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We have studied nuclear matter with a new M3Y-type effective nucleon-nucleon interaction based on
the lowest order constrained variational approach (LOCV) as the principal investigating tool. The chosen
interaction, called B3Y-Fetal, has been used in its DDM3Y1, BDM3Y0, BDM3Y1, BDM3Y2, and BDM3Y3
density-dependent versions to reproduce the saturation properties of cold nuclear matter at the saturation density,
ρ = 0.17 fm−3. Such properties as the binding energy per nucleon, also called the equation of state (EOS), and
the incompressibility of symmetric nuclear matter have been computed, with results proving to be acceptably
in agreement with previous work done with the M3Y-Paris and M3Y-Reid interactions by other researchers.
Insightful information on symmetric nuclear matter obtained from the folding analysis in this work has shown it
to be possibly governed by a soft EOS.
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I. INTRODUCTION

Effective interactions are a computational necessity for
calculations involving finite nuclei and nuclear matter. They
occupy an important place in nuclear physics, their funda-
mental role being the explanation of the properties of atomic
nuclei in terms of the basic interactions between nucleons
[1]. Their derivation has resulted from the inability of free
nucleon-nucleon (NN) potentials to describe nuclei consisting
of a large number of nucleons, where many-body effects
cannot be neglected. Therefore, effective NN interactions,
developed to include the effects of complicated many-body
correlations, have been found more profitable for nuclear
matter and finite nuclei studies [2,3].

A very useful feature of the effective interactions is that
analytical expressions for many interesting quantities in both
symmetric and asymmetric nuclear matter are contained in
them; so, when used in mean-field studies, they are usually
and generally adjusted to various properties of nuclear matter
and finite nuclei [1]. They have been used successfully for
describing the properties of nuclei near the valley of stability
as well as the properties of exotic nuclei with large neutron or
proton excess [4].

Of all the effective interactions, the finite-range M3Y
interaction and its various density-dependent upgrades are
known to have become the most versatile, working well in
many nuclear models to produce very reliable results. The
derivation of this interaction was pioneered by Bertsch and
his co-workers at the Michigan State University by obtain-
ing the G-matrix elements of the Reid potential [5] in an
oscillator basis and fitting these matrix elements to a sum
of three Yukawa terms, popularly referred to as “Michigan
three Yukawa” (M3Y) interaction [6,7]. In their G-matrix-
based work, this effective interaction, composed of the central,
tensor, and spin-orbit components, has been shown to give
unambiguous predictions of inelastic scattering [6]. Since its
derivation, the M3Y effective interaction has become the most

versatile and most popularly used potential in nuclear matter
calculations and in elastic and inelastic reactions. Although
different versions of the M3Y effective interaction have come
into use at one time or another, the most popular versions
presently in use are M3Y-Reid [6] based on the G matrix
of the Reid potential [5] and M3Y-Paris [8] based on the G
matrix of the Paris potential.

Following the work of Bertsch et al. [6], a similarly
motivated potential was derived based on the lowest order
constrained variational (LOCV) principle by Fiase et al. [9],
who investigated the mass dependence of the M3Y-type ef-
fective interactions about fifteen years ago. They restricted
their study strictly to the mass dependence of the M3Y-type
effective interactions and the effects of tensor correlations,
and their results were similar to those of [6] in most reaction
channels. Their work covered the nuclear systems A = 16, 24,
40, and 90. In this study, an M3Y-type effective interaction
for a nuclear system with mass number A = 16 is chosen for
the study of nuclear matter properties. The M3Y-type effective
interaction of choice is called B3Y-Fetal [1] in this work, with
the letter B in the label B3Y representing Botswana, where
the effective interaction was developed, while “Fetal” in the
label B3Y-Fetal represents Fiase et al. [9], who derived it.

