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We calculate the intraband electromagnetic transitions in the framework of a collective Hamiltonian for chiral
and wobbling modes. By going beyond the mean-field approximation on the orientations of the rotational axis,
the collective Hamiltonian provides descriptions of both the yrast band and collective excitation bands. For a
system with one h11/2 proton particle and one h11/2 neutron hole coupled to a triaxial rotor (γ = −30◦), the
intraband electromagnetic transitions given by the one-dimensional and two-dimensional collective Hamiltonian
are compared with results obtained by using the tilted axis cranking approach and the particle rotor model.
Compared with the tilted axis cranking approach, the electromagnetic transitions given by the collective
Hamiltonian agree better with the transitions obtained by using the particle rotor model because quantum
fluctuations are considered.
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I. INTRODUCTION

In the first paper of this series [1], the two-dimensional col-
lective Hamiltonian method based on the titled axis cranking
(TAC) approach has been developed to describe the nuclear
chirality [2] and wobbling motion [3], both of which provide
direct evidence for the existence of nuclear triaxiality. The
chirality in nuclear physics was first predicted by Frauendorf
and Meng in 1997 [2], which stimulates lots of experimental
efforts and more than 60 candidate chiral bands reported in the
A ∼ 80, 100, 130, and 190 mass regions. For recent reviews
and detailed data tables, see Refs. [4–10]. The wobbling
motion was originally suggested by Bohr and Mottelson in
the 1970s [3] and has been observed in the A ∼ 160 [11–16],
130 [17,18], and 100 [19,20] mass regions.

Theoretically, the nuclear chirality and wobbling mo-
tion have been extensively investigated with the particle ro-
tor model (PRM) [2,3,21–42] and the tilted axis cranking
(TAC) approaches based on either the Woods–Saxon mean
field [17,43] or more fundamental density-functional theories
[44–48]. Other approaches include the boson expansion ap-
proaches [49–52], the pair truncated shell model [53], and
the projected shell model [54–58]. The TAC approach, based
on a mean-field approximation, provides a clear picture for
the chirality and wobbling motion in terms of the orienta-
tion of the angular-momentum vector relative to the density
distribution. To describe the chiral and wobbling excitations
beyond the mean field, the random-phase approximation was
developed on top of the TAC solutions [59–69]. Alternatively,
the collective Hamiltonian based on the TAC solutions proves
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to be very successful [1,70–72]. In particular, the collective
Hamiltonian method is promising for unifying the description
of both quantum tunneling and vibrations.

In previous works [1,70], the one- and two-dimensional
collective Hamiltonian (1DCH and 2DCH) were constructed
and applied to investigate the chirality of the system with one
h11/2 proton particle and one h11/2 neutron hole coupled to a
triaxial (γ = −30◦) rotor. It is found that the chiral symmetry
is restored in the collective Hamiltonian solutions, which
are in agreement with the energy spectra for chiral doublet
bands given by the PRM [2]. Similar approaches have also
been used in describing the wobbling motions in the simple,
longitudinal, and transverse wobblers [71] and in the nucleus
135Pr [72]. Moreover, more excitation modes appear in the
framework of the 2DCH, since both the broken chiral and
signature symmetries are restored [1].

Besides the energy spectra, the electromagnetic (EM)
transition properties are important observables in identify-
ing the nuclear chirality or wobbling motion. Based on the
model with the configuration π (1h11/2) ⊗ ν(1h11/2)−1 and
γ = −30◦, the criteria for ideal nuclear chirality are as
follows [4,7,73]: (i) near degeneracy of doublet bands; (ii)
spin independence of S(I ); (iii) similar spin alignments;
(iv) B(M1) values and the resulting B(M1)/B(E2) ratios
present odd-even staggering behavior; (v) doublet bands have
similar intraband M1 and E2 transition strengthes; and (vi)
interband E2 transitions vanish in the high-spin region. For
wobbling motion, one of the most important features is
that the interband EM transitions with �I = 1 between the
wobbling bands are dominated by E2 rather than by M1
[3,11,33,35,69].

