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Deconfinement phase transition in proto-neutron-star matter
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In this work, we study in detail the deconfinement phase transition that takes place in hot/dense nuclear matter
in the context of neutron stars and proto-neutron stars (in which lepton fraction is fixed). The possibility of
different mixtures of phases with different locally and globally conserved quantities is considered in each case.
For this purpose, the chiral mean field model, an effective relativistic model that includes self-consistent chiral
symmetry restoration and deconfinement to quark matter, is employed. Finally, we compare our results with blue
results provided by perturbative QCD for different temperatures and conditions.
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I. INTRODUCTION

The core of a neutron star can roughly be described as a
sea of infinite nuclear matter—protons and neutrons strongly
interacting at low temperature (relatively speaking, in the
MeV scale) and high density. As we dive deeper towards the
inner core, hyperons should appear and, eventually, hadrons
become packed so tightly that they can “dissolve” and quark
deconfinement occurs (i.e., the baryons no longer act like
clusters of quarks and instead behave like a sea of disassoci-
ated quarks). Thus, neutron-star matter can either exist in the
hadronic phase, the quark phase, or in a state consisting of a
mixture of these two phases, in which quantities of interest
can be conserved globally amongst the two phases instead
of simply locally within each phase (see Refs. [1–4] with
references therein for details).

Throughout their lives, a large part of the cooling experi-
enced by neutron stars takes the form of neutrino emission.
But, early on, just after its progenitor supernova event, the
hot, dense medium of young neutron stars (or “proto-neutron
stars”) causes the mean free path of the neutrinos to drop
dramatically (i.e., less than the radius of the star) [5–8]. Thus,
the primary difference between the description of neutron-
star (NS) matter and proto-neuron-star (PNS) matter lies in
fact that, in the latter case, lepton fraction must be fixed. In
order to ensure stability in each system (i.e., to keep matter
gravitationally bound), it is also necessary for our description
to conserve electric charge (more specifically, to keep the
system electrically neutral) in both neutron and proto-neutron
stars. Reference [9] presents in Fig. 1 a sketch of the path of
neutron stars throughout their temporal evolution in the QCD
phase diagram. For a review of the thermal properties of bulk
hadronic matter, see for example Refs. [10,11]. For dynamical
simulations including hadron-quark phase transitions, see for
example the recent Refs. [12–17], for studies of phase transi-
tions in proto-neutron star matter, see, for example, Refs. [18–
21], and for studies on quark-pasta structures, see for example
Refs. [22,23].

For the purposes of this paper, electric charge (Q) and
lepton fraction (Yl) will serve as our conserved quantities of

interest (in addition to baryon number conservation). These
quantities can either be strictly conserved locally within each
phase (which leads to a “congruent” phase transition, where
there is no phase coexistence and the phases are distinctly
separated) or globally amongst a mixture of phases (which
leads to a “noncongruent” phase transition, where there is
a phase coexistence of two or more macroscopic phases
with different chemical compositions) [24–29]. Therefore, the
following scenarios are considered: neutron-star matter in the
case of locally conserved electric charge (NS LCN), neutron-
star matter in the case of globally conserved electric charge
(NS GCN), proto-neutron-star matter in the case of locally
conserved electric charge and lepton fraction (PNS LCN LYl),
proto-neutron-star matter in the case of locally conserved
electric charge and globally conserved lepton fraction (PNS
LCN GYl), and proto-neutron-star matter in the case globally
conserved electric charge and lepton fraction (PNS GCN
GYl). We extended our NS and PNS calculations to high
temperatures for the sake of comparing them with each other
and comparing with the charge fraction constrained matter
from Ref. [4].

Neutron-star matter exists in the low temperature but rel-
atively high density regime and, because of this, common
methods that describe high-energy matter cannot be directly
applied. For instance, perturbative QCD (PQCD) is applicable
to systems involving weaker interactions than those present
inside most neutron and proto-neutron stars [30–32]. On the
other hand, lattice QCD exhibits the sign problem that arises at
nonzero baryon density [33,34]. Therefore, we choose to em-
ploy an effective model for our description, namely, the chiral
mean field (CMF) model, which can describe properties of
hot/dense nuclear matter, such as chiral symmetry restoration
and deconfinement to quark matter. Nevertheless, we calibrate
the CMF model to agree with lattice QCD results and draw
comparisons with PQCD results in the relevant limits. In the
past, we have addressed the influence of lepton fraction in
the purely hadronic version of the CMF model [35,36]. On
the other hand, we have also studied in detail phase diagrams
built within the CMF model under the conditions of charge
neutrality and chemical equilibrium (for neutron stars), as
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well as charge fraction without charge neutrality and without
leptons (to study heavy-ion collisions) [4,37–39].

