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Nuclear structure studies of double-charge-exchange Gamow-Teller strength
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The double Gamow-Teller strength distributions in even-A calcium isotopes were calculated using the nuclear
shell model by applying the single Gamow-Teller operator two times sequentially on the ground state of the
parent nucleus. The number of intermediate states actually contributing to the results was determined. The sum
rules for the double Gamow-Teller operator in the full calculation were approximately fulfilled. In the case that
the symmetry is restored approximately by introducing degeneracies of the f levels, and the p levels in the
fp-model space, the agreement with the sum rules was very close.
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I. INTRODUCTION

The double-charge-exchange (DCX) processes are a
promising tool for the study of nuclear structure and in
particular for the study of two-body correlations in nuclei.
In the 1980s, DCX reactions using pion beams produced in
the three meson factories at LAMPF, TRIUMF, and SIN were
performed successfully. Studies at lower pion energies (E �
50 MeV) have indeed produced clear signals of nucleon-
nucleon correlations [1–5], which were successfully explained
by the theoretical studies [6,7]. The pion DCX experiments
excited the double isobaric analog states (DIAS) [8,9]. At
higher pion energies (E > 300 MeV), the studies discovered
the giant dipole resonances (GDR) built on the IAS [10–13],
and double giant dipole resonances (DGDR) [14–17] (see
Refs. [10,14] for definitions).

At present, there is a renewed interest in DCX reactions, to
a large extent due to the extensive studies of double-beta (ββ)
decays, both the decay in which two neutrinos are emitted
(2νββ) and neutrinoless double-beta decay (0νββ). In DCX
and ββ decay, two nucleons are involved. The pion, however,
interacts weakly with states involving the spin, and the pion
DCX reactions do not excite the states involving the spin, such
as the double Gamow-Teller (DGT) state. The DGT strength is
the essential part of the ββ decay transitions. It was suggested
in the past that one could probe the DGT state and hopefully
the 0νββ decay using DCX reactions with light ions [18,19].

At present, DCX reactions are performed using light ions.
There is a large program called NUMEN in Catania, where
reactions with 18O and 18Ne have been performed [20]. The
hope is that such studies might shed some light on the nature
of the nuclear matrix element of the ββ decay and serve as
a “calibration” for the size of this matrix element. These
DCX studies might also provide new interesting information
about nuclear structure. One of the outstanding resonances
relevant to the 0νββ decay is the double Gamow-Teller (DGT)
resonance suggested in the past [18,21]. At RIKEN, there is a
DCX program using ion beams for the purpose of observing
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DGT states and other nuclear structure properties [22]. At
Osaka University, new DCX reactions with light ions were
used to excite the double-charge-exchange state and com-
pare to the pion DCX reaction results. One additional peak
appeared in the cross section, suggesting that it is a DGT
resonance [23].

The DGT strength distributions in even-A neon isotopes
were discussed in Ref. [24], and recently the calculation of
DGT strength for 48Ca was performed in Ref. [25]. In the
present paper, the DGT transition strength distributions in
even-A calcium isotopes are calculated in the full fp-model
space using the nuclear shell model code NUSHELLX@MSU

[26,27]. The single Gamow-Teller operator is applied two
times sequentially on the ground state of the parent nucleus
to obtain the DGT strength. This method is different from the
method used in Refs. [24,25].

The properties of the DGT distribution are examined, and
limiting cases when the SU(4) symmetry holds or when the
spin orbit-orbit coupling is put to zero are studied. DGT sum
rules were derived in Refs. [24,28,29] and recently discussed
in Ref. [30]. The DGT sum rules were used here as a tool to
assess whether in our numerical calculations most of the DGT
strength is found.

II. METHOD OF CALCULATION

The nuclear shell model wave functions of the initial
ground state, J = 1+ intermediate states, and J = 0+, 2+
final states were obtained using the shell model code
NUSHELLX@MSU [26,27] with the FPD6 [31] and KB3G [32]
interactions, in the complete fp-model space. The maximum
number of intermediate states is 1000. Table I shows the
total number of final states that are possible in Ti isotopes.
If the total number of final states was larger than 5000, the
calculations were done up to 5000 final states. As one will see
later, that is enough to exhaust almost the total strength.

