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Nucleon effective mass and its isovector splitting
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Using an energy density functional (EDF) based on the thermodynamic Gibbs-Duhem relation, found
equivalent to the standard Skyrme EDF for infinite nuclear matter, it is demonstrated that the parameters of
this EDF are not uniquely determined from the fit of the empirical and theoretical data related to nuclear matter.

This prevents an unambiguous determination of the nucleon effective mass (
m∗

0
m

) and its isovector splitting (�m∗
0).

Complementary information from dipole polarizability of atomic nuclei helps in removing this ambiguity and

plausible values of
m∗

0
m

and �m∗
0 can be arrived at. Presently considered fit data on infinite nuclear matter

and dipole polarizability of finite nuclei yield
m∗

0
m

= 0.68 ± 0.04 and �m∗
0 = (−0.20 ± 0.09)δ. This EDF is

consistent with the constraint on the maximum mass of the neutron star.
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I. INTRODUCTION

The nucleon effective mass is a measure of the mobil-
ity of the nucleon in a nuclear medium. It is defined as
dε/dp = p/m∗, where m∗ is the effective nucleon mass, ε
the energy per nucleon in the system, and p is the magnitude
of the nucleon momentum. For a homogeneous system of
density ρ, m∗(ρ) is defined at the Fermi surface. In isospin
asymmetric nuclear matter, the neutrons and protons may feel
different single-particle potentials. This may result in a differ-
ence in their mobility. The (neutron, proton) effective masses
(m∗

n,m
∗
p) may then be different. The isospin-splitted effective

mass is defined as �m∗ = (m∗
n − m∗

p )/m, where m is the bare
mass of the nucleon. The small difference between the bare
neutron and the bare proton mass is neglected. There exist
different kinds of nucleon effective masses in relativistic [1,2]
and non-relativistic approaches [3,4], we confine ourselves
specifically to a non-relativistic description. Furthermore,
only that part of the mass renormalization coming from the
momentum dependence of the nucleon-nucleon interaction is
in focus here. The energy-mass component emanating from
the coupling of the nucleon effective mass with the dynamical
vibration [5,6] of the single-particle potential is left out.

Attempts have been made in the last few decades to ar-
rive at an acceptable value for the nucleon effective mass
m∗(ρ0)(= m∗

0 ) at the saturation density ρ0 of symmetric
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nuclear matter (SNM), but a clear consensus still seems to
be missing. Energy density functionals (EDF), many in the
Skyrme framework, designed to effectively reproduce vari-
ous empirical properties of nuclear matter and finite nuclei
yield values of m∗

0/m in the range 0.6–1.0 [7–10]. Many-
body calculations, irrespective of their level of sophistication
give m∗

0/m ∼ 0.8 ± 0.1 [11–13]. Analysis of isoscalar giant
quadrupole resonances (ISGQR) [14–17] predicts a similar
value (∼0.85 ± 0.1), but the analysis is not model indepen-
dent. Optical model analysis of nucleon-nucleus scattering, on
the other hand, yields a value of the effective mass somewhat
less, m∗

0/m ∼ 0.65 ± 0.06 [18].
The isovector sector of the nuclear interaction is mired with

large uncertainty. The symmetry energy coefficient, its density
derivatives of different orders and the isovector splitting of the
nucleon effective mass offer a window to have a close glimpse
on the nature of this part of the interaction. The isovector
mass splitting is of profound importance in addressing many
key problems in nuclear physics, astrophysics and even cos-
mology. It is critical for understanding transport and thermal
properties of asymmetric nuclear matter [19–22], for neutrino
opacities in neutron star matter [23,24], for locating the drip
lines [25] in the nuclear mass table. It has also a crucial role
to play in understanding neutron/proton ratio in primordial
nucleosynthesis [26] in the early universe.

