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Uncertainty quantification in the nuclear shell model
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The uncertainty quantifications of theoretical results are of great importance in making meaningful com-
parisons of those results with experimental data and making predictions in experimentally unknown regions.
By quantifying uncertainties, one can make more solid statements about, e.g., origins of discrepancy in some
quantities between theory and experiment. We propose a novel method for uncertainty quantification for the
effective interactions of nuclear shell-model calculations as an example. The effective interaction is specified by
a set of parameters, and its probability distribution in the multidimensional parameter space is considered. This
enables us to quantify the agreement with experimental data in a statistical manner and the resulting confidence
intervals show unexpectedly large variations. Moreover, we point out that a large deviation of the confidence
interval for the energy in shell-model calculations from the corresponding experimental data can be used as an
indicator of some exotic property, e.g., α clustering. Other possible applications and impacts are also discussed.
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Introduction. Many modern theoretical models have been
developed by iterative cycles of solving “forward modeling
problem” and “inverse modeling problem” [1], and they have
provided deep insight into phenomena of interest. In particu-
lar, such cycles have been playing key roles in nuclear physics,
because the fundamental interaction, the nuclear force, is still
uncertain due to its complexity including the nonperturbative
character in the low-energy regime. In applications of such
theoretical models, one has to solve the inverse modeling
problem, i.e., the optimization problem to minimize devia-
tions of model estimates from observations. However, if one
uses a model with so-called point estimation of the optimal
input parameters, there is a risk of overfitting to the given ob-
servations and of lacking the generalization ability to the data
not taken into the optimization process. Therefore, it is desired
that any theoretical model should be properly accompanied
by uncertainty estimates; see, e.g., [2]. Theoretical studies in
nuclear theory with uncertainty estimates are being expanded,
e.g., mean-field calculations [3–10] and nuclear potentials
[11–14].

The shell-model calculation, which is called the config-
uration interaction method in other fields of science, has
been providing successful and systematic descriptions of a
wide variety of properties of light- to medium-mass nuclei.
Therefore one can expect that this model well approximates
wave functions of nuclei; see, e.g., Refs. [15–17]. Conven-
tional shell-model Hamiltonians have been constructed by
the G-matrix theory [18,19] with minor phenomenological
corrections. Not only from phenomenological perspectives
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but also from microscopic viewpoints, the shell model plays
a key role with recent developments in nuclear forces from
chiral effective field theory (chiral EFT) [20,21] and many-
body methods to derive shell-model effective interactions
for a physically motivated model space [22–27]. The latter
approaches combining ab initio methods and shell-model cal-
culations can act as a foothold for better understanding of the
nuclear potential. Under these circumstances, it is an urgent
task to assess the validity of nuclear shell models through
the evaluations of their uncertainties stemming from input
effective interactions. This is because by performing detailed
analyses of uncertainties coming from input parameters in
the theory one can make more solid statements, such as on
the origins of the discrepancies between theoretical predic-
tions and experimental observations, or on which observables
should be reproduced by the theory within a given model
space. In this study, we provide, for the first time, uncertainty
quantifications of shell-model spectra in a statistical manner.

Inference on effective interactions. In what follows, we in-
troduce a way to quantify uncertainties in shell-model results
by introducing Bayesian inference on input parameters and
then we consider the shell-model results with ensembles of
effective interactions. This study provides rich information
about the validity of theoretical estimates, while in conven-
tional shell-model studies, results with only one or a few
parameter sets are compared with experimental values.

We take the 0p-shell space on top of the 4He core as
the model space. The 0p shell consists of two orbitals 0p1/2

and 0p3/2 and these are abbreviated as p1/2 and p3/2 in this
paper. In this case, the shell-model Hamiltonian contains the
17 parameters with the isospin symmetry: 2 single-particle
energies (SPEs) and 15 two-body matrix elements (TBMEs).
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We do inference on these parameters under a given set of
experimental energy values for some p-shell nuclei and regard
the parameters not as points but as probability distributions
over the 17-dimensional parameter space. All calculations
within the 0p-shell space can be done by an exact diago-
nalization method with relatively low computational costs.
In this case, since there is no uncertainty coming from the
many-body calculation, i.e., the diagonalization process, we
can extract a theoretical uncertainty coming merely from input
parameters.

