†
k,0δkl ,

[Tk,±1, P
†
l,0] = ∓1P

†
±1δkl , [Tk,±1,D

†
l,0] = 0; [Wk,0,p, P

†
l,p′ ] =

(−1)pD
†
k,0δp,−p′δkl , and [Wk,0,p,D

†
l,0] = P

†
k,pδkl .

With the relation (2) and the commutators listed above
one can calculate the action of the basic operators of the
Hamiltonian on the basis states (1). As an example we present
here the expression corresponding to the action of the pair
operator Pj,1:

Pj,1|n〉 = −2n1n5xj zjP
†
j,1|n1 − 1n2n3n4n5 − 1〉 − n1(n1 − 1)x2

j P
†
j,1|n1 − 2n2n3n4n5〉

− n5(n5 − 1)z2
jP

†
j,1|n1n2n3n4n5 − 2〉 − n3(n3 − 1)

2
x2

j P
†
j,−1|n1n2n3 − 2n4n5〉

+ n4(n4 − 1)

2
y2

j P
†
j,−1|n1n2n3n4 − 2n5〉 − n1n3x

2
j P

†
j,0|n1 − 1n2n3 − 1n4n5〉

− n3n5xj zjP
†
j,0|n1n2n3 − 1n4n5 − 1〉 − n4n5yj zjD

†
j,0|n1n2n3n4 − 1n5 − 1〉

− n1n4xjyjD
†
j,0|n1 − 1n2n3n4 − 1n5〉 + n1xj |n1 − 1n2n3n4n5〉 + n5zj |n1n2n3n4n5 − 1〉.

The expression above can be then employed to calculate the
matrix elements of the two-body operator 〈m|P †

i,1Pj,1|n〉[=
(Pi,1|m〉)† × (Pj,1|n〉)]. These matrix elements depend recur-
sively on the matrix elements of the basic operators, Pi,t and
Di,0, and on the matrix elements of the two-body operators
P

†
i,tPj,t ′ , D

†
i,0Dj,0, and P

†
i,tDj,0. For all these matrix elements

one needs to derive the corresponding recurrence relations,
which are all coupled together. In addition, these matrix
elements depend on the overlaps between auxiliary states,
which can be expressed in terms of the matrix elements
of the pair operators. For example, 〈m|n〉 = ∑

i xi〈n1 −
1n2n3n4n5|Pi,1|m〉.

Employing the calculations scheme presented above one
can derive all the recurrence relations needed to calculate
the average of the Hamiltonian. This average is a func-
tion of the amplitudes xi, yi, zi , which define the collective
pair operators. These amplitudes are determined from the
minimization of the average of the Hamiltonian under the
constraint 〈QCM|QCM〉 = 1. The variational calculations
are done using a minimization subroutine from NAG/LIB. In
order to check and to fasten the numerical calculations, for the
systems treated in this paper we have also derived analytically
the average of the Hamiltonian by employing the symbolic
computer algebra system CADABRA (https://cadabra.science/).
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