In this work, the collective Hamiltonian in previous works
[1,70–72] is extended to calculate the intraband EM transition
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probabilities and compared with those given by the TAC
and PRM. The paper is organized as follows: In Sec. II, the
frameworks of the 1DCH and 2DCH are briefly introduced,
and the formulas for the intraband EM transition probabilities
are given. The numerical details are given in Sec. III. In Sec.
IV, the calculated results are presented and compared with the
TAC and PRM. Finally, a summary is given in Sec. V.

II. THEORETICAL FRAMEWORK

A. Collective Hamiltonian

The collective Hamiltonian can be derived, for example, by
the generator coordinate method (GCM) [74], the adiabatic
time-dependent Hartree–Fock (ATDHF) method [74,75], or
the adiabatic self-consistent collective coordinate (ASCC)
method [76,77].

The orientations of the rotational axis in a triaxial nucleus
can be parametrized by the polar and the azimuth angles
(θ, ϕ). These two angles are chosen as the collective co-
ordinates to describe the chiral and wobbling modes in the
collective Hamiltonian method. Based on the TAC approach,
the collective Hamiltonian of the azimuth angle ϕ (1DCH)
[70–72] and of both the polar and azimuth angles (θ, ϕ)
(2DCH) [1] have been constructed. Here, for completeness,
the frameworks of both the 1DCH and 2DCH are briefly
given.

1. One-dimensional collective Hamiltonian

The 1DCH is written as [70–72]

H(ϕ) = 1
2B(ϕ)ϕ̇2 + V (ϕ), (1)

in which V (ϕ) is the collective potential and B(ϕ) is the mass
parameter. The collective potential is obtained by minimizing
the total Routhian E′(θ, ϕ) in the TAC with respect to θ for
given ϕ, and the corresponding B(ϕ) is calculated following
Ref. [70].

From the general Pauli prescription [78], the quantal col-
lective Hamiltonian reads

Ĥ = − h̄2

2
√

B(ϕ)

∂

∂ϕ

1√
B(ϕ)

+ V (ϕ). (2)

The corresponding eigenenergies Ei and the wave functions
� i (ϕ) can be obtained by diagonalizing the Hamiltonian
(2) via the basis expansion method; see Ref. [70] for
details. The collective Hamiltonian (2) is invariant under the
transformation P̂ϕ : ϕ → −ϕ [70]. The eigenvalues of P̂ϕ are
“+” or “−,” depending on whether the state is symmetric
or antisymmetric with respect to the transformation.
Therefore, the eigenstates can be divided into two

separate groups, i.e., Pϕ = + and Pϕ = − groups, and the
eigenenergies of the two groups can be labeled as Ei

+ and
Ei

−, respectively.

2. Two-dimensional collective Hamiltonian

The 2DCH is written as

H(θ, ϕ) = 1
2Bθθ θ̇

2 + 1
2Bθϕθ̇ ϕ̇ + 1

2Bϕθ ϕ̇θ̇

+ 1
2Bϕϕϕ̇2 + V (θ, ϕ), (3)

in which V (θ, ϕ) is the collective potential, and Bθθ (θ, ϕ),
Bθϕ (θ, ϕ), Bϕθ (θ, ϕ), Bϕϕ (θ, ϕ) are the mass parameters,
which can be obtained from the TAC calculations [1].