It is common knowledge that the saturation of density and
energy is a basic property of nuclei. Therefore, in developing
effective interactions, the basic requirement is to reproduce
the saturation properties of nuclear matter. Symmetric nuclear
matter, considered an important testing ground and source of
invention of new tools with which to treat the quantitative re-
lationship between the two-body forces and nuclear properties
[10], is characterized by a saturation density ρ0 = 0.166 ±
0.018 fm−3 and an energy per particle of 16 ± 1 MeV given
by the bulk term of the well-known Bethe-Weizsacker mass
formula [11]. The reproduction of these values together with
the compression modulus has long been a fundamental and
meaningful test for all effective interactions and techniques
for many-body problems to pass in order to be used for a
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successful prediction of nuclear properties of finite nuclei. But
the original density-independent M3Y interaction is known
to have failed to give the saturation of nuclear matter within
Hartree-Fock (HF) calculations of nuclear matter [12–14].
It was, therefore, thought wise to modify it by introducing
a realistic density dependence into it to enable it describe
the known nuclear matter properties. Consequently, in the
last three decades, different density-dependent versions of the
M3Y-type effective interaction have been successfully used in
HF calculations of symmetric and asymmetric nuclear matter
[4,12,15–18] in the mean-field studies of nuclear ground states
as well as in numerous folding model studies of nucleon-
nucleus and nucleus-nucleus scattering [17,19,20]. The var-
ious density dependences are the DDM3Y, BDM3Y, and
CDM3Y, out of which the CDM3Y is the latest version [20].

Our intended purpose in this work is to pass the B3Y-
Fetal effective interaction through the test for viability of
all effective interactions, the reproduction of the well-known
saturation properties of symmetric nuclear matter, using the
DDM3Y and BDM3Y density-dependent versions. In this
regard, this work is, among other things, meant to establish
the position of the new effective interaction in relation to other
theoretical models. We used the zero-range pseudopotential
approximation in our earlier paper [21] and found the results
to be in good agreement with theoretical and experimental
standards. For this reason, we are determined to use the
full-exchange potential in this study. We are hopeful that
the emanating results will give a definite form and character
of this new effective interaction. The success of this work
will pave the way for the application of the new effective
interaction in asymmetric nuclear matter and folding analyses.
As it is, the B3Y-Fetal is the principal probing effective
interaction, but it is used alongside M3Y-Reid and M3Y-Paris,
which are meant to serve as standards to compare it with.
With this in mind, we organize the paper in the following
manner. Section II gives a succinct overview of the procedure
for the derivation of B3Y-Fetal in addition to a discussion of
the M3Y density-dependent versions used in this study. The
computation of the nuclear matter equation of state using the
full-exchange potential is undertaken in Sec. III. Section IV
is devoted to presentation of results and discussion, and in
Sec. V we make concluding remarks.

II. THE B3Y-FETAL EFFECTIVE INTERACTION

The matrix elements of the two-body effective interaction
leading to the B3Y-Fetal interaction were calculated in a
harmonic oscillator basis using the lowest-order constrained
variational (LOCV) method. The details of the calculation
were reported in [9,22], where the matrix elements have been
shown to be of the form

E′
2 = 〈�|

∑
i>j

f (ij )Vijf (ij )|�〉, (1)

where 〈�| represents the two-body (harmonic oscillator) wave
function and f (ij ) are the correlation operators which are
meant to take care of the effect of the strong repulsion of
the nucleon-nucleon interaction, making the matrix elements
finite at short internucleon distances, and Vij is the Reid

soft-core potential [5]. The LOCV method, while very popular
some decades ago, is now well known to be very approximate;
however, the success of the method parallels the G-matrix ap-
proach or any other sophisticated approach to the microscopic
study of effective interactions. We had shown [22] in an earlier
LOCV calculation that our matrix elements are quite similar to
G-matrix calculations if the tensor force is allowed to operate
in its proper angular momentum channels. However, there is
no method which suffers no limitations and approximation.
In our LOCV method, we had made a cluster expansion of
the expectation value of the Hamiltonian into two-body, E2,
three-body, E3, and higher-order energy terms.

To lowest order, we minimized the two-body energy term
E2 with respect to the functional variations of the two-body
correlation functions such that only two-body cluster energy
terms were important. We did this by choosing a convergence
parameter, K which was required to be K � 1. This was
achieved in our calculations. However, without calculating the
three-body cluster terms explicitly, our LOCV results were
open to the doubt that perhaps higher order cluster effects
might destroy this encouraging similarity with G-matrix cal-
cualtions. Irvine [23], who first introduced this method, had
investigated the convergence of the LOCV calculations by
calculating the three-body cluster term E3, and had found this
to be negligibly small.