Attempts have been made in recent times to have an
experimental estimation of the isovector effective mass split-
ting �m∗

0 (the subscript refers to its value at ρ0). From
analysis of nucleon-nucleus scattering data [18] within an
isospin-dependent optical model, it is found to be (0.41 ±
0.15)δ [δ is the isospin asymmetry defined as (ρn − ρp )/ρ],
from exploration of ISGQR and dipole polarizability [14]
it goes down to (0.27 ± 0.15)δ. On the other hand, the
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transport-model-motivated estimates of double n/p ratio
in heavy ion collisions suggest [27] a value of �m∗

0 =
(−0.058 ± 0.129)δ. Theoretical studies based on microscopic
or phenomenological approaches have also yielded varying
values of �m∗

0 [28–31]. Non-relativistic Brueckner-Hartree-
Fock (BHF) and relativistic Dirac-Brueckner-Hartree-Fock
(DBHF) calculations [28,29] give �m∗

0 > 0 whereas Gogny-
Hartree-Fock models [32–34] result in �m∗

0 positive or neg-
ative depending on the choice of the parameters defining the
force. On the phenomenological side, for around 100 Skyrme
EDFs, �m∗

0 comes out to be positive for about half of them,
around one-third are negative and the rest are nearly zero [35].
From constraints on Skyrme EDFs provided by properties
of nuclear matter [9], of doubly magic nuclei and ab initio
calculations of low-density neutron matter, recently some
“best-fit” EDFs were isolated and listed in Table I of Ref. [36].
From the parameters of these EDFs (with the values of x1 as
given in the last column of the table), the isovector-splitted
effective mass can be calculated. For all of them, �m∗

0 is
found to be negative (�−0.3δ). Both experiment and theory,
however, thus far seem to weigh in favor of a positive �m∗

0. In
this conundrum, a fresher look at the nucleon effective mass,
its isovector splitting and thus a closer view of the isovector
sector of the nuclear interaction is called for. This article is an
attempt towards this goal, finding a means to determine the
values of m∗

0
m

and �m∗
0 in a subtle way.

The paper is organized as follows. In Sec. II, the elements
comprising the theoretical background are reviewed. The re-
sults and discussions are presented in Sec. III. The concluding
remarks are drawn in Sec. IV.

II. THEORETICAL FRAMEWORK

In an effort to find the interdependence of the different
symmetry energy elements of nuclear matter, a specific EDF
was recently constructed [31] structured on the thermody-
namic Gibbs-Duhem relation. Built in the confines of non-
relativistic mean field approximation, no specific assumption
about the nuclear interaction is made in this EDF except that
it is effectively two-body, quadratically momentum dependent
and that it has a power-law density dependence to simulate
many-body effects. Equations relevant in the present context
are presented in Sec. II A, Sec. II B contains a discussion on
nuclear dipole polarizability and its relation in finding some
key parameters of this EDF uniquely.

A. The energy density functional

Exploiting Gibbs-Duhem relation, the energy per nucleon
of asymmetric nuclear matter at a density ρ and isospin
asymmetry δ can be written as [31]

ε(ρ, δ) = 1

ρ

[∑
τ

P 2
F,τ

10m
ρτ

(
3 − 2

m

m∗
τ (ρ)

)]
− V2(ρ, δ)

+ P (ρ, δ)

ρ
. (1)

The index τ refers to neutron or proton, ρτ = (1 + τδ)ρ/2;
τ = 1 for neutrons and −1 for protons. The Fermi momentum

PF,τ = gρ
1/3
τ with g = (3π2)1/3h̄. In Eq. (1), P (ρ, δ) is the

pressure of the system and V2(ρ, δ) is the rearrangement
potential. The density and isospin dependent rearrangement
potential can be expanded around δ = 0 and written as

V2(ρ, δ) = (a + bδ2 + cδ4 + . . . )ρα̃. (2)

If the interaction is effectively two-body, terms beyond δ2 are
zero. The density-dependent nucleon effective mass is taken
as

m

m∗
τ (ρ)

= 1 + k+
2

ρ + k−
2

ρτδ. (3)