From the general Pauli prescription [78], the quantal col-
lective Hamiltonian reads

Ĥ = − h̄2

2
√

w

[
∂

∂ϕ

Bθθ√
w

∂

∂ϕ
− ∂

∂ϕ

Bϕθ√
w

∂

∂θ
− ∂

∂θ

Bθϕ√
w

∂

∂ϕ

+ ∂

∂θ

Bϕϕ√
w

∂

∂θ

]
+ V (θ, ϕ), (4)

in which w is the determinant of the mass parameter tensor,

w = det B =
∣∣∣∣Bθθ Bθϕ

Bϕθ Bϕϕ

∣∣∣∣. (5)

The eigenenergies Ei and the corresponding wave
functions � i (θ, ϕ) can be obtained by diagonalizing the
Hamiltonian (4) via the basis expansion method; see Ref. [1]
for details. The collective Hamiltonian (4) is invariant un-
der the transformation P̂θ : θ → π − θ or P̂ϕ : ϕ → −ϕ [1].
The eigenvalues of P̂θ and P̂ϕ are “+” or “−,” depend-
ing on whether the state is symmetric or antisymmetric
with respect to the transformations. Therefore, the eigen-
states can be divided into four separate groups (PθPϕ), i.e.,
the positive-positive (++), positive-negative (+−), negative-
positive (−+), and negative-negative (−−) groups, and the
eigenenergies of the four groups can be labeled as Ei

++, Ei
+−,

Ei
−+, and Ei

−−, respectively.

B. Electromagnetic transitions

Because the tilted angles θ and ϕ are chosen as the collec-
tive coordinates in the collective Hamiltonian, the quantum
fluctuations of the tilted angles are now considered in the
frameworks of the 1DCH and 2DCH. Therefore, for EM
transitions, it is natural to go beyond the semiclassical ap-
proximation in the TAC approach to include the quantum
fluctuation effects.

In the TAC, the EM transition probabilities are calculated
as the expectation values of the corresponding operators M1
and E2 semiclassically [2,79],

BM1
TAC(θ, ϕ) = 3

8π
{[−μz sin θJ + cos θJ (μx cos ϕJ + μy sin ϕJ )]2 + [μy cos ϕJ − μx sin ϕJ ]2}, (6)

B
E2(I→I−2)
TAC (θ, ϕ) = 15

128π

⎧⎨
⎩

[
Q20 sin2 θJ +

√
2

3
Q22(1 + cos2 θJ ) cos 2ϕJ

]2

+ 8

3
[Q22 cos θJ sin 2ϕJ ]2

⎫⎬
⎭, (7)

064302-2



TWO-DIMENSIONAL … . II. ELECTROMAGNETIC ... PHYSICAL REVIEW C 98, 064302 (2018)

B
E2(I→I−1)
TAC (θ, ϕ) = 5

16π

⎧⎨
⎩

[
sin θJ cos θJ

(
Q22 cos 2ϕJ −

√
3

2
Q20

)]2

+ [sin θJ sin 2ϕJ Q22]2

⎫⎬
⎭, (8)

in which the intrinsic magnetic moments μi = ∑
τ=p,n

(gτ − gR )〈ji(τ )〉 with the g factors gτ (gR) for valence nucle-
ons (rotor) and the angular-momentum components ji(τ ) of
valence nucleons on the ith axis, and the intrinsic electric-
quadrupole tensors Q20 = Q0 cos γ and Q22 = Q0 sin γ /

√
2

with the intrinsic electric-quadrupole moment Q0.
Note that the orientational angles (θJ , ϕJ ) in Eqs. (6)–(8)

describe the orientations of the angular momentum J in the
intrinsic frame and are in general different from the tilted
cranking angles (θ, ϕ) in the TAC. For given tilted cranking
angles (θ, ϕ) in the TAC, the components of J are calculated
by

Jk = 〈ĵk〉 + Jkωk, k = 1, 2, 3, (9)
where the first term is from the valence particles and holes,
and the second term from the rotor. The orientational angles
(θJ , ϕJ ) are defined as

tan θJ =
√

J 2
1 + J 2

2

J3
, tan ϕJ = J2

J1
. (10)

In the TAC, the self-consistent solution is obtained by
minimizing the total Routhian, in which the tilted crank-
ing angles (θ, ϕ) are the same as the orientational angles
(θJ , ϕJ ). In such a case, the EM transitions are calculated with
(θJ , ϕJ ) = (θ, ϕ), and the contributions from other orienta-
tions are neglected. The effects of the quantum fluctuations
on EM transitions will be considered in the frameworks of the
1DCH and 2DCH.

