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Incorporating Brueckner-Hartree-Fock correlations in energy density functionals
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Recently, a microscopically motivated nuclear energy density functional was derived by applying the density-
matrix expansion to the Hartree-Fock (HF) energy obtained from long-range chiral effective-field theory two-
and three-nucleon interactions. However, the HF approach cannot account for all many-body correlations. One
class of correlations is included by Brueckner-Hartree-Fock (BHF) theory, which gives an improved definition
of the one-body HF potential by replacing the interaction by a reaction matrix G. In this paper, we find
that the difference between the G matrix and the similarity renormalization group evolved nucleon-nucleon
potential VSRG can be well accounted for by a truncated series of contact terms. This is consistent with
renormalization-group decoupling generating a series of counterterms as short-distance physics is integrated out.
The coefficients Cn of the power series expansion

∑
Cnq

n for the counterterms are examined for two potentials
at different renormalization-group resolutions and at a range of densities. The success of this expansion for
G − VSRG means we can apply the density-matrix expansion at the HF level with low-momentum interactions
and density-dependent zero-range interactions to model BHF correlations.
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I. INTRODUCTION

Over many decades substantial effort has been devoted to
developing and improving nuclear energy density functionals
(EDFs) [1]. While great progress has been made in recent
years in ab initio methods, phenomenological EDFs remain
the only computationally feasible many-body method capable
of describing nuclei across the full mass table. Skyrme [2,3]
and Gogny [4] functionals are examples of phenomenological
EDFs. These functionals have of order ten coupling constants,
which are adjusted to selected experimental data. Despite
their simplicity, such functionals provide a remarkably good
description of a broad range of nuclear properties, such
as binding energies, radii, giant resonances, β-decay rates,
and fission cross sections. However, sophisticated analyses
imply that EDFs of the standard Skyrme or Gogny forms
have reached their limit of accuracy [5–7]. Furthermore,
their phenomenological nature often leads to parametrization-
dependent predictions and does not offer a clear path towards
systematic improvement.

One possible strategy for improved functionals is to con-
strain the analytical form of the functional and possibly the
values of its couplings from many-body perturbation theory
(MBPT) starting from the free-space NN and 3N interactions
[8–13]. Progress in treating low-energy physics using the
renormalization-group (RG) and effective-field theory (EFT)
[14–18] plays a significant role in carrying out this strategy.
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RG methods can be used to evolve realistic nucleon-nucleon
potentials (including both phenomenological and chiral EFT
potentials), which typically have strong coupling between
high and low momentum, to derive low-momentum poten-
tials in which high- and low-momentum parts are largely
decoupled. The similarity renormalization group (SRG) pro-
vides a compelling method for this evolution to softer forms
[15,19,20]. After SRG evolution, we have a potential for
which only low momenta contribute to low-energy nuclear
observables, such as the binding energies of nuclei. We stress
that the SRG does not lose relevant information for low-
energy physics, which includes nuclear ground states and
low-lying excitations, as long as the leading many-body in-
teractions are kept [19].

With a RG-evolved low-momentum interaction, the
Hartree-Fock (HF) approximation becomes a reasonable start-
ing point. However, the MBPT energy expressions are written
in terms of density matrices when working with finite-range
interactions, and Fock energy terms are inherently nonlocal
objects. This nonlocality in the density matrices significantly
increases the computational cost. The density-matrix expan-
sion (DME), first formulated by Negele and Vautherin [21,22],
provides a general framework to map the spatially nonlocal
Fock energy into Skyrme-like local functionals with density-
dependent couplings. The idea is that existing EDFs may have
too-simple density dependencies to account for long-range
physics, but this physics can be incorporated by using the
DME while still taking advantage of the Skyrme calcula-
tional infrastructure. The novel density dependence of the
couplings is a consequence of the finite-range interaction and
is controlled by the longest-ranged components. The effects
of the density-dependent couplings have been discussed in
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Refs. [23–25]. Consequently, the DME can be used to map
the physics associated with long-range one- and two-pion
exchange interactions into a local EDF form that can be
implemented at minimal cost in existing Skyrme codes.