In Bayesian analysis the parameter distribution is described
by the posterior distribution, i.e., the conditional probability
distribution under observation of data. This posterior is ob-
tained through Bayes’ theorem,

P (θ |D) = P (D|θ )P (θ )

P (D)
∝ P (D|θ )P (θ ), (1)

where θ is a set of multidimensional parameters. In this
study, θ corresponds to the 17-dimensional parameters for the
p-shell effective interactions. The D in the equation above
denotes the data set taken into account for the parameter infer-
ence. We take the uniform distribution as the prior, P (θ ) ∝ 1,
and the ordinary likelihood function,

P (D|θ ) = exp [−χ2(θ )/2], (2)

with the squared errors,

χ2(θ ) ≡
ND∑
n=1

(
Oexpt

n − Oth
n [θ ]

�O

)2

. (3)

Here ND denotes the number of data, Oexpt
n is an experimental

value for the observable labeled by n, and Oth
n [θ] is the

corresponding theoretical results with θ . We note that since
we now assume the isospin symmetry in effective interactions,
the Coulomb corrections to energy values for {Oth

n [θ]} are
calculated in accordance with Ref. [28]. The �O in Eq. (3)
is the typical error of the observables and this should contain
both theoretical and experimental errors in general. However,
the experimental error is negligible in the present work. For
{Oexpt

n }, we use a set of 33 fixed data points for the energy
values of ground and excited states of the p-shell nuclei
throughout this work. Those are essentially the same set as
used in the work by Cohen and Kurath [28] with the exception
of a few updated data. The interested reader is referred to
the Supplemental Material [29]. If one intends to change the
data set in the fitting procedure, one can modify the parameter
distributions relatively easily by regarding the previously ob-
tained posterior as the prior and by doing the similar inference
for the data added. Furthermore, if one makes pseudodata for
unknown states, one can estimate their impacts on parameters
in the same manner. This flexibility is a benefit of introducing
Bayesian inference.

We typically have two classes to evaluate the posterior
P (θ |D). One is the asymptotically exact method, Markov
chain Monte Carlo (MCMC) [30]. If one could achieve an
infinite number of iterations for the MCMC, one would obtain
the samples, i.e., the ensemble of effective interactions that
are exactly obeying posterior distributions. However, in the
case of highly multimodal or too steep true posterior, it is

hard to obtain fully converged results by the MCMC with
currently available computer resources. The other class is
the approximation schemes, which are literally approximation
methods for posteriors; one can write down a posterior in a
simple and closed form like a Gaussian distribution. In this
class, computational costs are in general much less than those
for the MCMC. The advantages and disadvantages for these
two classes are complementary. In this work, we employ the
Laplace approximation (LA), which belongs to the latter class.
In the problems of interest, the LA tends to search a wider
region in the parameter space than the MCMC, because the
χ2 potential is considerably steep around the global minimum.
This means that uncertainties in the parameters evaluated by
LA samples are larger than those obtained by the MCMC. We
adopt the LA because it mitigates the risk of too definitely
estimating the uncertainty.

When applying the LA, the posterior is approximated
by multivariate Gaussian around the so-called maximum a
posteriori (MAP) estimate:

θMAP ≡ argmax
θ

P (D|θ )P (θ ) = argmin
θ

χ2(θ ), (4)

P (θ |D) ≈ |A|√
(2π )k

exp

(
−1

2
θ̄

T
Aθ̄

)
, (5)

with θ̄ = θ − θMAP and the Hessian matrix A

A = −∇∇ ln P (θ |D)|θ=θMAP . (6)

In Eq. (4), we used Eqs. (1) and (2) and P (θ ) ∝ 1. Each
element of the Hessian matrix A is written as

Aij =
ND∑
n=1

1

(�O)2

∂Oth
n [θ ]

∂θi

∂Oth
n [θ]

∂θj

+
ND∑
n=1

(Oth
n [θ] − Oexpt

n

)
(�O)2

∂2Oth
n [θ]

∂θi∂θj

. (7)

The first derivative of the term is obtained by the Hellman-
Feynmann theorem [31] and the second derivative term above
is numerically evaluated using the finite differences of the first
derivative terms,

∂2Oth
n [θ]

∂θi∂θj

= 1

2ε

{
∂Oth

n [θ+
j ]

∂θi

− ∂Oth
n [θ−

j ]

∂θi

}
+ O(ε2), (8)

where On[θ±
j ] denotes the On value evaluated by the param-

eters whose j th components are slightly shifted by a small
value ±ε from the θMAP.

While we use the uniform prior and the LA for the posterior
(this particular choice reduces the parameter inference to the
problem of χ2 minimization and covariance matrix analysis
as in Refs. [3–5,7–14]), the previously mentioned benefit of
Bayesian inference could be achieved in future works by a
fully Bayesian treatment of posterior distributions.

The concrete procedures to quantify the uncertainties
in shell-model calculations by the LA are the following:
(i) search the optimal interaction, i.e., the θMAP in Eq. (4),
with respect to the given data set by means of optimiza-
tion methods, (ii) calculate the Hessian matrix according to
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TABLE I. Root-mean-square (rms) errors of energies for the 33
data in the fit with our optimized interaction and the Cohen-Kurath
interactions. All errors are in MeV.