The isovector effective mass splitting �m∗
0(= m∗

n−m∗
p

m
) at ρ0 is

then given by

�m∗
0 � −k−ρ0

(
m∗

0

m

)2

δ, (4)

where at the saturation density, the approximation
(m∗

n.m
∗
p ) � (m∗

0 )2 is used.
Since the pressure P = ρ2 ∂ε

∂ρ
, Eq. (1) can be integrated to

ε(ρ, δ) = 3

2
y

[∑
τ

(1 + τδ)5/3

{
ρ2/3 + 1

2
ρ5/3(k+ + k−τδ)

}]

+ (a + bδ2)
ρα̃

(α̃ − 1)
+ K (δ)ρ, (5)

where y = g2

10m.22/3 and K (δ) = (K1 + K2δ
2 + K4δ

4 + · · · ) is
a constant of integration.

The expressions for the energy of SNM and pure neutron
matter (PNM) and their pressures are then written as

ε(ρ, δ = 0) = a
ρα̃

(α̃ − 1)
+ 3yρ2/3

(
1 + 1

2
k+ρ

)
+ K1ρ, (6)

ε(ρ, δ = 1) = (a + b)
ρα̃

(α̃ − 1)
+ 3 × 22/3yρ2/3

×
[

1 + 1

2
(k+ + k−)ρ

]
+ (K1 + K2 + K4 + · · · )ρ, (7)

P (ρ, δ = 0) = α̃

(α̃ − 1)
aρα̃+1

+ yρ5/3

(
2 + 5

2
k+ρ

)
+ K1ρ

2 (8)

P (ρ, δ = 1) = α̃

(α̃ − 1)
(a + b)ρα̃+1 + 22/3yρ5/3

×
[

2 + 5

2
(k+ + k−)ρ

]

+ (K1 + K2 + K4 + · · · )ρ2. (9)

From Eq. (5), the symmetry energy coefficient C2(ρ)(=
1
2

∂2ε
∂δ2 |δ=0) is derived as

C2(ρ) = bρα̃

(α̃ − 1)
+ 5

3
yρ2/3

[
1 + 1

2
(k+ + 3k−)ρ

]
+ K2ρ.

(10)

064316-2



NUCLEON EFFECTIVE MASS AND ITS ISOVECTOR … PHYSICAL REVIEW C 98, 064316 (2018)

The parameters of this EDF can be found from the best fit
to the existing empirical data pertaining to nuclear matter, i.e.,
the pressure of symmetric nuclear matter [37–39] and of PNM
in a broad density range [37,40] and also the symmetry energy
in a limited density range [41–44]. In addition, the energy
and pressure of low density neutron matter calculated in high
precision in chiral effective field theory (N3LO) [45,46] are
taken into account in the fit data. Our analysis reveals that
the fit to the infinite nuclear matter data alone is unable to fix
the values of the two parameters (k+ and k−) separately; it
tends to yield a value of the sum of the parameters. Available
experimental data on the dipole polarizability in a few nuclei,
on the other hand, are shown to illuminate the relation of
an isovector property with the difference between these said
parameters (k+ and k−). In this paper, we use this extra
information to find values of k+ and k−; they are measures
of the nucleon effective mass and the isovector mass splitting.

Inspection of the EDF in Eq. (5), when compared with
the ‘standard’ Skyrme functional [9] shows that there is an
exact equivalence of the Skyrme functional for infinite matter
with the one given by Eq. (5) provided the term K (δ) is
truncated at δ2. In subsequent analysis, we take this pre-
scription, i.e., K4 and higher order terms are ignored. The
parameters α̃, K1,K2, a, b, k+, and k− can then be correlated
to the standard Skyrme parameters:

α̃ = α + 1,

K1 = 3

8
t0,

K2 = −1

4
t0

(
x0 + 1

2

)
,

a = 1

16
t3α,

b = − 1

24
t3

(
x3 + 1

2

)
α,

k+ = m

h̄2

[
3

4
t1 + 5

4
t2 + t2x2

]
,

k− = m

2h̄2

[
t2

(
x2 + 1

2

)
− t1

(
x1 + 1

2

)]
. (11)