A program to construct a fully ab initio functional based
on model-independent chiral interactions is underway. While
Hartree-Fock becomes a reasonable zeroth-order approxima-
tion with softened low-momentum interactions, it is necessary
to go to at least second-order in MBPT to obtain a reasonable
description of the bulk properties of infinite nuclear matter
(INM), as well as the binding energies and charge radii of
closed-shell nuclei.

A semiphenomenological method somewhere between
purely ab initio and phenomenological functionals, which has
a richer set of density dependencies than traditional Skyrme
functionals, was proposed in Refs. [26,27] and implemented
in Refs. [28–30]. The idea is that the structure of the EFT
interactions implies that each coupling in the DME can be
written as the sum of a density-dependent coupling function
arising from the long-range pion-exchange chiral potential
and a Skyrme-like coupling constant from the zero-range
contact interactions. The chiral couplings are parameter-free
in the sense that they are frozen, fixed entirely by long-
distance physics, while the Skyrme contacts are released
for optimization to infinite nuclear matter and properties of
finite nuclei. The refit of the Skyrme parameters to data has
been loosely interpreted as incorporating the short-range part
of a G matrix with a zero-range expansion through second
order in gradients. This empirical procedure is supported
by the observation that the dominant bulk correlations in
nuclei and nuclear matter are primarily short-range in nature,
as evidenced by the Brueckner G-matrix “healing” to the
free-space interaction at sufficiently large distances. In this
paper, we investigate this interpretation directly. We also note
other work on refitting Skyrme interactions from Brueckner-
Hartree-Fock (BHF) calculations performed with NN and 3N
interactions [31,32].

Many-body correlations beyond the HF level are clearly
important for quantitative results. The BHF approximation
gives an improved definition of the one-body HF potential U
by replacing the two-body interaction V with the so-called
reaction G matrix. The G matrix sums up ladder diagrams to
infinite order and gives an effective two-body interaction, in-
corporating a class of many-body correlations. The diagrams
in the perturbation expansion are summed by introducing
the G-matrix operator, and the G matrix can be obtained
by solving the Bethe-Goldstone equation. BHF is the only
beyond-HF method that can be immediately mapped into a
quasilocal EDF via the DME with only mild approximations,
and the class of correlations contained in BHF are known to
be extremely important for bulk properties. It can be applied
to study evolved potentials all the way from hard to very soft.

To make progress, we consider the lessons learned from
low-energy nuclear physics using the RG and EFT approaches
[17]. For example, it is well established that the RG evolution
to low momentum primarily modifies the short-distance struc-
ture of the internucleon interactions [16,17,33], demonstrating
insensitivity to the details of the short-range dynamics. This
insensitivity means that there are infinitely many theories that

have the same low-energy behavior; all are identical at large
distance but may be completely different from each other at
short distances. As the RG evolution integrates out the high-
momentum modes, general renormalization theory implies
that the change in the potential should be expandable in a
hierarchy of local counterterms. The question of whether this
is realized in the derivation of the so-called Vlow-k potentials
has been investigated in Ref. [34]. In that work, it is tested
whether Vlow-k can be expressed as VNN plus a power series
in the external momenta. The counterterm coefficients are
determined using standard fitting techniques. In Ref. [34] this
fitting was performed over all partial-wave channels and a
consistently good agreement was obtained.

In the literature, it has been noted that the G matrix has
many similarities to Vlow-k NN interactions. In the equation
for the G matrix, the restriction of the sum over intermediate
states to those above the Fermi surface because of Pauli
blocking means that the Fermi momentum plays the analo-
gous role of the UV momentum-space cutoff in the equation
for Vlow-k. Thus we anticipate that the success of expanding
the difference Vlow-k − VNN in a truncated series of contact
interactions should carry over to the difference of the G matrix
and the potential it is generated from. In this paper, we test
this argument. That is, we ask: Is the calculation of the G
matrix as a sum of in-medium ladder terms well represented
by a truncated series of counterterms? If so, then what are
the properties of the counterterms so generated and can we
use these counterterms as short-range contact interactions to
model BHF correlations at the HF level?