After all wave functions were obtained, the single GT op-
erator was applied two times sequentially. First, all transitions
from the parent nucleus 0+ to all 1+ intermediate states were
calculated and then all transitions from 1+ intermediate states
to each 0+ or 2+ in the final nucleus were calculated. Figure 1
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FIG. 1. Illustration of the method of calculation described in the
text. The notations 1+

max and 0+
max are the corresponding cutoffs.

illustrates the method of calculation. The single GT operator
is denoted as

Y± =
A∑

i=1

σ t±(i), t± = tx ± ity, (1)

with t−n = p and t+p = n, where 2tx and 2ty are the Pauli
isospin operators and σ is Pauli spin operator. Then the single
GT transition amplitude from the initial state |i〉 to the final
state |f 〉 is

M (GT±; i → f ) = 〈f ||Y±||i〉√
2Ji + 1

, (2)

and the GT transition strength given by

B(GT±) = |M (GT±; i → f )|2 (3)

obeys the 3(N − Z) sum rule
∑

f

B(GT−) −
∑

f

B(GT+) = SGT− − SGT+ = 3(N − Z),

(4)

TABLE I. The total number of final states in the fp-model space
and f -model space, which includes the f7/2 and the f5/2 orbits only.

Jf
42Ti 44Ti 46Ti 48Ti

0+ 2+ 0+ 2+ 0+ 2+ 0+ 2+

fp-space 4 8 158 596 2343 9884 14177 61953
f -space 2 1 29 99 180 741 446 1899

where the
∑

f means summing over all eigenstates of Jf Tf .
Because the fp-model space is limited, only the valence
neutrons participate in the calculation for calcium isotopes.
Therefore, we have S(GT+) = 0.

The dimensionless DGT transition amplitude is defined as

M (DGT±) =
∑

n

M (GT±; i → n)M (GT±; n → f ), (5)

where n are the intermediate states. Note that this is a coherent
sum. Finally, the DGT strength is given by

B(DGT±) = |M (DGT±)|2, (6)

or in more detail

B(DGT−; i → n → f )

= 1

2Ji + 1

∣∣∣∣∣∣

∑

n

〈f ||
∑

i

σ i t−(i)||n〉〈n||
∑

j

σ j t−(j )||i〉
∣∣∣∣∣∣

2

.

(7)

Note that B(DGT−; i → n → f ) depends on Jf with Jf = 0
and 2 only. The matrix element in the case of Jf = 1 vanishes
because the DGT operator changes sign under the interchange
of coordinates of two particles.

The DGT sum rule for Jf = 0 is given in Refs. [28,29],
and for Jf = 0, 2 the sum rules are given in Refs. [24,30]. In
summary, the sum rules in our cases [S(GT+) = 0] for DGT

FIG. 2. The cumulative sum of the single Gamow-Teller strength B(GT−) as a function of the number of 1+ states (a) and excitation
energies (b) of the intermediate nucleus 48Sc. The calculation used FPD6 and KB3G interactions in the fp-model space.
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TABLE II. The properties of DGT transition using FPD6 and
KB3G interactions in the complete fp-model space. S(DGT) is the
DGT total strength with the FPD6 interaction. B1 = B(DGT; 0+ →
0+

1 , 2+
1 ) is the reduced transition strength from the g.s. (J = 0+) of

the parent nucleus to the first 0+
1 (g.s.) or the first 2+

1 state of the final
nucleus. E (MeV) is the average energy [Eq. (9)].

Initial nucleus 42Ca 44Ca 46Ca 48Ca

Jf 0+ 2+ 0+ 2+ 0+ 2+ 0+

Sum rule � 36 � 0 � 120 � 240 � 252 � 720 � 432
S(DGT) (FPD6) 28.1 19.5 102.0 284.0 223.7 752.6 385.0
S(DGT) (KB3G) 28.5 18.8 103.0 282.6 224.5 783.5 395.4

B1 (FPD6) 16.172 6.117 0.654 0.000 0.201 0.017 0.109
B1 (KB3G) 17.010 5.942 0.895 0.119 0.182 0.057 0.072

E (FPD6) 6.1 4.8 16.3 13.2 21.2 18.0 24.6
E (KB3G) 6.1 5.5 14.7 12.2 19.0 16.9 21.9

operators are

S
Jf =0
DGT = 6(N − Z)(N − Z + 1) − 2�,

S
Jf =2
DGT = 30(N − Z)(N − Z − 2) + 5�, (8)

where � = √
2〈0|[Y+ × Y−](1) · Σ − Σ · [Y− × Y+](1)|0〉,

with Σ = ∑
i σ (i). There is a factor of 3 difference between

our work and the work in Refs. [24,25] because the spin
operator is not projected in our calculation. The first terms of
the sum rules depend only on N and Z, and the second terms
(2� or 5�) need to be calculated separately. The sign of the
second term makes the first term the upper limit for Jf = 0+
and lower limit for Jf = 2+.