Now, the effective nucleon-nucleon interaction suitable for
calculations involving nuclear matter and finite nuclei has
been defined in [9] to have a central (VC), a spin-orbit (VLS),
and a tensor (VT ) component expressed as

VC =
∑

k

VkY

(
rij

Rk

)
,

VLS =
∑

k

VkY

(
rij

Rk

)
L · S, (2)

VT =
∑

k

Vkr
2
ij Y

(
rij

Rk

)
Sij ,

where Y ( rij

Rk
) is a Yukawa potential function of the form [6,9]

Y

(
rij

Rk

)
=

exp
( − rij

Rk

)
( rij

Rk

) . (3)

Vk in Eq. (2) are the strengths of the interaction to be deter-
mined by fitting the two-body matrix elements of Eq. (1) to
those of the sum of Yukawa functions with different ranges.
Rk are the ranges, which are chosen to be 0.25 and 0.40; 0.40
and 0.70; and 0.25, 0.40, and 1.414 fm for the spin-orbit, ten-
sor, and central components, respectively. rij is the separation
between the ith and j th nucleons. The tensor operator Sij

is [24]

Sij = 3(σ i .rij )(σ j .rij ) − σ iσ j (4)

with σ i and σ j representing the Pauli spin matrices. The spin-
orbit operator L · S has an expectation value proportional to
[10,25]

2〈L · S〉 = j (j + 1) − l(l + 1) − s(s + 1), (5)

where L = √
l(l + 1), S = √

s(s + 1), and J = √
j (j + 1).
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The strengths of the central component of the effective
interaction,Vk were determined and separated into various
angular momenta channels; namely, the singlet even (SE),
singlet odd (SO), triplet even (TE), and triplet odd (TO)
channels. The M3Y-type effective interaction arising from
these strengths of the central component is B3Y-Fetal, and its
radial shape is expressed in terms of three Yukawa functions
as [6,26]:

v
D(EX)
00 (r ) =

3∑
k=1

Y
D(EX)
00 (k)

exp(−μkr )

μkr
, (6)

where μk = 1/Rk and the functions Y
D(EX)
00 are represented in

terms of SE, TE, SO, and TO channels as [6,26]

YD
00 = 1

16 [3t (SE) + 3t (TE) + 1t (SO) + 9t (TO)],

Y EX
00 = 1

16 [3t (SE) + 3t (TE) − 1t (SO) − 9t (TO)], (7)

where tk are the strengths of the interaction in SE, TE, SO, and
TO channels. The interaction strengths used for constructing
B3Y-Fetal were taken from Table V of the work of Fiase
et al. [9].

In general, the direct (vD ) and exchange (vEX) components
of the central part of the M3Y NN effective interaction, in
terms of spin σ, σ ′ and isospin τ, τ ′ of the nucleons, are
expressed as [19]

vD(EX)(r ) = v
D(EX)
00 (r ) + v

D(EX)
10 (r )(σ · σ ′)+v

D(EX)
01 (r )(τ · τ ′)

+ v
D(EX)
11 (r )(σ · σ ′)(τ · τ ′), (8)

where r is the internucleon distance, ρ is the nuclear density
around the interacting nucleon pair, and σ , σ ′ are the spins
and τ , τ ′ are the isospins of the two nucleons participating
in the interaction. In this work, the dominant contribution to
the study of cold symmetric nuclear matter, which is spin-
saturated, is v

D(EX)
00 (r ).

Thus, the radial strengths (in MeV) of the B3Y-Fetal effec-
tive interaction are given in terms of three Yukawa potentials
as [9]

vD
00(r ) = 10472.13e−4r

4r
− 2203.11e−2.5r

2.5r
,

vEX
00 (r ) = 499.63e−4r

4r
−1347.77e−2.5r

2.5r
− 7.8474e−0.7072r

0.7072r
.

(9)

Since it is intended in this work to compare the results of our
calculation with previous work done with the famous M3Y-
Reid and M3Y-Paris interactions, their explicit radial forms
are shown in Eqs. (10) and (11) respectively.

M3Y-Reid [6,27]:

vD
00(r ) = 7999.00e−4r

4r
− 2134.25e−2.5r

2.5r
,

vEX
00 (r ) = 4631.375e−4r

4r
−1787.125e−2.5r

2.5r
− 7.8474e−0.7072r

0.7072r
.