θMAP CKpot CKtb1 CKtb2

Total rms 0.35 0.57 0.47 0.54

Eqs. (6)–(8), and (iii) generate a sufficiently large number
of the parameter set {θ} obeying the posterior defined in
Eq. (5) and evaluate statistical quantities for observables of
interest. For (i), we prefix the optimal interaction by the
stochastic gradient descent, see, e.g., [32]. The rms errors for
the given data set are summarized in Table I in comparison
with the results for three sets of the interaction proposed
by Cohen and Kurath (CK) [28]. We note that the mass-
dependence of the form (A/6)−0.3 is introduced for TBMEs
while three CK interactions are mass-independent. Three CK
interactions, denoted CKpot, CKtb1, and CKtb2, correspond,
respectively, to (8–16)POT, (8–16)2BME, and (6–16)2BME,
in the original work. Here, the numbers in the parentheses
denote the range of the mass number used in the fit. In
what follows, we use the total rms error for the optimal
interaction as the typical error in Eq. (3), �O = 0.35 MeV.
In procedure (iii), we perform shell-model calculations with
50 000 LA samples. This number is large enough to suppress
the error coming from stochastic choices of samples; the
typical error in the mean values of energy eigenvalues is less
than 0.1%.

Results. We show the marginal distributions of the 17
parameters for the p-shell interaction in Fig. 1. Red curves
with the shaded area and blue bars respectively denote 3σ and
1σ confidence intervals for the parameter distributions. The
1σ deviations of parameters are given by the square root of
diagonal components of A−1. The white dots plotted at the
medians of Gaussian distributions correspond to the parameter
values of the MAP estimation. Some TBMEs, whose total
angular momentum J and total isospin T are (J, T ) = (1, 0),

FIG. 1. Marginal distributions of 17 parameters for the p shell,
in MeV. Red curves and blue bars denote the 3σ and 1σ confidence
intervals, respectively. Each plot is scaled to the same height for
aesthetic purposes. White dots denote the medium of the distribution
and, namely, the θMAP. The TBMEs are abbreviated as v(abcd; JT ),
and the orbits are labeled by 1 = p1/2 and 3 = p3/2.

show relatively large uncertainties. If we take Gamow-Teller
transition strengths or electromagnetic observables into the
fit, which are sensitive to those parameters, we expect that
the uncertainties would become smaller. However, this brings
additional issues into the quenching factor or the effective
charges. In this work, we do not enter into the detail of those
quantities for the sake of simplicity.

In Fig. 2, we show some selected results of energy spectra.
Theoretical results by the LA samples are shown by so-
called violin plots in comparison with (i) experimental data
[33], (ii) the results by one of the CK interactions [28],
and (iii) those by the microscopically derived interaction
by the valence-space in-medium similarity renormalization
group (VS-IMSRG) [24]. The height and width of violins
show, respectively, 3σ̄ confidence intervals and appearance
frequencies of the quantities with respect to all 50 000 LA
samples. Here we use the notation σ̄ for standard deviations
of the results with all the LA samples in order to distinguish
from the ordinary statistical term σ for Gaussian distributions.
Their mean values (horizontal solid lines) and 1σ̄ confidence
intervals (error bars) are shown in the violin plots. Exper-
imental data and theoretical results are classified with the
angular momentum J , the parity π , and the isospin T . We
note that the total isospin is not determined in some data,
in which cases most plausible values are taken from the
corresponding theoretical results. The CKtb1 was determined
from the almost same data as the present study, and gives the
minimum total rms errors among the three CK interactions
(see Table I). Excitation spectra like Figs. 2(a) and 2(c) are
convenient for comparisons with experimental studies with
γ -ray measurements, e.g., to determine which states are rel-
evant to newly measured γ rays. One can also work with
energy eigenvalues, as shown in Figs. 2(b) and 2(d). These
are convenient for purposes of seeing systematic deviations
(e.g., with respect to the mass numbers) of shell-model results
from experimental data.