III. RESULTS AND DISCUSSIONS
It is well known that the single GT strength is quenched

(see Ref. [33]). In the shell model calculations, GT strength is
fragmented. This is demonstrated in the case of 48Ca in Fig. 2
as an example. The results were obtained with two different
interactions that are often used in the fp-model space: FPD6
and KB3G interactions. Within the range of about 17 MeV
excitation energy, S(GT−) is approximately 24, exhausting

TABLE III. B(DGT; 0+ → 0+) for 42Ca using FPD6 and KB3G
interactions in the complete fp-model space. Eex (MeV) is the
excited energy of 42Ti.

FPD6 KB3G

Eex B(DGT) S(DGT) Eex B(DGT) S(DGT)

0.0 16.172 16.172 0.0 17.010 17.010
6.0 0.442 16.614 5.7 0.281 17.291
10.9 0.782 17.396 11.3 0.120 17.411
14.9 10.692 28.088 15.4 11.085 28.496

the 3(N − Z) sum rule [S(GT+) = 0 in our calculations].
The cumulative sum of the single GT strength S(GT−) as a
function of the number of 48Sc states is shown in Fig. 2. One
can expect that there are about 500 intermediate 1+ states in
48Sc that actually contribute to the final results of the DGT
strength, although the total number of 1+ states in this nucleus
is many thousands.

For the study of the DGT resonance, first, we calculated
the sum rule using it as a tool to asses whether in our
numerical calculations most of the DGT strength is found.
While the first terms in Eq. (8) depend only on N and Z
(see Table II), the second terms that contain � need to be
calculated numerically. In Ref. [29], the � was related to
the magnetic dipole transition S(M1). For direct comparison
with the work in Ref. [29], the � is extracted by subtracting
from our numerical total sum the first term. Besides, Table I
in Ref. [29] and Table I in Ref. [30] gave the values of the
sum rules for even-A isotopes including calcium isotopes. Our
results given in Table II are in agreement with them (Note
that there is a factor of 3 difference between our work and
Ref. [30]). It means we exhaust all the DGT strength in the
study. Obviously, the total DGT strength does not depend on
the choice of interaction.

Because all the strengths are obtained, we can show not
only the values of the total sum but also the cumulative sums
of the DGT strength. The cumulative sums are given in Fig. 3
for 44Ca, Fig. 4 for 46Ca, and Fig. 5 for 48Ca. In these figures,
the solid lines are the shell model calculations described in
Sec. II using the FPD6 interaction. They are denoted as “FPD6

FIG. 3. The cumulative sum of the B(DGT; 0+ → 0+) (a) and B(DGT; 0+ → 2+) (b) in 44Ca.
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FIG. 4. The same as Fig. 3, but for 46Ca.

with LS.” The results using the KB3G interaction are also
shown as dotted lines. The long-dash lines are the calculation
with the FPD6 interaction in the SU(4) limit. The SU(4)
limit in our work is restored approximately by making the
f5/2, f7/2 and the p1/2, p3/2 degenerate following Ref. [34].
It means there is no spin-orbit coupling and therefore they
were denoted as “FPD6 without LS.” We want to show that in
the SU(4) limit, the cumulative sums approach the horizontal
lines [denoted as the “SU(4) limit’] that represent the values
of the terms that depend only on N and Z in Eq. (8). This is
in agreement with the fact that � vanishes in the SU(4) limit
according to Ref. [35]. In the cases of 44Ca (Fig. 3), the sum
rules are fully exhausted because all intermediate states and
all final states can be taken into account. In the cases of 46Ca
with Jf = 2+, and 48Ca (Figs. 4 and 5), the cumulative sums
are still increasing. For the case of the DGT transition to the
2+ state in 48Ca, we choose not to do the calculation because
the total number of final states is too large. The result is not
convergent using the standard NUSHELLX@MSU code [36].

Most of the sum rule is satisfied, and therefore the entire
distributions of DGT strength can now be discussed. We
remind the reader that Ref. [24] showed the entire DGT
distributions for even-A neon isotopes, and recently Ref. [25]

FIG. 5. The cumulative sum of the B(DGT; 0+ → 0+) in 48Ca.

showed the result for 48Ca for the first time. For the lightest
nucleus, 42Ca, the DGT distributions with FPD6 and KB3G
interactions are shown in Tables III and IV. The difference
between the results of the two interactions is not large.