B. The isovector mass, the energy weighted sum rule,
and dipole polarizability

Equation (3) shows that the parameters k+ and k− can be
used to define the nucleon effective mass and the isovector
mass splitting. It also defines, in terms of these parameters,
the isovector nucleon mass m∗

v,0, i.e., the effective mass of a
proton in pure neutron matter or vice versa at ρ0 [14]. It is
given as

m

m∗
v,0

= 1 + m

2h̄2 ρ0�V , (12)

where

�V = h̄2

m
(k+ − k−). (13)

An added knowledge of �V helps in finding k+ and k−. In
Skyrme parametrization, the isovector parameter �V is

�V =
[
t1

(
1 + x1

2

)
+ t2

(
1 + x2

2

)]
. (14)

The parameter �V is related to m1, the energy weighted
sum rule (EWSR) for the dipole excitations. The kth moment
of the energy weighted sum is defined as

mk =
∫

dEEkS(E), (15)

where S(E) is the strength function at energy E. For the
isovector giant dipole resonance (IVGDR) of a nucleus with
mass number A, neutron number N , and proton number Z,
the EWSR can be written as [5]

m1 = 9

4π

h̄2

2m

NZ

A
(1 + κA), (16)

where κA is the polarizability enhancement factor for the
nucleus in question. It is related to �V as [47]

κA = 2m

h̄2

A

4NZ
�V × IA, (17)

where IA = ∫
ρn(r )ρp(r )d3r; ρn(r ) and ρp(r ) are the neutron

and proton density distributions of the nucleus. In principle,
m1 can be found out from the experimentally determined
strength function S(E); it is then possible to get to a value
of �V provided the integral occurring in Eq. (17) is known.
However, the high energy component of the strength function
is plagued with ‘quasi-deuteron effect’ rendering the determi-
nation of m1 or κA not very reliable [48,49].

It need be mentioned that experimental data for the inverse
energy weighted sum m−1 for a few nuclei [50–53], or in other
words, the nuclear dipole polarizability are available. They are
related as

αD = 8πe2

9

∫
dEE−1S(E) = 8πe2

9
m−1. (18)

Using Eqs. (16) and (18), one can then write

m1 = 9

8πe2
E2

xαD, (19)

where the energy Ex = ( m1
m−1

)1/2 is referred to as the con-
strained energy [54]. To find �V , values of m1 are constructed
from reasonable inputs on Ex which we discuss in the next
section.

III. RESULTS AND DISCUSSIONS

In order to determine m∗
0

m
and �m∗

0, one needs to know
the values of k+ and k− [Eqs. (3) and (4)]. The calculations
are performed in two stages. In stage 1, the seven parameters
α̃, K1,K2, a, b, k+, and k− occurring in the EDF given by
Eq. (5) are obtained from optimization of the χ2-function
from a fit to all the different empirical and precision theo-
retical data listed in Table I. In the fitting protocol, in addi-
tion, values of three empirical nuclear constants pertaining
to SNM (energy per nucleon ε0, saturation density ρ0, and
incompressibility K0) are further chosen to be constrained;
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TABLE I. List of fit data [P (ρ ), εn(ρ ), and C2(ρ ) represent
pressure, energy per particle, and symmetry energy, respectively]
corresponding to the symmetric nuclear matter (SNMX), pure neu-
tron matter (PNMX), and symmetry energy coefficient (SYMX)
together with the range of densities in which they are determined.