The paper is organized as follows: In Sec. II we briefly
review the DME and BHF. In Sec. III we carry out an
accurate determination of the counterterms and discuss that
the counterterms represent generally a short-range effective
interaction. In Sec. IV we use SRG-evolved potentials to
understand VCT as density-dependent couplings. A summary
and outlook are given in Sec. V.

II. BACKGROUND

A. Density-matrix expansion

The DME introduced by Negele and Vautherin [21,22]
provides a route to an EDF based on microscopic nuclear
interactions through a quasilocal expansion of the energy in
terms of various densities. The central idea of the DME is
to factorize the nonlocality of the one-body density matrix
(OBDM) by expanding it in a finite sum of terms that are
separable in relative and center-of-mass coordinates, yielding
a general way to map nonlocal functionals into local ones.
Adopting notation similar to that introduced in Refs. [26,27],
one expands the spin-scalar parts (in both isospin channels) of
the one body matrix as

ρt (r1, r2) ≈
nmax∑
n=0

�n(kr )Pn(R), (1)

where the � functions are specified by the DME variant and
Pn(R) denotes various local densities and their gradients. k
is an arbitrary momentum that sets the scale for the decay in
the off-diagonal direction. We define the momentum scale k to
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be the local Fermi momentum related to the isoscalar density
through

k ≡ kF (R) =
(

3π2

2
ρ0(R)

)1/3

, (2)

although other choices are possible that include additional
kinetic density and gradient density dependencies [35]. The
DME has also been reformulated for spin-saturated nuclei
using nonlocal low-momentum interactions in momentum
representation [11].

Extensions of the first calculations from Ref. [11] have
modified the original DME formalism from Negele and
Vautherin [21,22], whose deficiencies include an extremely
poor description of the vector part of the density matrix.
Gebremariam and collaborators [26,27] introduced a new
phase-space-averaging (PSA) approach. The PSA approach
leads to substantial improvements, particularly for the vector
density, where relative errors in integrated quantities are
reduced by as much as an order of magnitude across isotope
chains. In Ref. [36], the DME density-dependent couplings
from coordinate-space chiral potentials up to next-to-next-to
leading order (N2LO) were derived. Chiral potentials both
with and without explicit � were considered and local reg-
ulators on the interactions were also included. These local
regulators can mitigate the effects of singular potentials on
the DME couplings and simplify the optimization of gen-
eralized Skyrme-like functionals. The use of regulators has
been shown to have a significant influence on many-body
calculations even at the HF level [37,38].

The DME can be applied to both Hartree and Fock ener-
gies so that the complete HF energy is mapped into a local
functional. However, it was found that treating the Hartree
contributions exactly provides a better reproduction of the
density fluctuations and the energy produced from an exact
HF calculation [22,39]. In addition, treating the Hartree con-
tribution exactly does not complicate the numerical solutions
of the resulting self-consistent equations compared with ap-
plying the DME to both Hartree and Fock terms. The Fock
energy computed from chiral interactions exhibits spatial
nonlocalities due to the convolution of finite-range interaction
vertices with nonlocal density matrices. These nonlocalities
significantly increase the computational cost of solving the HF
equations.

A consistent and systematic extension of the DME proce-
dure beyond the HF level of MBPT is underway. In previous
work, attempts to microscopically construct a quantitative
Skyrme-like EDF used some phenomenological approxima-
tions when applying the DME to iterate contributions beyond
the HF level and/or to reintroduce some phenomenological
parameters to be adjusted to data [8–10,21,22,40]. Ultimately,
we might build an ab initio nuclear energy density functional
from the chiral potentials without the need to refit to INM
and finite nuclear properties, although this is unlikely to be
quantitatively competitive with fit EDFs.

Schematically, the EFT NN and 3N potentials have the
following structure:

VEFT = Vπ + VCT, (3)

where Vπ denotes finite-range pion-exchange interactions and
VCT denotes scale-dependent zero-range contact terms, which
encode the effects of integrated-out degrees of freedom on
low-energy physics. The structure of the chiral interactions is
such that each DME coupling is decomposed into a density-
dependent coupling function arising from long-range pion
exchanges and a density-dependent coupling constant arising
from the zero-range contact interaction; for example,

U
ρρ
t ≡ g

ρρ
t (R, Vπ ) + C

ρρ
t (R, VCT), (4)

and so on. As a result, the DME functional splits into two
terms,

E[ρ] = Eπ [ρ] + Ect[ρ], (5)

where the first term Eπ [ρ] collects the long-range NN and 3N
pion exchange contribution at the HF level, while the second
term Ect[ρ] collects the contribution from the contact part of
the interaction plus high-order short-range contributions.