1. Electromagnetic transitions in the one-dimensional collective
Hamiltonian

In the 1DCH, the total Routhian E′(θ, ϕ) is minimized
with respect to θ for a given ϕ, and the collective wave
function � i (ϕ) represents the amplitude of the collective
state i with azimuth angle ϕ. Hence, the EM transitions in
Eqs. (6)–(8) only depend on azimuth angle ϕ. Therefore, the
M1 and E2 transition probabilities in the 1DCH are

BM1
1DCH =

∫ π/2

−π/2
dϕ

√
B(ϕ)BM1

TAC(ϕ)|�(ϕ)|2, (11)

B
E2(I→I−2)
1DCH =

∫ π/2

−π/2
dϕ

√
B(ϕ)BE2(I→I−2)

TAC (ϕ)|�(ϕ)|2,

(12)

B
E2(I→I−1)
1DCH =

∫ π/2

−π/2
dϕ

√
B(ϕ)BE2(I→I−1)

TAC (ϕ)|�(ϕ)|2.

(13)

The angular momentum in the 1DCH is [70]

J 1DCH
coll =

∫ π/2

−π/2
dϕ

√
B(ϕ)JTAC(ϕ)|�(ϕ)|2. (14)

Similarly, a quantal correction I 1DCH
coll = J 1DCH

coll − 1/2 [79]
should be applied.

2. Electromagnetic transitions in the two-dimensional collective
Hamiltonian

In the 2DCH, the collective wave function � i (θ, ϕ) rep-
resents the amplitude of the collective state i with polar and
azimuth angles (θ, ϕ).

Similar to the 1DCH, the M1 and E2 transition probabili-
ties in the 2DCH are

BM1
2DCH =

∫ π

0
dθ

∫ π/2

−π/2
dϕ

√
wBM1

TAC

× (θ, ϕ)|�(θ, ϕ)|2, (15)

B
E2(I→I−2)
2DCH =

∫ π

0
dθ

∫ π/2

−π/2
dϕ

√
wB

E2(I→I−2)
TAC

× (θ, ϕ)|�(θ, ϕ)|2, (16)

B
E2(I→I−1)
2DCH =

∫ π

0
dθ

∫ π/2

−π/2
dϕ

√
wB

E2(I→I−1)
TAC

× (θ, ϕ)|�(θ, ϕ)|2, (17)

and the angular momentum in the 2DCH is [1]

J 2DCH
coll =

∫ π

0
dθ

∫ π/2

−π/2
dϕ

√
wJTAC(θ, ϕ)|�(θ, ϕ)|2. (18)

A quantal correction I 2DCH
coll = J 2DCH

coll − 1/2 [79] is also ap-
plied.

III. NUMERICAL DETAILS

In the present calculations, a system with one h11/2 proton
particle and one h11/2 neutron hole coupled to a triaxial rotor
(γ = −30◦) is considered. The coupling coefficients in the
single-j shell Hamiltonian are taken as Cπ = 0.25 MeV for
the proton particle and Cν = −0.25 MeV for the neutron hole.
The moments of inertia for irrotational flow are adopted with
J0 = 40h̄2/MeV. These numerical details are the same as
those in Refs. [1,2,70]. In the calculations of the EM transition
probabilities, the effective g factors are setting as gp − gR = 1
and gn − gR = −1, respectively, and the electric-quadrupole
moment is taken as Q0. These assignments are the same in the
calculations with the 1DCH, 2DCH, TAC, and PRM.