II. FORMALISM

The CMF model is based on a nonlinear realization of the
SU(3) chiral sigma model. It is a relativistic model constructed
from symmetry relations, which allows it to be chirally invari-
ant in the expected regime [40]. The baryon and quark masses
are generated by interactions with the medium and, therefore,
decrease with temperature and/or density. The Lagrangian
density of the CMF model in the mean field approximation
reads [35,37]:

L = LKin + LInt + LSelf + LSB − U, (1)

where, besides the kinetic energy term for hadrons, quarks,
and leptons (included to ensure charge neutrality) the terms
remaining are

LInt = −
∑

i
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)
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+ a3T
4
o ln (1 − 6�2 + 8�3 − 3�4). (5)

Respectively, these represent the interactions between baryons
(and quarks) and vector/scalar mesons, the self interactions
of scalar and vector mesons, an explicit chiral symmetry
breaking term responsible for producing the masses of the
pseudo-scalar mesons, and the effective potential for the scalar
field �, an analogy to the Polyakov loop in the PNJL approach
[41,42]. The underlying flavor symmetry of the model is
SU(3) and the index i denotes the baryon octet, the three light
quarks, electrons, muons, and electron neutrinos. The mesons
included are the vector-isoscalars ω and φ (strange quark-
antiquark state), the vector-isovector ρ, the scalar-isoscalars σ
and ζ (strange quark-antiquark state), and the scalar-isovector
δ. The isovector mesons affect isospin-asymmetric matter and
are, consequently, important for neutron star physics.

The coupling constants of the hadronic part of the model
are shown in Table I. They were fitted to reproduce the
vacuum masses of baryons and mesons, nuclear saturation
properties (density ρ0 = 0.15 fm−3, binding energy per nu-
cleon B/A = −16 MeV, compressibility K = 300 MeV),
the asymmetry energy (Esym = 30 MeV) and its slope (L =

TABLE I. Coupling constants for the CMF model containing
only baryons (χ0 = 401.93 MeV).

gNω = 11.90 gNφ = 0 gNρ = 4.03
gNσ = −9.83 gNζ = 1.22 gNδ = −2.34
g�ω = 7.93 g�φ = −7.32 g�ρ = 0
g�σ = −5.52 g�ζ = −2.30 g�δ = 0
k0 = 1.19χ 2

0 k1 = −1.40 k2 = 5.55
k3 = 2.65χ0 k4 = −0.02χ 4

0 g4 = 38.90

88 MeV), and reasonable values for the hyperon potentials
(U� = −28.00 MeV, U� = 5 MeV, U� = −18 MeV). The
reproduced critical point for the nuclear liquid-gas phase tran-
sition lies at Tc = 16.4 MeV, μB,c = 910 MeV. The vacuum
expectation values of the scalar mesons are constrained by
reproducing the pion and kaon decay constants. It should be
noted that all coupling constants for the leptons are zero.

The mesons are treated as classical fields within the mean-
field approximation. Finite-temperature calculations include
the heat bath of hadronic and quark quasiparticles within the
grand canonical ensemble. The grand potential of the system
is defined as:

�

V
= −LInt − LSelf − LSB − LVac + U

+ T
∑

i

γi

(2π )3

∫ ∞

0
d3k ln{1 + e− 1

T
[E∗

i (k)∓μ∗
i ]}, (6)

where LVac is the vacuum energy, γi is the fermionic degen-
eracy, E∗

i (k) =
√

k2 + M∗
i

2 is the single particle effective en-
ergy, μ∗

i = μi − giωω − gφφ − giρτ3ρ is the effective chem-
ical potential of each species, and the ∓ in the exponential
function refers to particles and antiparticles, respectively. The
chemical potential for each species μi is determined by the
chemical equilibrium conditions.