B. Brueckner-Hartree-Fock for the N N Force

In Ref. [36], density-dependent couplings from chiral po-
tentials up to N2LO in the chiral expansion are derived by
applying the DME to OBDMs at the HF level. However, the
HF method describes the motions of nucleons in the mean
field of other nucleons and neglects higher-order many-body
correlations. This work only considers the long-range part of
the chiral potentials, with short-range contributions expected
to be absorbed into a refit of Skyrme parameters. In doing
so, the refit parameters could capture short-range correlation
energy contributions beyond Hartree-Fock. In the present
work, we investigate if a Skyrme-like short-range effective
interaction can well represent the short-range part of the G
matrix and consider a direct density-dependent modification
to model BHF correlation.

Historically, the G matrix was developed by way of the
Goldstone expansion for the ground-state energy in nuclear
matter and closed-shell nuclei using NN interactions. The G-
matrix method was originally developed by Brueckner [41],
and further developed by Goldstone [42] and Bethe, Brandow,
and Petschek [43]. The G matrix is obtained by solving the
Bethe-Goldstone equation,

G(ω) = v + v
Q

e
G(ω). (6)

Here v is a nucleon-nucleon interaction in free space, Q is
the Pauli-blocking operator, which forbids the two interact-
ing nucleons from scattering into states already occupied by
other nucleons. The denominator is e = ω − h0, h0 is the
single-particle Hamiltonians with the one-body mean field U ,
and ω is the starting energy. To define the denominator we
will also make use of the angle-averaging and effective-mass
approximations as in Ref. [44]. The single-particle energies in
nuclear matter are assumed to have the quadratic form

ε(kμ) = h̄2k2
μ

2M∗ + � for kμ � kF

= h̄2k2
μ

2M
for kμ � kF ,

(7)
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FIG. 1. Correlation plots for the matrix G − VSRG between the AV18 [45] and N3LO [46] potentials in the 1S0 channel at flow parameter (a)
λ = ∞, (b) 2.0 fm−1 and (c) 1.5 fm−1 [note that the x, y axis scales in panels (a)–(c) are different]. The G matrix is evaluated at the saturation
density (kF = 1.3 fm−1). The potentials are separated into three different regions, the low-momentum region (k, k′ < kF), the high-momentum
region (k, k′ > kF), and the coupling region (k > kF, k′ < kF or k < kF, k′ > kF).

where M∗ is the effective mass of a nucleon and M is
the bare nucleon mass. For particle states above the Fermi
surface ε is a pure kinetic-energy term, whereas for the states
below the Fermi surface ε is parametrized by M∗ and �,
the latter being an effective single-particle potential related
to the G matrix; these are obtained through the self-consistent
BHF procedure. In this approach, the single-particle potential
U (kμ) is determined by the self-consistent equation

U (kμ) =
∑
ν<kF

〈μν|G(εμ + εν )|μν〉. (8)

This self-consistent scheme consists of choosing initial values
of M∗ and � and then using the obtained G matrix in turn
to obtain new values for M∗ and �. This procedure continues
until these parameters do not change.

The SRG evolution can significantly change the summa-
tions of the ladder diagrams in the G matrix. When different
VNN are evolved, the differences between these potentials
and their summations of the ladder diagrams are strongly
quenched. In Fig. 1, we present correlation plots of (G −
VSRG) between the AV18 [45] and N3LO [46] potentials in
the 1S0 channel at flow parameters λ = ∞, 2.0 fm−1, and
1.5 fm−1 with kF at saturation density. The correlation plots
compare the two different potentials’ strengths at the same
momenta (k, k′).