IV. RESULTS AND DISCUSSION

In Ref. [1], by taking the basis states under the pe-
riodic boundary condition and diagonalizing the collective
Hamiltonian for given rotational frequencies, the collective
energy levels and the wave functions obtained by the 2DCH
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FIG. 1. The intraband M1 and E2 transition probabilities of the
doublet bands obtained by the 1DCH in comparison with the TAC
[(a), (c), (e)] and the PRM [(b), (d), (f)] as functions of spin.

have been compared with those obtained by the 1DCH. Mean-
while, the angular momenta and energy spectra calculated
by the 2DCH have been compared with those by the TAC
approach and the exact solutions of PRM. Here we follow the
same 1DCH and 2DCH calculations in Ref. [1] and extend
the discussion there to the intraband M1 and E2 transition
probabilities.

A. One-dimensional collective Hamiltonian

In Fig. 1, the intraband M1 and E2 transition probabilities
of the doublet bands, i.e., the lowest states in the groups (+)
and (−), obtained by the 1DCH in comparison with those by
the TAC and the PRM as functions of spin are given.

In Figs. 1(a), 1(c), and 1(e), it is found that the tendencies
of the M1 and E2 transition probabilities of the yrast band
(E1

+) in the 1DCH agree well with those in the TAC. In
Ref. [2], it was shown that the TAC could reproduce the
intraband transition probabilities for the yrast band in the
PRM. The description of the chiral and wobbling excitations
is beyond the mean-field approximation in the TAC. The
1DCH takes the quantum fluctuation of the azimuth angle ϕ
into account and thus provides the intraband EM transition
probabilities of both the yrast band (E1

+) and sideband (E1
−).

The obtained M1 and E2 transition probabilities for both
bands are close to each other, as required by the chiral doublet
bands or wobbling excitation bands.

In Fig. 1(a), the B(M1) values in the TAC drop rapidly to
zero around I = 37h̄. This is because the values of both the
polar and azimuth angles in the TAC become π/2 at this spin
(see Figs. 2 and 4), which means that the nucleus rotates with
the intermediate axis. According to Eq. (6), the M1 transitions
vanish.

FIG. 2. The effective azimuth angles ϕeff of in the doublet bands
obtained by the 1DCH as functions of spin in comparison with the
azimuth angle ϕ by the TAC.

In contrast, the B(M1) values in the 1DCH approach to
zero smoothly. This can be understood from the effective
azimuth angles ϕeff in the 1DCH defined as

ϕeff
1DCH =

∫ π/2

−π/2
dϕ

√
B(ϕ)|ϕ||�(ϕ)|2. (19)

It is the expectation value of azimuth angle |ϕ| including the
quantum fluctuation effects of the orientational angles, and is
displayed in Fig. 2.

Due to the quantum fluctuations, the orientation of angular
momentum does not align with the intermediate axis at high
spin but rather has a distribution. As a result, the effective az-
imuth angle ϕeff deviates from π/2, and the missing quantum
effects in the TAC are resumed in the 1DCH. Therefore, the
B(M1) values in the 1DCH, although small, are nonvanishing
at high spin.

In Figs. 1(b), 1(d), and 1(f), the intraband M1 and E2
transition probabilities in the 1DCH are compared with those
in the PRM. For B(E2, I → I − 2) values, both results of the
yrast and sidebands in the 1DCH agree well with those given
by the PRM. For B(M1) and B(E2, I → I − 1) values, how-
ever, there is a noticeable difference between the PRM and
the 1DCH. The results in the PRM present strong odd-even
staggering behavior, whereas those in the 1DCH do not. The
staggering behavior of the EM transitions of chiral doublet
bands in the PRM has been analyzed in Ref. [22]. In the
1DCH, the angular momentum is not a good quantum number.
Therefore, the staggering behavior, which depends strongly
on the quantized angular momentum, is not reproduced in
the 1DCH. Similar arguments hold true for the TAC results
where the staggering behavior cannot be reproduced, either.
Nevertheless, it should be mentioned that the B(M1) values
in the PRM, regardless of the staggering behavior, are also
not exactly zero at high spin, in accordance with the results
from the 1DCH.