Quantity Density region Band/Range Ref.
(fm−3) (MeV)

SNM1 P (ρ ) 0.32 to 0.74 HIC [37]
SNM2 P (ρ ) 0.19 to 0.33 Kaon exp [38,39]

PNM1 εn(ρ ) 0.1 10.9 ± 0.5 [36]
PNM2 εn(ρ ) 0.03 to 0.17 N3LO [45]
PNM3 P (ρ ) 0.32 to 0.73 HIC [37]
PNM4 P (ρ ) 0.03 to 0.17 N3LO [45]

SYM1 C2(ρ ) 0.1 24.1 ± 0.8 [55]
SYM2 C2(ρ ) 0.01 to 0.19 IAS,HIC [41,43]
SYM3 C2(ρ ) 0.01 to 0.31 ASY-EoS [44]

they are taken from the averages of the ‘best-selected’ nu-
clear EoS given in Ref. [9]. Their values are ε0 = −15.88 ±
0.24 MeV, ρ0 = 0.163 ± 0.005 fm−3, and K0 = 226.2 ± 10.1
MeV. These values refer to infinite symmetric nuclear mat-
ter, but with roots embedded to finite nuclear observables.
Henceforth, these data would be referred to as ‘macrodata’.
This fitting protocol is seen to be incapable of yielding the
values of k+ and k− uniquely, but gives a value of a linear
combination of them (shown later). In stage 2, by fitting the
‘constructed’ values of m1 [see Eq. (19)] from chosen values
of Ex (discussed in Sec. III B) for the considered nuclei, we
get �V which is a different linear combination of k+ and k−
as given by Eq. (13). Combining results from the two stages,
unique values of k+ and k− are obtained. The errors pertaining
to the studied observables are calculated from the curvature
matrix obtained from the double derivative of χ2-function
with respect to different parameters employing the method of
covariance analysis [56–58].

A. Fitting of macrodata

The macrodata (barring the ones at the saturation density)
used in the fitting protocol are listed in Table I. The rows
and columns are self-explanatory. The first two rows refer
to pressure of SNM. They are obtained from analysis of
directed and elliptic flow [37] and kaon production [38,39] in
heavy ion collisions (HIC). The next four rows correspond to
PNM. Its energy at a density ρ = 0.1 fm−3 is taken from the
‘best-fit’ Skyrme EDFs [36]. The information on the energy
and pressure of low density neutron matter is taken from
high precision predictions at next-to-next-to-next-to- leading
order (N3LO) in chiral effective field theory [45,46]. The
pressure of PNM is the excess over the pressure of SNM
due to symmetry energy. It is constructed theoretically with
two extreme parametrizations, the soft (Asy Soft) and the stiff
(Asy Stiff) symmetry energy [40]. Its values are taken from
Ref. [37]. The last three rows refer to the symmetry energy
coefficients C2(ρ) at the densities mentioned in the table.
They come from three different sources, namely, simulation of
low energy HIC in 112Sn + 112Sn and 124Sn + 124Sn [41,42],

FIG. 1. The pressure P (ρ ) for SNM (upper panel) and PNM
(lower panel) as a function of baryon density ρ for the best-fit
parameters obtained from free variation of all the parameters (black
lines) and for the final values of the parameters (see Table II) shown
by the red line.

nuclear structure studies involving isobaric analogue states
(IAS) [43] and Asy-EOS experiments at GSI [44]. In addition,
the value of C2(ρ) at ρ = 0.1 fm−3 quoted from microscopic
analysis of IVGDR in 208Pb is taken [55] into consideration.

A free variation of all the seven parameters with the
above fitting protocol yields a very shallow minimum in χ2

corresponding to m∗
0

m
� 1.31 and �m∗

0 � −2.9 δ. The fit to the
empirical data is found to be very good as shown by black
lines in Figs. 1 and 2. The χ2-function is, however, found
to be very flat. In order to get an insight into this flatness
problem, we constrain α̃ to a fixed value and optimize χ2

varying the remaining six parameters. This is similar to the
method adopted by Friedrich and Reinhard [59] in finding
out the interaction parameters of the Skyrme EDF in their
fitting protocol from their chosen data. They found their
routine incapable of determining α (= α̃ − 1) and therefore
had to be varied by hand to determine the remaining Skyrme
parameters. We do likewise, we repeat the fitting calculations
for different choices of α̃. Each choice of α̃ leads to a different
set of EDF parameters and thus m∗

0
m

. Each parameter set is
found to be equally good in fitting the macrodata, an unique
value of m∗

0
m

can not thus be arrived at from this fitting. We find

that �m∗
0

δ
decreases with increase in m∗

0
m

. The trend is found to
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FIG. 2. The energy per neutron εn of PNM (upper panel) and
symmetry energy coefficient C2(ρ ) (lower panel) as a function of
baryon density ρ. The black and the red lines bear the same meaning
as in Fig. 1.

be almost parabolic in nature (more on this is discussed later
in relation to Fig. 5).