(10)

M3Y-Paris [8,27]:

vD
00(r ) = 11061.625e−4r

4r
− 2537.5e−2.5r

2.5r
,

vEX
00 (r ) = −1524.25e−4r

4r
− 518.75e−2.5r

2.5r
− 7.8474e−0.7072r

0.7072r
.

(11)

For a correct description of the saturation properties of
nuclear matter within the non-relativistic HF scheme, it has
been shown [12,16] that the introduction of a density depen-
dence into the original M3Y interaction is a necessary and
sufficient solution. This is because even the most sophisticated
G-matrix calculations with the inclusion of two- and three-
nucleon correlations are unable to describe simultaneously
the equilibrium density and binding energy of normal nuclear
matter. The inclusion of higher-order correlations as well as
relativistic effects is shown to improve this situation. One
approach to solving this difficulty is to derive an effective
interaction as is done in our LOCV approach. The higher-
order correlation effects are then parametrized in terms of
density dependence and included in the effective interaction
in order to obtain a good description of normal nuclear
matter. Therefore, the density-dependent M3Y-type effective
interaction becomes

v
D(EX)
00 (ρ, r ) = F0(ρ)vD(EX)

00 (r ), (12)

where F0(ρ) is the density-dependent factor. In the present
work, the explicit forms of the density dependences used are
[12,17,27]

F0(ρ) = C(1 + αe−βρ ), DDM3Yn,

F0(ρ) = C(1 − αρβ ), BDM3Yn. (13)

For the DDM3Yn effective interaction, n = 1, whereas n =
0, 1, 2, 3 for the BDM3Yn effective interaction; and the pa-
rameters C, α, and β of the density dependences are adjusted
to reproduce the saturation properties of nuclear matter at den-
sity ρ0 = 0.17 fm−3 with a binding energy E/A = 16 MeV
within the HF calculations. This class of density-dependent
M3Y effective interactions has continued to be applied, with
great success, to numerous nuclear reactions including folding
analysis of nucleon-nucleus, nucleus-nucleus, and charge-
exchange reactions [12,27,28].

The DDM3Yn effective interaction was used first by Kobos
and his co-researchers [12] to reproduce the density and
energy dependence of the microscopic nucleon optical poten-
tial obtained by Jeukenne, Lejeune, and Mahaux (JLM) [29]
with parameters that were dependent on the nucleon incident
energy, which was positive [12]. Having realized that the same
parameters were not suitable for calculations involving nucle-
ons embedded in the nuclear matter with negative energies
(k � kF ), Khoa and Oertzen, [12] adjusted the parameters
to get a reasonable limit for negative energies, leading to
the attainment of the saturation condition at the equilibrium
density ρ0 = 0.07 fm−3 and an equilibrium binding energy
E/A � 15.9 MeV; but the associated incompressibility K
of 129.2 MeV indicated a very soft equation of state (EOS)
compared with the standard soft and hard EOS having K
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values of 200 and 380 MeV respectively. Therefore, they
readjusted the parameters to reproduce the empirical val-
ues of the saturation binding energy (E/A � 16 MeV) and
density (ρ0 = 0.17 fm−3) respectively. The density-dependent
M3Y interaction arising from the readjustment was dubbed
DDM3Y1, and it gave the incompressibilities K = 170 and
176 MeV with the M3Y-Reid and M3Y-Paris effective in-
teractions respectively. The exponential nature of the density
dependence, however, made a further readjustment of the
parameters for a higher value of K impossible. The only way
to have a harder EOS was to try to use some other form of den-
sity dependence. Consequently, they tried using the BDM3Yn
interaction.

The BDM3Yn interaction was first introduced and used
by Myers in single-folding calculations [12]. The density
dependence is known to change the sign of the interaction
at high densities, making it crucially important in fulfilling
the saturation condition as well as giving different K values
for the nuclear EOS. With a β value of 2/3 used by Myers
originally, the authors in [12] fitted the other two parameters
to the saturation condition as for DDM3Y1, dubbing the
new density dependent interaction BDM3Y0 and obtaining a
harder EOS with an incompressibility of 190 MeV based on
the M3Y-Reid effective interaction. In their quest for better
and harder equations of state, they went further to use integer
values of β ranging from 1 to 3, obtaining the BDM3Y1,
BDM3Y2, and BDM3Y3 interactions with higher incom-
pressibility values. These interactions were subsequently used
for folding calculations of heavy-ion (HI) optical potentials
with insightful results.