Staggering behavior is shown in the B(M1) and
B(E2, I → I − 1) values obtained from the PRM above I =
15h̄. The underlying reason can be attributed to the selection
rule, proposed in Ref. [22]. It is noted that the staggering
feature is related to the ways in which one arranges the
bands [80]. Since the bands in 1DCH or 2DCH are naturally
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FIG. 3. The intraband M1 and E2 transition probabilities of the
lowest bands in the groups (++), (+−), (−+), and (−−) obtained
by the 2DCH in comparison with the TAC [(a), (c), (e)] and the PRM
[(b), (d), (f)].

arranged according to the energies, here we arrange the bands
in the PRM based on energies as well, i.e., the lowest-energy
states are defined as one band and the first excited-energy
states as the partner band. In this way, the staggering feature
is shown in the B(M1) and B(E2, I → I − 1) values above
I = 15h̄.

Since we arrange the bands by energies as discussed above,
it leads to the absence of staggering of the PRM values at spin
I = 19h̄ in Figs. 1(b), 1(d), and 1(f), and also the zero values
of B(E2, I → I − 2) in Fig. 1(d) at low spin and at spin I =
19h̄. These features can also be seen in Refs. [80,81].

At high spins (I > 24h̄), the B(M1) values in the 1DCH
are different from those in the PRM. In particular, the B(M1)
values of the two bands in the PRM show remarkable differ-
ences for odd spins, while those in the 1DCH are similar. It
should be noted that, in the PRM, there is a transition process
from chiral rotation to principal axis rotation [82], and the
two bands become no longer chiral partners at high spins. It
is reflected by the increasing difference between the effective
angle θpn of the two bands at high spins, as shown in Ref. [82].
The nonchiral quantum correlations induce remarkable differ-
ences for the B(M1) values of the two bands. In the 1DCH,
however, the semiclassical approximation is introduced and
only the collective correlations in the azimuthal angle ϕ de-
gree of freedom are considered. Therefore, the B(M1) values
of the two bands are similar.

B. Two-dimensional collective Hamiltonian

In Fig. 3, the intraband M1 and E2 transition probabil-
ities of the lowest states in the groups (++), (+−), (−+),

FIG. 4. The effective tilted cranking angles ϕeff and θ eff of the
lowest states in the groups (++), (+−), (−+), and (−−) as functions
of spin obtained by the 2DCH in comparison with the tilted cranking
angles ϕ and θ by the TAC.

and (−−) obtained by the 2DCH are compared with those
obtained by the TAC and the PRM.

In Figs. 3(a), 3(c), and 3(e), similar to the 1DCH, the
tendencies of M1 and E2 transition probabilities of the yrast
band (E1

++) in the 2DCH agree well with those in the TAC.
The M1 and E2 transition probabilities of the sidebands
(E1

+−, E1
−+, E1

−−) and the yrast band are close to each other,
as required by the chiral doublet bands or wobbling excitation
bands.

In Fig. 3(a), the B(M1) values in the 2DCH approach zero
smoothly at high spin, differing from the case in the TAC.
Same as in the 1DCH, this can be understood from the ef-
fective azimuthal angle ϕeff and polar angle θ eff , respectively
defined as

ϕeff
2DCH =

∫ π

0
dθ

∫ π/2

−π/2
dϕ

√
w|ϕ||�(θ, ϕ)|2, (20)

θ eff
2DCH =

∫ π

0
dθ

∫ π/2

−π/2
dϕ

√
w(π/2 − |π/2 − θ |)|�(θ, ϕ)|2,

(21)

which are presented in Fig. 4.
At low spin (I � 10h̄), the azimuth angle ϕ in the TAC

is zero and the tilted cranking axis lies in the principal plane
defined by the short and long axes, i.e., the so-called planar
solution [2]. However, in the 2DCH, the effective azimuth
angles ϕeff are not zero, due to the quantum fluctuation effects
of the orientational axis. Such quantum effects correspond to
the chiral vibrations in the low-spin region.