We use the Fermi momentum kF as the boundary to sepa-
rate low- from the high-momentum regions, because kF plays
an analogous role to the UV momentum-space cutoff � for
Vlow-k and flow parameter λ for the SRG. The correlation plots
for the unevolved potentials show that the matrix elements
of (G − VSRG) are significantly different. This is because the
N3LO and AV18 potentials lead to similar G matrices at low
momentum while the initial potentials are quite different. In
evolving down to λ = 2.0 fm−1, the low-momentum region
matrix elements approach the diagonal line. With the SRG
flow evolution to λ = 1.5 fm−1, the low-momentum region
points and the coupling momentum region points are close
to the diagonal, showing a collapse to a universal residual

(G − VSRG). In the application of RG to nuclear interactions,
universality is observed in that distinct initial NN potentials
that reproduce the experimental low-energy scattering phase
shifts are found to collapse to a single universal potential
[15,17,47]. This universality can be attributed to common
long-range pion physics and phase-shift equivalence of all
potentials. Here we see that the same is quantitatively true
for the residual interaction despite universality being only
approximate for NN interactions. At the same time, the
summation into the G matrix has relatively small effects on
SRG-evolved low-momentum interactions, in stark contrast to
the original interactions.

III. COUNTERTERMS

In this section, we study quantitatively whether the low-
momentum interaction G matrix can be well represented by
the low-momentum part of the SRG-evolved potential supple-
mented by counterterms. Specifically, we assume that the G
matrix can be represented by

G(q, q ′) 	 VSRG(q, q ′) + VCT(q, q ′), (q, q ′) < �, (9)

where VSRG is a bare NN potential evolved by the SRG,
� denotes a momentum-space cutoff, and (q, q ′) � �. We
choose � as kF for two reasons: (i) only momenta up to kF

are probed for the BHF energy and (ii) the length at which
the G matrix “heals” to the potential is set by 1/kF. See the
Supplemental Material for different � results [48]. Our aim
is to investigate whether VCT can be well represented by a
short-range effective interaction and to study the properties
of the counterterm coefficients, with the aim of using this
expanded G matrix in HF-level calculations to simulate BHF
correlations. We shall proceed by expanding VCT in a suitable
form and testing how well it satisfies Eq. (9).

Past investigations found that Vlow-k can be satisfactorily
accounted for by the counterterms corresponding to a short-
range effective potential [34]. A main point of the RG-EFT
approach is that the effect of physics beyond a cutoff scale
� can be absorbed into simple short-range interactions. Thus
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FIG. 2. Comparison of G − PVSRGP (solid line) with VCT (dots) for the 1S0 and 3S1 channels. The left panel (a) shows off-diagonal
elements and the right panel (b) shows diagonal elements. VSRG is the N3LO potential evolved by the SRG to λ = 1.5 fm−1 at kF = 1.3 fm−1.

for treating low-energy physics, one integrates out the modes
beyond �, thereby obtaining a low-energy effective theory.
In RG-EFT, this integrating out generates an infinite series of
counterterms, which is a simple power series in momentum.
Reference [34] has shown that the integration out of high-
momentum modes in the derivation of Vlow-k generates a series
of counterterms and that Vlow-k can be accurately cast into the
form Vbare + VCT.

Because VSRG is generally given according to partial
waves, as is the G matrix, we shall determine VCT separately
for each partial wave with allowed quantum numbers. We
consider the following momentum expansion for the partial-
wave counterterm potential to test the assumption that VCT is
a very-short-range interaction,

〈qJLS|VCT|q ′J ′L′S ′〉 = δJJ ′δSS ′qLqL′
[C0 + C2(q2 + q ′2)

+C4(q4 + q ′4) + C ′
4(q2q ′2) + · · · ].

(10)

The standard Skyrme forces include the zero-order (con-
tact) and second-order (q2) terms in the expansion, but con-
ventional Skyrme forces do not have q4 and higher-order
terms. Higher-order derivative terms have been investigated
in Refs. [49–52]. In these works it is concluded that extending
the Skyrme functionals beyond the standard quadratic form,
and including q4 terms in particular, will provide an improved
description of nuclei.