The choice of the DDM3Yn and BDM3Yn effective in-
teractions in this work is inspired by the approach of Khoa
and co-workers [12,16,17,19]. To be able to compare the
performance of B3Y-Fetal with that of the M3Y-Reid and
M3Y-Paris effective interactions, nuclear matter calculations
with the DDM3Y1, BDM3Y0, BDM3Y1, BDM3Y2, and
BDM3Y3 versions are carried out in this paper following their
approach.

III. THE NUCLEAR MATTER EQUATION
OF STATE (EOS)

Understanding the nuclear matter EOS through micro-
scopic calculations that utilize a model of the nuclear force
duly incorporating low-energy two-nucleon scattering data
and properties of light nuclei [11,30] has always been a
challenging theoretical problem. Therefore, we attempt to
understand and solve the nuclear matter EOS herein using
the density-dependent B3Y-Fetal effective interaction whose
derivation has resulted from microscopic calculations. We
have first chosen the symmetric case as our starting point
because most nuclear matter calculations usually start with the
EOS for this normal nuclear matter and, afterwards, extrapo-
late the theory developed mainly for it to nuclear matter with
extremely high isospin and high densities.

Symmetric nuclear matter is considered in this study as
a Fermion system enclosed in an infinite volume �, having
Z protons = N neutrons [7,26], an infinite mass number
A = N + Z, a finite density ρ = A/�, and a total ground-

state energy E at the absolute zero temperature expressed as
the sum of a kinetic energy part and a potential energy part
[18,31]. The mathematical representation of this energy in
Hartree-Fock (HF) approximation is [32]

E =
∑

i

〈i| − h̄2

2m
∇2|i〉 + 1

2

∑
i 	=j

∑
j

〈ij |v|ij 〉

= Ekin + Epot, (14)

where v is a generalized two-body effective NN interaction.
The factor 1/2 in the total potential energy is meant to avoid
double counting of the two-body mutual interactions. Now, a
good description of the nuclear matter properties begins with
the evaluation of the nuclear matter EOS, also called energy
per particle [33], whose mathematical expression follows
from Eqs. (12) and (14) as [12]

E

A
(ρ)= 3h̄2k2

F

10m
+ F0(ρ)

ρ

2

(
JD

0 +
∫

[ĵ1(kF r )]2vEX
00 (r )d3r

)
,

(15)

where m is the bare nucleon mass, F0(ρ) is the density de-
pendence of the isoscalar component of the density-dependent
interactions, JD

0 is the volume integral of the direct part of
the effective interaction, and ĵ1(x) = 3j1(x)/x, with jn(x) the
nth-order spherical Bessel function.

The equilibrium density of nuclear matter is determined
from the saturation condition:

δ

δρ

(
E

A

)∣∣∣∣
ρ=ρ0

= 0

= h̄2k2
F

5m
ρ + JD

0

2
A0(ρ) + 1

2

∫
vEX

00 (r )[A0(ρ)[ĵ1(kF r )]2

− 2F0(ρ)ĵ1(kF r )j2(kF r )]d3r
∣∣
ρ=ρ0

= 0, (16)

where A0(ρ) = ρ dF0(ρ)
dρ

+ F0(ρ).
The pressure of symmetric nuclear matter, expressed

as [26]

P0(ρ) = ρ2 δ

δρ

(
E

A
(ρ)

)
, (17)

must be zero at saturation.
With the indicated operation properly carried out,

P0(ρ) = h̄2k2
F

5m
+ A0(ρ)ρ2

∫
vEX

00 (r )[ĵ1(kF r )]

× [A0(ρ)[ĵ1(kF r )] − 2F0(ρ)j2(kF r )]d3r, (18)

where A0(ρ) is as defined in Eq. (16).
The incompressibility, or compression modulus of sym-

metric nuclear matter is a measure of the curvature of the
nuclear EOS at saturation. It is of special interest in this
study because it characterizes the stiffness of nuclear EOS
in a definite manner; and plays a major role in the study of
properties of nuclei, supernovae collapse, neutron stars and
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heavy-ion collisions. It is defined as [12]:

K0(ρ) = 9ρ2 δ2

δρ2

(
E

A
(ρ)

)∣∣∣∣
ρ=ρ0

= 3h̄2k2
F

5m
+ B0(ρ)JD

0 +
∫

vEX
00 (r )[B0(ρ)[ĵ1(kF r )]2

−C0(ρ)ĵ1(kF r )j2(kF r ) + 9ρF0(ρ)([j2(kF r )]2

+ j1(kF r )j3(kF r ))]d3r|ρ=ρ0 , (19)

where B0(ρ) = 4.5ρ3 d2F0(ρ)
dρ2 + 9ρ2 dF0(ρ)

dρ
and C0(ρ) =

18ρ2 dF0(ρ)
dρ

+ 15ρF0(ρ).
The DDM3Y1, BDM3Y0, BDM3Y1, BDM3Y2, and

BDM3Y3 interactions used for nuclear matter calculations in
this study have corresponding K values, based on the M3Y-
Paris, M3Y-Reid, and B3Y-Fetal effective interactions, which
distinguish different nuclear equations of state in nuclear
reactions. This has been suggested by Khoa and collaborators
[12,16,17] as a useful way of obtaining vital information on
the nuclear matter EOS. To this end, a step is taken further
in this work to try out the new effective interaction in the
refractive scattering of the 16O + 16O nuclear system at an
incident energy of 145 MeV so as to observe the connection
of EOS with the associated K values. The success of this
will, additionally, help us ascertain the viability of the new
interaction for optical model analyses of nuclear reactions
involving different nuclei. The double folding procedure de-
veloped by Khoa et al. [16,17] is used for this purpose. To do
this successfully, the density-dependent effective interaction
in Eq. (12) has an energy dependence introduced into it in the
form

v
D(EX)
00 (E, ρ, r ) = g(E)F0(ρ)vD(EX)

00 (r ). (20)

The inclusion of the energy dependence is to enable the re-
production of the empirical energy dependence of the nucleon
optical potential [27]. For simplicity, the energy-dependent
interaction is assumed here to be the original M3Y-type
effective interaction multiplied by an energy-dependent factor
g(E), where E is the incident nucleon energy, and g(E) �
1−0.002E for M3Y-Reid interaction [12] as well as B3Y-
Fetal [21]. Seeing that the dominant focus of this paper is

TABLE I. Parameters of density dependence and nuclear incom-
pressibility at equilibrium for M3Y-Paris. The results obtained in
Refs. [16,27] are in brackets.

Density dependent version C α β K (MeV)

DDM3Y1-Paris 0.2963 3.7231 3.7384 176
(0.2963) (3.7231) 3.7384 (176)

BDM3Y0-Paris 1.4366 1.2624 2/3 221
(1.4366) (1.2627) 2/3 (218)

BDM3Y1-Paris 1.2511 1.7445 1 270
(1.2521) (1.7452) 1 (270)

BDM3Y2-Paris 1.0656 6.0295 2 418
(1.0664) (6.0296) 2 418

BDM3Y3-Paris 1.0037 25.112 3 566
(1.0045) (25.115) 3 (566)

TABLE II. Parameters of density dependence and nuclear in-
compressibility at equilibrium for M3Y-Reid. The results obtained
in Refs. [16,27] are in parentheses.

Density-dependent version C α β K (MeV)

DDM3Y1-Reid 0.2816 3.6693 2.9605 171
(0.2816) (3.6693) 2.9605 (171)

BDM3Y0-Reid 1.3817 1.1132 2/3 191
(1.3817) (1.1132) 2/3 (190)

BDM3Y1-Reid 1.2244 1.5118 1 232
(1.2253) (1.5124) 1 (232)

BDM3Y2-Reid 1.0670 5.1067 2 353
(1.0678) (5.1069) 2 (353)

BDM3Y3-Reid 1.0146 21.070 3 475
(1.0153) (21.073) 3 (475)

nuclear matter calculations, the details of the folding proce-
dure, contained in [16,17,19,20,34], are not included herein;
but we report the results of the computation in this work.