In the case B(DGT; 0+ → 0+) of 42Ca, the reduced tran-
sition strength from the g.s. of the parent nucleus to the first
0+ (g.s.) of the final nucleus is large because the g.s. of 42Ti
is the DIAS of the g.s. of 42Ca. Moreover, in the SU(4) limit
the g.s. of 42Ti absorbs all the DGT strength (36), following
Refs. [28,29].

The DGT distributions are drawn in Figs. 6–10. They
contain inserts which show the DGT strength in the low-lying
states of 44,46,48Ti. B1 is a very tiny fraction of the total
strength. For example, the strength in the ground state of
48Ti is only 3 × 10−4 of the total strength (see Table II). This
strength enters in the calculation of the ββ decay. In Ref. [25],
it is pointed out that a very good linear correlation between the
DGT transition to the ground state of the final nucleus and the
0νββ decay matrix element exists.

When the strengths are spread by using the same
Lorentzian averaging with the width of 1 MeV to simulate the
experimental energy resolution, the results show that the DGT
distributions are not single-peaked. The distributions have at
least two peaks and in some nuclei as many as four major
peaks. We remind the reader that the single GT resonances

TABLE IV. The same as Table III, but for B(DGT; 0+ → 2+).

FPD6 KB3G

Eex B(DGT) S(DGT) Eex B(DGT) S(DGT)

0.0 6.117 6.117 0.0 5.942 5.943
2.3 1.536 7.653 2.6 0.520 6.463
5.1 0.125 7.778 5.2 0.009 6.472
6.6 5.523 13.301 7.2 1.355 7.827
7.3 4.916 18.217 7.8 9.679 17.506
9.7 0.071 18.288 10.1 0.188 17.694
11.6 0.039 18.327 11.9 0.017 17.711
14.2 1.148 19.475 14.2 1.047 18.757
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FIG. 6. B(DGT; 0+ → 0+) for 44Ca as the function of the ex-
citation energy of the final nucleus 44Ti (a). The DGT transitions to
low-lying states are shown in (b). The strengths were spread by using
Lorentzian averaging with the width of 1 MeV.

have at least two peaks [37]. Figsures 11–13 show the depen-
dence of the DGT distributions on the number of intermediate
states. We can see that about 100 intermediate states actually
contribute to final results in the cases of 44Ca (Figs. 11
and 12). Although the total number of intermediate states in
heavier isotopes, including 48Ca, is many thousands, about
500 intermediate states actually contribute to final results
(Fig. 13). The sum rule is useful to determine this number.
(We remind the reader that the number of intermediate states
involved in the calculations for 0νββ decay is smaller; see
Ref. [38]). Figure 14 shows the DGT transitions to Jf = 0+
together with the transition to Jf = 2+ in 44Ca and 46Ca. As
one can see, the DGT transitions to Jf = 2+ are larger than
the transitions to Jf = 0+.

The centroids (average energies) of the DGT distributions
defined by

E =
∑

f Ef Bf (DGT−)
∑

f Bf (DGT−)
(9)

are given in Table II. In 46Ti, with the FPD6 interaction, for ex-
ample, the average energy for the Jf = 0+ is E = 21.2 MeV

FIG. 7. The same as Fig. 6, but for B(DGT; 0+ → 2+).

FIG. 8. B(DGT; 0+ → 0+) in 46Ca (a). The DGT transitions to
low-lying states are shown in (b).

and for the Jf = 2+ it is lower, E = 18.0 MeV. In 48Ti the
average energy Jf = 0+ is E = 24.6 MeV. In Ref. [25], a
simple relation between the average energy of the 48Ca DGT
giant resonance and the 0νββ decay nuclear matrix element
was pointed out. The authors conclude that the uncertainties
due to the nuclear interaction in the calculation of the DGT
distribution in 48Ca are relatively under control. Figures 15–17
show the DGT distributions calculated with FPD6 and KB3G
interactions. We see that the distributions and the average
energies (see Table II) using FPD6 and KB3G are similar.
Our calculated distribution for 48Ca is in agreement (when
the factor of 3 is taken into account) with the recent result
using the same KB3G interaction but a different method. As
one can see in Fig. 17, the DGT giant resonance in 48Ca
is at the energy around 20–30 MeV. In a recent paper [23]
the experimental results for the double-charge-exchange reac-
tion 56Fe(11B, 11Li) were presented. In this reaction, several
resonances were excited, in agreement with the pion DCX
studies. There is a peak at 25 MeV excitation, that the authors
indicated could be the DGT resonance.

In addition, the numerical calculations in the f -model
space (including the f7/2 and the f5/2 orbits only) using the
same Hamiltonian are given in Fig. 18. For 42Ca, there are two

FIG. 9. The same as Fig. 8, but for B(DGT; 0+ → 2+).
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FIG. 10. The same as Fig. 8, but for 48Ca.