The counterterm coefficients will be determined such that
the difference between G and (PVSRGP + VCT) is minimized.
P is the projection operator to project onto states with mo-
mentum less than �. The G matrices are obtained through the
self-consistent BHF procedure at different kF as mentioned
in Sec. II B. In the present calculation, we use the average
center-of-mass momentum approximation [44]. We perform
a standard chi-squared fitting procedure for all partial-wave
channels at given kF and find consistently very good fits at all
kF, partial-wave channels, and SRG flow parameter λ. See the
Supplemental Material for different results for the SRG flow
parameter λ [48]. In Fig. 2 we compare 1S0 and 3S1 matrix el-
ements of VCT with those of the (G − PVSRGP ) matrix below

kF by taking a slice along the edge [i.e., VCT(k, 0)] and along
the diagonal [i.e., VCT(k, k)]. A similar comparison for the
3S1-3D1 and 3D1 channels is displayed in Fig. 3. We have also
obtained good agreement for P waves. Thus we find nearly
identical interactions, giving strong support that the G matrix
can be very accurately represented by (PVSRGP + VCT).

IV. DENSITY-DEPENDENT COUPLINGS

Next, we examine the counterterms themselves. The evo-
lution of the counterterm coefficients as the SRG λ decreases
is illustrated in Fig. 4 for the SRG-evolved AV18 and N3LO
potentials in the 1S0 channel. With SRG evolution, the dif-
ference between the potential and the G matrix decreases
dramatically in this channel; that is, VCT becomes smaller
and smaller, particularly for C0. This is consistent with the
SRG modifying the short-range features of the potentials and
confirms that the contact term C0 is the dominant term in
the expansion. At λ = 10 fm−1, C0 is nonzero throughout
the range of kF, while with SRG evolution to λ = 2 fm−1

and 1.5 fm−1, the counterterms decay to zero rapidly with
kF, consistent with Ref. [14] that perturbation theory can be
used instead of Brueckner resummations with the softened
potentials.

The coefficients for AV18 and N3LO potentials are still
noticeably different at λ = 10 fm−1, at which point the AV18
potential has been considerably softened, but by λ = 2 fm−1,
the differences have largely disappeared. At the end of the
evolution, the counterterm coefficients are essentially the
same at all densities, consistent with Fig. 1, and a flow to
an approximately universal value at low resolution. Future
plans include investigating whether analogous counterterms
for 3N potentials in density-dependent two-body form also
show universality.

We find that the counterterms are significant only for S, P ,
and D partial waves. In Figs. 5 and 6, we plot counterterm
coefficients in various partial waves, using the SRG-evolved
N3LO and AV18 potentials at flow parameter λ = 3.0 fm−1

as our input potentials. From the figure, we can see that C0

is always the most important term in the expansion. As with
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FIG. 5. Counterterms for different partial waves as a function of Fermi momentum obtained from SRG-evolved N3LO and AV18 potentials
at flow parameter λ = 3.0 fm−1. Each column of plots is a single partial-wave channel, given at the top, while each row of plots is one of the
counterterms (C0–C ′

4) given on the left.

1S0, this behavior is a reflection that VCT is a very-short-range
effective interaction and also that the G matrix does not mod-
ify long-range physics. The counterterms provide additional
gradient terms into the Skyrme interaction and more compli-
cated density dependence in the EDF. Coefficients beyond C4

generally have small effects in the fitting procedure (C6 is
one order of magnitude smaller than C4, typically) and can
be ignored.

The counterterm coefficients for the various partial waves
in Figs. 5 and 6 need to be converted to Skyrme-like in-
teraction parameters to be used in EDFs. Using the partial-
wave projections from Refs. [53,54], we can find relations
between the counterterm coefficients and Skyrme couplings.
A similar mapping of renormalization-scale-dependent coun-
terterm coefficients to Skyrme-like couplings has been done
in Ref. [55]. For example, the density-dependent contributions
to the conventional Skyrme parameters t0 and x0 are given by
the leading C0 terms in the 1S0 and 3S1 channels, t1 and x1 are

given by the leading C2 terms in the 1S0, 3S1 channels and C0

terms in the 3S1-3D1 channel:

t0(ρ) = 1

8π

[
C

1S0
0 (ρ) + C

3S1
0 (ρ)

]
,

x0(ρ) = −C
1S0
0 (ρ) − C

3S1
0 (ρ)