IV. RESULTS AND DISCUSSION

In order to firmly establish the performance of the B3Y-
Fetal effective interaction, the saturation properties of sym-
metric nuclear matter (NM) were computed with the M3Y-
Paris and M3Y-Reid effective interactions first. When the
results obtained with these interactions in their DDM3Y1,
BDM3Y0, BDM3Y1, BDM3Y2, and BDM3Y3 density-
dependent versions were compared with the results of [16,27]
and found to be exact, the B3Y-Fetal effective interaction was
substituted for them in the same computational procedure.
The results obtained from the numerical calculation, shown in
Tables I–III and Figs. 1–3, have clearly revealed the B3Y-Fetal
interaction to be in good agreement with the M3Y-Reid and
M3Y-Paris interactions.

Figure 1 presents the curves of the EOS of cold symmet-
ric nuclear matter obtained with the DDB3Y1-, BDB3Y0-,
BDB3Y1-, BDB3Y2-, and BDB3Y3-Fetal interactions. Each
of these interactions is shown to have reproduced correctly
the saturation of nuclear matter at density ρ = 0.17 fm−3 and
binding energy per nucleon E

A
= 16 MeV. Thus, all the curves

have the same shape and value at the saturation point, demon-
strating good agreement with the work of [12]. As nuclear
density increases, the differences in the performances of the
interactions become increasingly clear, with DDB3Y1-Fetal
being the weakest and BDB3Y3-Fetal being the strongest. The

TABLE III. Parameters of density dependence and nuclear in-
compressibility at equilibrium for B3Y-Fetal.

Density-dependent version C α β K (MeV)

DDB3Y1-Fetal 0.2986 3.1757 2.9605 176
BDB3Y0-Fetal 1.3045 1.0810 2/3 196
BDB3Y1-Fetal 1.1603 1.4626 1 235
BDB3Y2-Fetal 1.0160 4.9169 2 351
BDB3Y3-Fetal 0.9680 20.250 3 467
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FIG. 1. Equations of state of cold NM calculated with DDB3Y1-,
BDB3Y0-, BDB3Y1-, BDB3Y2-, and BDB3Y3-Fetal interactions.

curves also show that the EOS described by the BDB3Y-Fetal
effective interaction—whose values are shown in Table III—
becomes harder with increasing β; this is, again, in agreement
with [12,16,27].

With regard to nuclear matter incompressibility, the results
obtained in this work with the M3Y-Paris and M3Y-Reid
effective interactions, shown in Tables I and II, respectively,
have been observed to be exact when compared with those
obtained by Khoa and co-researchers [16,17,27], giving the
certainty and confidence that the results obtained with B3Y-
Fetal in Table III through the same computational proce-
dure are acceptably accurate. With the very soft DDM3Y1
density-dependent version, the performance gaps displayed
by the three effective interactions in Fig. 2 are essentially
marginal up to high nuclear matter densities. However, with
the BDM3Y1 density-dependent version, it is obvious from
the results that the M3Y-Paris interaction predicts a stiffer
EOS than the B3Y-Fetal and M3Y-Reid interactions, which

FIG. 2. Nuclear incompressibilities of cold NM calculated with
DDB3Y1-Fetal, DDM3Y1-Reid, and DDM3Y1-Paris interactions.

FIG. 3. Nuclear incompressibilities of cold NM calculated with
BDB3Y1- Fetal, BDM3Y1-Reid, and BDM3Y1-Paris interactions.

are seen in Fig. 3 to exhibit overlapping performances in
which B3Y-Fetal is stronger at low nuclear densities and
weaker than M3Y-Reid at high nuclear densities.

Altogether, the DDM3Y1 and BDM3Y1 versions of the
three density-dependent effective interactions used in the
calculation have given for symmetric nuclear matter (SNM)
at equilibrium incompressibility K0 � 171–270 MeV, from
which B3Y-Fetal predicts K0 � 176–235 MeV; M3Y-Reid
gives K0 � 171–232 MeV, and M3Y-Paris predicts K0 �
176–270 MeV. When this is compared with the experimental
estimate of K0 = 240 ± 20 MeV from giant monopole reso-
nances [15,35] and the theoretical estimates of K0 = 220 ±
50 [12] MeV and K0 � 250–270 MeV, based on nonrelativis-
tic and relativistic mean-field models respectively [15], for
SNM, it is evidently clear that the prediction of the B3Y-Fetal
interaction is in good agreement.