B. Fitting of EWSR

Equations (16) and (17) show that the isovector entity
�V can be calculated if the EWSR sum m1 and the integral
IA are known. From the neutron and proton densities ρn(r )
and ρp(r ) calculated in the Hartree-Fock approximation for
the four nuclei viz. 48Ca [50], 68Ni [51], 120Sn [52], and
208Pb [53] (for which data on nuclear dipole polarizability
are available) with the ‘best-fit’ Skyrme-EDF reported in
Ref. [36], it is found that the integrals IA for a particular
nucleus are nearly independent of EDFs. This manifests in
an extremely strong correlation (with correlation coefficient
practically unity) between �V and κA as displayed in Fig. 3.
The slopes of the correlation lines are taken as measures for
IA for each nucleus; they are shown in respective panels in the
figure.

Since the experimental values of m1 are not very reliable
due to the contamination from ‘quasi-deuteron effect’, exist-
ing data on αD for the four nuclei can be exploited to gauge
the measures of m1 in good bounds with reasonable choice
of Ex . Two choices for its values are made. For its lower
value, the known peak energy Ep of the experimental IVGDR

FIG. 3. The correlation of the isovector parameter �V obtained
from the Skyrme EDFs [36], with the calculated dipole enhancement
factor κA for the nuclei 48Ca, 68Ni, 120Sn, and 208Pb. The correspond-
ing values of the integrals IA (in units of fm−3) and the correlation
coefficients are shown in each panel.

strength function is chosen. For the higher value, we take
Ex = 1.05Ep. This choice is prompted from our finding that
RPA calculations with the best-fit Skyrme EDFs [36] yield
Ex to be higher than Ep by ∼ (4–6)% for the nuclei studied.
These two choices of Ex give the lower and upper bounds
of m1.

First equating Ex with Ep, the peak energy of the ex-
perimental IVGDR strength distribution, m1 are calculated
for the four nuclei from the experimentally obtained values
of αD [see Eq. (19)] which are referred to as ‘calibrated’
values of m1. Using these calibrated values, the enhancement
factor κA for the chosen nuclei are determined from Eq. (16).
With the known values of IA and so obtained κA are then
subjected to a χ2 minimization by varying �V [Eq. (17)]. The
optimized value of �V is found to be �V = 105.0 MeV fm5.
The calculation is repeated with Ex increased by 5% above
the values of Ep. The optimized value of �V is now 185.0
MeV fm5. The fitted results with the two sets of calibrated
values of m1 are shown in the upper and lower panels of
Fig. 4. In both cases the fits are very good. An average value
of �V � 145.0 ± 40.0 MeV fm5 can be inferred from the
calculations. Since �V determines the difference between k+
and k−, its constancy demands that if k+ increases, k− should
also increase.

Using Eqs. (3), (4), and (13), one gets

�m∗
0

δ
=

(
m

h̄2 �V ρ0 − 2
m

m∗
0

+ 2

)(
m∗

0

m

)2

. (20)

One finds increase in m∗
0

m
with increase in �m∗

0
δ

. This is com-
plementary to what we obtained from fitting the macrodata.
As mentioned earlier, there we find that �m∗

0
δ

decreases with
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FIG. 4. The calibrated values of EWSR (m1) displayed for the
four nuclei (black squares). The upper panel shows the values with
Ex = Ep , the lower panel displays the same with Ex = 1.05Ep (see
text for details). The solid lines are drawn to show the fit with
�V = 105 MeV fm5 and 185 MeV fm5, respectively.