C
1S0
0 (ρ) + C

3S1
0 (ρ)

,

t1(ρ) = 1

8π

[
C

1S0
2 (ρ) + C

3S1
2 (ρ) −

√
2C

3S1−3D1
0 (ρ)

]
,

x1(ρ) = −C
1S0
2 (ρ) − C

3S1
2 (ρ) − √

2C
3S1−3D1
0 (ρ)

C
1S0
2 (ρ) + C

3S1
2 (ρ) − √

2C
3S1−3D1
0 (ρ)

. (11)

The density-dependent Skyrme interaction parameters are
plotted in Fig. 7 with SRG-evolved N3LO and AV18 potential
at flow parameter λ = 3.0 fm−1 as a function of the isoscalar
density by using the usual relation (2) between ρ0(R) and
kF(R). As a check, we compared the binding energy per
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FIG. 6. Counterterms as a function of Fermi momentum for different partial waves obtained from SRG-evolved N3LO and AV18 potentials
at flow parameter λ = 3.0 fm−1. Each column of plots is a single partial-wave channel, given at the top, while each row of plots is one of the
counterterms (C0–C ′

4) given on the left.

nucleon in nuclear matter in the 1S0 and 3S1 channels calcu-
lated by BHF and by HF + t0 + t1, using the AV18 and N3LO
potentials with the density-dependent Skyrme interaction pa-
rameters from Fig. 7. The two methods give nearly the same
result at all densities, verifying that the density-dependent
Skyrme interaction models the BHF correlations very well.

V. SUMMARY

The present paper is part of a long-term project to build
an ab initio nuclear energy density functional from realistic
NN and 3N nucleon interactions by using MBPT. The DME
can be used as a bridge from MBPT to EDFs, because it
can be used to construct numerically tractable approxima-
tions to the nonlocal HF energy. The DME-based functionals
take the same general form as standard Skyrme functionals,
with the key difference that each coupling is composed of
a density-dependent coupling function determined from the

HF contributions of the underlying finite-range NN and 3N
interactions, plus a Skryme-like short-range contact interac-
tion. The microscopically motivated DME-based functionals,
which possess a richer set of density dependencies than tra-
ditional Skyrme functionals, can be implemented in existing
EDF codes. In previous work, the Skyrme-like short-range
contact couplings were optimized to data. Performing a refit
of the Skyrme-like constants to data can be interpreted as
approximating the short-distance part of the G matrix with
a zero-range expansion through second order in gradients.

In the present work, we derived density-dependent cou-
plings for the short-distance part of the G matrix by fitting
a counterterm expansion. We used high-precision two-body
nuclear interactions evolved to softer forms using the SRG,
which makes the interactions suitable for a MBPT treatment.
The issue addressed in this work was whether the G matrix
could accurately be cast in a form VSRG + VCT, where VCT

is a low-order counterterm series. We have shown that the
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FIG. 7. The density-dependent Skyrme-like couplings (a) x0 and (b) t0 from Eq. (11) are plotted as a function of the isoscalar density ρ0,
using SRG-evolved N3LO and AV18 potential at flow parameter λ = 3.0 fm−1.

G matrix is nearly the same as VSRG + VCT, over all partial
waves. Only the leading terms (up to quartic order) in the
counterterm momentum expansion are significant, verifying
that VCT is primarily a short-range effective interaction.

We also transformed the partial waves counterterm to
density-dependent Skyrme interactions. The quadratic and
quartic counterterms except for the S channels will lead to
higher-order density-dependent terms in an extension of the
standard Skyrme force [50]. Higher-order terms could be
neglected as a first step because their contribution becomes
systematically less important; see Refs. [50,52]. The mag-
nitudes of the contributions to t0 and t1 have been checked
by calculating the binding energy per nucleon in nuclear
matter. The structure of the chiral interactions is such that each
coupling in the DME functional is decomposed into a density-
dependent coupling constant from short-range interactions
and a density-dependent coupling function arising from

long-range pion exchange. The clean separation between VSRG

and VCT allows us to model BHF correlations with a HF-level
calculation within the DME by combining the new coupling
terms with previous work [36] that derived couplings for the
long-range parts of the chiral potentials.
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