0+ DGT states, at the excitation energies 0.0 and 18.3 MeV.
Their strengths are 11.178 and 13.791, respectively. There
is one 2+ DGT state at 0.0 MeV and its strength is 8.658.
Note that the sum rules do not depend on the model space. In
the f -model space, we obtained exactly the sum rules even
for the case of the DGT transitions to the 2+ states in 48Ca
because the calculation can be done without any limitation,
as now the total number of possible final states is strongly
reduced (see Table II). The DGT distributions in the f -
model space are much more concentrated. In Refs. [6,7], the
analytical calculations in the limited f -model space provided
valuable information for the studies of the DIAS. Therefore,
we can expect that a similar calculation for the DGT strength
will be useful to determine the structure of DGT strength
distribution and where the DGT strength is concentrated.

Finally, we comment on the question of quenching of
GT strength, sometimes phrased as the renormalization of
the GT operator. The single GT strength is reduced con-
siderably, 30–40% quenched. The origins of this quenching
are still a puzzle. Two basic mechanisms were introduced.
The quenching in charge exchange reactions is with respect
to strength on the main peaks of the GT resonance. It is

FIG. 11. The dependence on the number of intermediate states
of B(DGT; 0+ → 0+) in 44Ca. The numbers in parentheses are the
corresponding total strengths.

FIG. 12. The same as Fig. 11, but for B(DGT; 0+ → 2+).

suggested that the rest of the strength is strongly fragmented
and spread out at energies several tens of MeV above the main
peaks. The nuclear force mixes the one-particle–one-hone
(1p-1h) configurations that make up the GT state with 2p-
2h configurations, leading to fragmentation of strength [39].
There are experimental attempts to locate this strength but
the results so far are not conclusive. The second possibility
is that the missing GT strength is due to the coupling of the
GT state to the internal excitation of the nucleon, namely
to the � resonance, removing the strength to a very high
energy of about 300 MeV excitation [40]. Of course, there
is the possibility that both mechanisms could contribute. The
quenching of the GT strength would affect the DGT strength
as well and probably to a larger extent. The ββ decay, as
already mentioned, is directly related to the DGT strength.
The transition operator of the 2νββ is the same as the DGT
operator. In the case of the 0νββ the transition operators
have in addition to the DGT operator also an r dependence.
The quenching will affect both types of ββ decay transitions.
However, the effect on the 0νββ may be different than for the
2νββ, depending on which mechanism of quenching is the
dominant one. This aspect, however, is beyond the scope of
the present shell model calculation.

FIG. 13. The same as Fig. 11, but for B(DGT; 0+ → 0+) in 48Ca.
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FIG. 14. B(DGT; 0+ → 0+, 2+) in 44Ca (a) and 46Ca (b).

FIG. 15. B(DGT; 0+ → 0+) (a) and B(DGT; 0+ → 2+) (b) in 44Ca using FPD6 and KB3G interactions.

FIG. 16. The same as Fig. 15, but for 46Ca.
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FIG. 17. B(DGT; 0+ → 0+) in 48Ca using FPD6 and KB3G
interactions. The strengths are spread with the width of 1 MeV. For
comparison to Ref. [25] that also calculated the DGT distribution
in 48Ca using the KB3G interaction, the strengths in our calculation
shown in this figure are divided by the factor of 3 (see text).

IV. CONCLUSIONS

The general features and trends of the DGT sum rules
in even-A calcium isotopes are described using numerical
results. The properties of the entire distribution of the DGT
transitions are discussed. By studying the stronger DGT
transitions—in particular, the DGT giant resonance exper-
imentally and theoretically—the calculations of ββ-decay
nuclear matrix elements can be calibrated to some extent.
There is no doubt that the pion DCX is a sensitive tool for
probing nuclear structure. Nowadays the ion DCX reactions
have been discussed mainly in the context of 0νββ; however,
the ion DCX reaction itself is a new probing tool of nuclear
structure, in particular of spin degrees of freedom. The DGT
resonance is just one example. Because two nucleons partici-
pate in the DCX reactions with pions or heavy ions, one can
expect that the nucleon-nucleon interaction and correlations
can be probed, including those for nuclei that are far from
the stability region. Finally, the problem of quenching of GT
strength is of course very important and should be studied in
order to improve the understanding of the DGT strength and
the ββ decay.

FIG. 18. The DGT distributions in the f -model space (including the f7/2 and the f5/2 orbits only) in even-A calcium isotopes using the
FPD6 interaction.
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