increasing m∗
0

m
almost in a parabolic way, it can be well

approximated as

�m∗
0

δ
= β1 + β2

(
m∗

0

m

)2

(21)

with β1 = 0.733 ± 0.024 and β2 = −2.029 ± 0.032. This
equation can be restated as

(k− + β1k+)ρ0 � −(β1 + β2). (22)

Since β1 and the right-hand side (r.h.s.) of this equation is
positive, one finds that if k− increases, k+ decreases and vice
versa. The opposing trends on the relation of �m∗

0
δ

on m∗
0

m
from

Eqs. (21) and (20) are displayed in Fig. 5. The black dashed

FIG. 5. The isovector effective mass-splitting as a function of
nucleon effective mass. The black dashed line refers to the best fit
obtained from macrodata for different values of α̃; the red dashed line
corresponds to the one obtained by satisfying Eq. (20) with �V =
145 MeV fm5. The cyan and grey shades refer to the respective
uncertainties.

TABLE II. The final model parameters obtained by optimizing
the χ 2 function together with the uncorrelated and correlated errors
(see text for details). The parameters K1 and K2 are in units of MeV
fm3, a and b are in MeV fm3α̃ , and k+ and k− are in fm3.

α̃ K1 K2 a b k+ k−

1.11 −1220.21 977.94 120.03 −121.93 6.07 2.60
Unc. err. 1.16 2.38 0.15 0.33 0.10 0.15
Cor. err. 103.04 90.25 15.01 13.57 1.13 0.96

line corresponds to Eq. (21), the red dashed line corresponds
to Eq. (20) with �V = 145.0 MeV fm5. The lower and upper
boundaries of the grey shade around the red dashed line
refer to calculations with �V = 105.0 and 185.0 MeV fm5,
respectively. The cyan shade around the black dashed line
corresponds to uncertainties involved in relation to parameter
fitting.

The intersection of the dashed black and red lines yields
the central values of both m∗

0
m

and �m∗
0

δ
; k+ and k− are then

known. With the constraints on ε0, ρ0, and K0 as mentioned
earlier and with known k+ and k−, the other parameters of the
EDF are then determined from the optimization of the χ2-fit
to the macrodata given in Table I.

From the crossing of the shades as shown in Fig. 5, the
values of m∗

0
m

and �m∗
0

δ
are found to be in the range 0.61 to

0.75 and −0.3 to −0.1, respectively. The final values of the
parameters corresponding to the projected central values of
m∗

0
m

and �m∗
0

δ
from Fig. 5 are listed in Table II. The value of α̃

comes out to be 1.11. The uncorrelated and correlated errors
of the parameters obtained within the covariance method
are also presented. We see that the correlated errors are
significantly higher in comparison to the uncorrelated ones
which indicate the existence of strong correlations among
the parameters. In Fig. 6, the correlation among the model
parameters are depicted in terms of the Pearson’s correlation

FIG. 6. The correlation among various model parameters. The
values of the correlation coefficients are color coded.
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TABLE III. Different properties pertaining to nuclear matter
(NM) and neutron star (NS) obtained with the final parameters listed
in Table II.

Type Unit Value

NM ε0 MeV −15.93 ± 0.20
ρ0 fm−3 0.1620 ± 0.003
K0 MeV 225.23 ± 6.38

m∗
0/m 0.68 ± 0.04

m∗
v,0/m 0.78 ± 0.05

0.04

�m∗
0/δ −0.20 ± 0.09

C2(ρ0) MeV 33.94 ± 0.50
L0 MeV 68.50 ± 3.72

K0
sym MeV −47.46 ± 17.87

Kτ MeV −349.22 ± 14.06
Mc MeV 998.79 ± 41.29
Q0 MeV −359.23 ± 23.08

NS MNS
max M� 2.06 ± 0.03

R1.4 km 12.62 ± 0.57

coefficient. Two parameters are said to be fully correlated if
the magnitude of the correlation coefficient for them is unity
as shown by the orange and blue colors. The parameters a,K1

and k+ are strongly correlated among themselves; the same
is true for the parameters b,K2 and k−. With the parameters
presented in Table II the obtained fit to various macrodata
are displayed by red lines in Figs. 1 and 2. One can see that
the difference between the fits to the data from free variation
(black line) and the calculation with the final parameters (red
line) is insignificant. The isovector mass comes out to be
m∗

v,0

m
= 0.78±0.05

0.04.
With the parameters of the EDF as listed in

Table II, the values of symmetry energy coefficient C2(ρ0),
its density slope L0(= 3ρ ∂C2