Hereafter, we consider 82 low-lying states of the p-shell
nuclei in order to confirm that the parameter distributions are
not overfitted to the 33 states. We mainly focus on the energy
spectra for 12,14C in Fig. 2 as a representative example. By
taking a close look at these results, we can make some im-
portant remarks. First, we can see significant variances in the
height of confidence intervals. This enables us to quantify the
relative reliabilities of the theoretical estimates. The overall
scale of the confidence intervals is partly controlled by the
typical error in Eq. (3), but the relative ratio of the height
may suggest complicated correlations involving parameters
and/or the many-body structure. Second, most of the states are
described with the LA samples within 1σ̄ deviations, as shown
in Fig. 2. Indeed, most of the energy values for the 82 states
are reproduced by the LA samples within 1σ̄ error, while there
is a small number of exceptions as we discuss below. This
fact demonstrates the generalization ability of shell-model
calculations to the data not taken into the parameter inference.
Third, one can find a few states in Fig. 2 whose mean energy
values differ from the corresponding experimental data by
more than 2σ̄ : the second 0+ state of 12C (Hoyle state) and
the second 0+ and 2+ states of 14C. Such states can be found
in 14C, 12C (1), 10B (1), 12Be (1), 10Be (1), 7Li (1), and 6Li
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FIG. 2. Excitation energies and energies of 12C and 14C. Each state is classified by its (J πT , NJT ), where (J πT , NJT ) stands for the N th
lowest states with the total angular momentum J π and total isospin T . Experimental data on ENSDF [33] are shown by horizontal dotted
lines in red. Corresponding theoretical results with the LA samples are summarized in violin plots in green or pink. Here green and pink one
corresponds to the states in fit and not in fit, respectively. In each violin plot, mean values and 1σ̄ errors are shown by white horizontal lines
and white error bars, respectively, where σ̄ means standard deviations of all results. Results by a CK interaction and the VS-IMSRG are also
shown.

(1) of the 82 states, where the numbers in parentheses denote
the number of states showing the deviation from experimental
data by more than 2σ̄ . For the states listed above, it has
been already suggested that the p-shell space is insufficient
to describe these states; see, e.g., [34–42]. We propose that
these large discrepancies between the confidence intervals
and experimental data can be interpreted as an indicator of
exotic structures, e.g., α clustering, intruder configurations,
and core excitations. Although we cannot give criteria for
exotic structures, we can deduce which states are likely to
have exotic structures by looking at the relative size of the
discrepancies between confidence intervals and observations.
This is an important outcome of the evaluation of uncertainties
in shell-model calculations.

Even if there is no preliminary knowledge of which states
have exotic structures, one can quantify how the states are to
be (or not to be) taken into account through fitting procedures.
For example, if one adds the Hoyle state into the data set in
fit, the total rms error becomes worse by ≈39% for the 74
states which are reproduced within 2σ̄ error by the already
obtained LA samples with the 33 data. In this way, one can
identify certain states which should not be included in the
fitting procedure, and then update the optimal interaction to
a more utilitarian one. Furthermore, we can assess the validity
of the LA by looking into the shapes of the violin plots. If

the LA failed to capture the global structure of χ2, i.e., in
the case that there are many local minima or plateaus in the
χ2 potential over the parameter space, it is expected that the
mean values of observables calculated with the LA samples
will deviate from the evaluation with the MAP estimate and
that the shape of the violin plots will become asymmetric.
However, the deviation is not significant and the shapes of
violins are almost symmetric. Regarding all the 82 states, the
typical discrepancy in energy values between a result by the
θMAP and a mean value of the results with the LA samples is
about 0.1% (see [29]).

Finally, the methodology discussed in this study would
be useful for microscopic understandings too. In current mi-
croscopic calculations like the VS-IMSRG and the coupled-
cluster method, the input nuclear potential is regarded as
the dominant source of uncertainty [43]. The capability of
shell-model calculations is important because it enables one
to know which states are likely to be described by future
microscopically derived effective interactions. By visualizing
the confidence intervals of shell-model calculations, there is
also a possibility to figure out some missing contribution or
higher order terms which are not to be omitted in modern
nuclear forces and many-body methods. For example, if the
considered states have large deformations and are located in
the confidence intervals of the shell-model calculation with
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phenomenologically constructed effective interactions, one
may need to take account of higher order couplings between
a valence space and an outer space.

Conclusions. We have proposed a novel method to quantify
uncertainties in shell-model calculations. By introducing vio-
lin plots, we have visualized the unexpectedly large variations
of confidence intervals which differ by states. These plots can
be used to quantify the agreement with experimental data in a
statistical manner. We have also proposed that a large devia-
tion of theoretical confidence intervals from the corresponding
experimental data can be regarded as an indicator of some
exotic structure like clustering, intruder configurations, core
excitations, etc.

The methodology discussed in this work may have vari-
ous possible future applications. By implementing Bayesian
inference on the parameters, we can sequentially construct
shell-model effective interactions while sorting out data. This
would be useful especially for heavier regions where even
one iteration for the optimization process is computation-
ally demanding. It would be also interesting to extend this

analysis to the valence-space Hamiltonians based on chiral
EFT potentials for a valence space [44]. One can also extend
this study to include electromagnetic observables or Gamow-
Teller transition strengths into the data set. That is one of the
future perspectives of this work and of great importance for
astrophysical applications.

If these uncertainty estimates could be done for any other
phenomenological models in which theoretical uncertain-
ties have not been discussed in detail, they may provide
new insight into a wide variety of phenomena in nuclear
physics.
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