FIG. 4. Nuclear incompressibilities of cold NM calculated with
DDB3Y1-Fetal, BDB3Y0-Fetal, and BDB3Y1-Fetal interactions.
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FIG. 5. Fits to the elastic data of 16O + 16O at ELab = 145 MeV
obtained with B3Y-Fetal-based (upper part) and M3Y-Reid-based
(lower Part) optical potentials.

In Fig. 4, a comparative plot of the incompressibilities
given by DDB3Y1-Fetal, BDB3Y0-Fetal, and BDB3Y1-Fetal
shows the BDB3Y1-Fetal interaction to predict a stiffer
EOS at all nuclear densities than DDB3Y1-Fetal, with the
BDB3Y0-Fetal version in between them; this is in excellent
agreement with the findings of [12,17,19] for their corre-
sponding versions based on M3Y-Reid and M3Y-Paris effec-
tive interactions.

To have additional and insightful information on the EOS
of symmetric nuclear matter (SNM), the results of the folding
analysis of the nuclear reaction involving the 16O + 16O nu-
clear system at 145 MeV, using the density-dependent B3Y-
Fetal interaction, are shown in Fig. 5, with the radial shapes
of the real folded potentials derived from B3Y-Fetal in the
upper region while the associated fits are in the lower region.
The radial shapes show DDB3Y1-Fetal to be the most at-
tractive, especially at smaller internuclear distances, whereas
BDB3Y3-Fetal is very repulsive. It is also evident from
Fig. 5 that the fits produced by DDB3Y1- and BDB3Y1-Fetal
have the same shape and are the best in the sense that they

demonstrate a better agreement with the elastic data of 16O +
16O than those produced by the BDB3Y2- and BDB3Y3-
Fetal folded potentials. This observation is also true for the
folded potentials derived from the M3Y-Reid (DDM3Y1-,
BDM3Y1-, BDM3Y2-, and BDM3Y3-Reid potentials) effec-
tive interaction in [12]. When these results are brought to
bear on the results of nuclear matter calculations shown in
Tables I–III, a strong factual link for establishing the nature
of the EOS of SNM using incompressibility values clearly
evolves. Now, the incompressibilities of 351 and 467 MeV
produced by BDB3Y2-Fetal and BDB3Y3-Fetal are known to
represent stiff EOS of SNM [12,15]. These interactions have
also been shown in Fig. 5 to give a very bad description of
the elastic data of the 16O + 16O system whereas DDB3Y1-
and BDB3Y1-Fetal, with the incompressibilities of 173 and
235 MeV respectively, are shown to be better and in good
agreement. Since the well-known standard is that the theo-
retical equations of state which predict higher K0 values of
about 300 MeV are often called “stiff” whereas those which
predict smaller K0 values of about 200 MeV are said to be
“soft” [12,15], the agreement demonstrated by DDB3Y1- and
BDB3Y1-Fetal herein shows that cold nuclear matter possibly
has an underlying soft EOS.

V. CONCLUSION

In this work, a new M3Y-type effective interaction derived
from variational calculations, called B3Y-Fetal, has been ap-
plied in its various density-dependent forms, alongside the
M3Y-Paris and M3Y-Reid effective interactions, to the study
of symmetric nuclear matter, with results that have shown it to
demonstrate good agreement with these well-known M3Y ef-
fective interactions. The prediction of K0 � 176–235 MeV by
B3Y-Fetal has been found to tally well with the experimental
standard where K0 = 240 ± 20 MeV [15,35] and theoretical
estimates of K0 = 220 ± 50 MeV based on nonrelativistic
calculations [16,27]. In addition, evidence available from a
combination of folding analysis and nuclear matter calcula-
tions here shows the possibility that SNM has an underlying
soft EOS in agreement with [16].

Finally, seeing that nuclear matter has remained a trusted
testing ground for the viability of an effective interaction as
well as the many-body technique or theory involved, and
the results of our computation have proved B3Y-Fetal to be
in excellent agreement with the M3Y-Reid and M3Y-Paris
effective interactions, it is necessary to affirm that this work
serves to validate B3Y-Fetal as an effective interaction that
can be relied on for a correct explanation of nuclear matter
and its associated phenomena. This forms a strong basis for
future application of this effective interaction to asymmetric
nuclear matter and nuclear reactions.
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