With increasing spin, the orientational axis does not lie in
any of the principal planes in both the TAC and 2DCH. These
are the so-called aplanar solutions [2], and they correspond to
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the chiral rotation. The values of θ eff and ϕeff in the 2DCH are
close to but differ from θ and ϕ in the TAC due to the quantum
fluctuations in both the ϕ and θ degrees of freedom.

At high spin (I � 37h̄), the tilted cranking axis in the TAC
is along the intermediate axis. As a consequence, the B(M1)
value in the TAC drops to zero. However, in the 2DCH, the
effective angles (θ eff , ϕeff ) do not equal (π/2, π/2). Instead,
the orientational axis has quantum fluctuations around the
intermediate axis; corresponding to wobbling motions along
θ and ϕ directions; namely, θ wobbling and ϕ wobbling [1].
Therefore, as in the 1DCH, the B(M1) values in the 2DCH
are nonvanishing at high spin due to the quantum effects.

One remarkable feature in Fig. 4 is that the effective angles
ϕeff in the yrast band E1

++ and the sideband E1
−+ are close

to each other, whereas θ eff in the yrast band E1
++ and the

sideband E1
+− are close to each other. Similarly, ϕeff in bands

E1
+− and E1

−− are close to each other, and θ eff in bands
E1

−+ and E1
−− are close to each other. This is because the

states E1
−+ and E1

−− are one-phonon vibrational states with
θ respectively based on the states E1

++ and E1
+−. Similarly

the states E1
+− and E1

−− are the one-phonon states with ϕ

respectively based on the states E1
++ and E1

−+. The (θ eff , ϕeff )
values for the yrast band (E1

++) are almost the same as those
for the sidebands (E1

+−, E1
−+, E1

−−) around the spin I = 15h̄
in the 2DCH, which might be regarded as a signal for the static
chirality in the 2DCH.

In Figs. 3(b), 3(d), and 3(f), the intraband M1 and E2
transition probabilities in the 2DCH are compared with those
in the PRM. Again, the staggering behavior as well as the
remarkable differences of B(M1) values between the two
bands at high spins in the PRM cannot be reproduced in
the 2DCH. This is because the angular momentum in the
2DCH is not a good quantum number and only the collective
correlations in the azimuthal angle ϕ and polar angle θ degrees
of freedom are considered. Except for the staggering behavior,
the amplitudes and tendencies of the B(M1) and B(E2)
values in the PRM are reasonably reproduced by the 2DCH.

V. SUMMARY

In summary, the intraband EM transition probabilities are
calculated in the framework of a collective Hamiltonian for
chiral and wobbling modes. The EM transition probabilities
for a system with one h11/2 proton particle and one h11/2

neutron hole coupled to a triaxial rotor (γ = −30◦) in the
1DCH and 2DCH are obtained and compared with the results
given by the TAC and PRM.

The obtained EM transition probabilities for the yrast band
and sidebands in the 1DCH and 2DCH are close to those in
the TAC. At high spin, the B(M1) transition probabilities in
the 1DCH and 2DCH have nonvanishing values, as reflected
by the effective orientational angles. This indicates that the
missing quantum fluctuation effects of orientational axis are
resumed.

The amplitudes and tendencies of the EM transition proba-
bilities for the yrast and sidebands obtained in the PRM can be
well reproduced by the 1DCH and 2DCH. However, the odd-
even staggering of the B(M1) values cannot be reproduced
because the angular momentum is not a good quantum number
in the 1DCH and 2DCH.

Based on the descriptions of the intraband EM transitions
here and of the energy spectra in previous work [1], it will
be interesting to build a collective Hamiltonian based on the
microscopic tilted axis cranking covariant density-functional
theory [47] for chiral and wobbling modes.
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