∂ρ
|ρ0 ), the curvature parameter

K0
sym(= 9ρ2 ∂2C2

∂ρ2 |ρ0 ), and the symmetry incompressibility
at saturation corresponding to asymmetric nuclear matter
Kτ (= K0

sym − 6L0 − Q0L0/K0) are calculated. Here,

Q0(= 27ρ3
0

∂3ε
∂ρ3 |ρ0 ) is the skewness parameter corresponding

to SNM. Their values are listed in Table III. All of them are
seen to lie within the accepted range obtained from different
EDFs [9]. The value of the derivative of incompressibility
Mc(= 3ρ dK

dρ
|ρc

) for SNM at a sub-saturation density
ρc � (0.710 ± 0.005)ρ0 also has excellent agreement with
that obtained from examination of isoscalar giant monopole
resonance (ISGMR) data for 208Pb and 120Sn [60,61]. For
completeness, to gauge the applicability of the EDF at
extremely high density, the maximum mass of the neutron
star (MNS

max) is also calculated. The EOS of the crust is taken
from the Baym, Pethick, and Sutherland model [62]. The
EOS of the core is calculated with the assumption of a
charge-neutral uniform plasma of neutrons, protons, electrons
and muons in β-equilibrium. The value of MNS

max is seen to be
(2.06 ± 0.03)M�, in consonance with the recently observed

maximum neutron star mass [63,64]. The value of the radius
R1.4 of a neutron star of mass 1.4M� is also in tune with the
constrained value obtained from analysis of different models
[65]. In passing, it is mentioned that recently a new Skyrme
EDF is proposed [66]. It is commensurate with predictions
from chiral effective field theory, binding properties of finite
nuclei and also the electric dipole polarizability. The effective
mass is m∗

0
m

= 0.75 ± 0.04; the isovector splitting of the
effective mass is positive, ∼0.12δ. However, we find it to be
incompatible with the criterion for the observed maximum
mass of the neutron star. The mass turns out to be 1.8M�,
some what below the experimentally observed maximum
mass.

IV. SUMMARY AND CONCLUSIONS

We have proposed a means of finding out the value of the
nucleon effective mass m∗

0 and its isovector splitting �m∗
0

by using a form of EDF [31] built without any reference to
any particular interaction but with a few plausible assump-
tions on its nature. The structure of the EDF is seen to be
equivalent to the ‘standard’ Skyrme functional under certain
approximations. We work in the framework of this energy
functional and find its parameters from χ2-minimization of
the empirical nuclear matter data and the existing ‘state of the
art’ theoretical data pertaining to neutron matter. It is observed
that the fit to these data is unable to determine m∗

0 and �m∗
0

unambiguously, but yields a well-tuned combination of them;
an almost indiscernible fit to the macrodata can be obtained
over a wide range of their values.

From experimental data related to nuclear dipole polariz-
ability, we show how this veil of indeterminacy can be lifted.
These particular data on finite nuclei, if used judiciously give
information on a linear combination of parameters determin-
ing the nucleon effective mass and its isovector splitting that
is complementary to what was obtained in relation to the
macrodata and thus can project out the values of the nucleon
effective mass and its isovector splitting within reasonable
constraints. In doing so, there is no compromise in the excel-
lent agreement of the predicted values of the nuclear constants
related to symmetric and asymmetric nuclear matter with the
ones broadly accepted in present day wisdom, nor there is any
sacrifice in the fit to the empirical data related to neutron stars.
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