Due to their interactions with the mean field of mesons and
the field �, the effective masses of baryons and quarks take
the form:

M∗
B = gBσσ + gBδτ3δ + gBζ ζ + M0B

+ gB��2, (7)

M∗
q = gqσ σ + gqδτ3δ + gqζ ζ + M0q

+ gq�(1 − �), (8)

where the bare masses are M0 = 150 MeV for nucleons,
354.91 MeV for hyperons, 5 MeV for up and down quarks,
and 150 MeV for strange quarks (see Table II for more

TABLE II. Additional coupling constants for quark section of the
model.

guω = 0 guφ = 0 guρ = 0
guσ = −3 guζ = 0 guδ = 0
gdω = 0 gdφ = 0 gdρ = 0
gdσ = −3 gdζ = 0 gdδ = 0
gsω = 0 gsφ = 0 gsρ = 0
gsσ = 0 gsζ = −3 gsδ = 0
a0 = −1.85 a1 = −1.44 × 10−3 a2 = −0.08
a3 = −0.40 gB� = 1500 MeV gq� = 500 MeV
T0 = 200 MeV T0 (gauge) = 270 MeV
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coupling constants for the quark sector of the model). Notice
that for small values of �, M∗

B is small while M∗
q is very

large. This essentially indicates that, for small � values, the
presence of baryons is promoted while quarks are suppressed,
and vice versa. In this sense, � acts as an order parameter for
deconfinement (or, in the case of a mixture of phases, as an
indicator as to which phase is dominant).

The coupling constants for the quark sector of the model
are chosen to reproduce lattice data as well as known infor-
mation about the phase diagram. The lattice data includes a
first-order phase transition at T = 270 MeV and a pressure
functional P (T ) similar to Refs. [42,43] at μ = 0 for pure
gauge, a crossover at vanishing chemical potential with a
transition temperature of 171 MeV (determined as the peak of
the change of the chiral condensate and �), and the location
of the critical end point (at μc = 354 MeV, Tc = 167 MeV
for symmetric matter in accordance with one of the existent
calculations [44]). The phase diagram information includes a
continuous first-order phase transition line that terminates on
the zero temperature axis at 4 times saturation density. The
numerical code for the CMF model solves a set of equations
for each baryon chemical potential and temperature. Those
include an equation of motion for each meson. Additional
constraints such as charge neutrality, fixed lepton fraction, and
fixed entropy require additional equations.

It should be mentioned at this point that the CMF model al-
lows for the existence of soluted quarks in the hadronic phase
and soluted hadrons in the quark phase. This is true even in the
case of congruent phase transitions with no mixture of phases.
Regardless, quarks will always give the dominant contribution
in the quark phase, and hadrons in the hadronic phase, due to
the fact that the effective masses of both quarks and hadrons
are a function of �. We assume that this interpenetration
of quarks and hadrons is indeed physical, and is required to
achieve the crossover transition at low μB values [45].

For each fermionic species in the system, we define its
chemical potential as

μi = QB,i μB + Qi (μQ + μl ) + Ql,i μl, (9)

where μB, μQ, and μl represent the chemical potentials
corresponding to the conserved quantities of baryon number,
electric charge, and lepton fraction, respectively. The values
QB,i, Qi , and Ql,i are the baryon charge, electric charge, and
lepton charge of a particular species i. Note that Eq. (9) can
be rewritten in a more intuitive way,

μi = QB,i μB + Qi μ′
Q + Ql,i μl, (10)

by redefining the charged chemical potential as μ′
Q = μQ +

μl . The total electric charge density is calculated as

Q

V
=

∑
i

Qini, (11)

where ni is the number density of particle species i.
Note that, in the case that some quantity is being conserved

locally, the value of that quantity is the same in both phases, by
definition. But this is not true for the corresponding chemical
potential (i.e., μj,H �= μj,Q). On the other hand, in the case
that a quantity is being conserved globally, the value is

different in each phase, by definition, but the corresponding
chemical potentials are equal, defining an additional equilib-
rium condition (i.e., μj,H = μj,Q).

The lepton fraction Yl is defined as the number leptons in
our system divided by the number of baryons:

Yl = L

B
=

∑
i Ql,i ni∑
i QB,i ni

= nl

no
B

. (12)

For our purposes, nl = ne + nν (the sum of the electron num-
ber density and the electron neutrino number density). Thus,
when we are conserving lepton fraction, this conservation
applies to neutrinos and electrons. Note that no

B = ∑
i QB,ini

is not the same as the baryon number density nB , as the latter
comes from the derivative of the pressure with respect to
the baryon chemical potential and, therefore, also contains a
contribution from the potential U for �, namely, n� (when
quarks are present). For the purposes of this paper, when Yl

is being fixed, its value is held at 0.4 [46,47]. This typical
value comes from numerical simulations of proto-neutron-star
evolution. A similar quantity, YQ (the electric charge per
baryon) is defined as

YQ = Q

B
=

∑
i Qi ni∑

i QB,i ni

. (13)

As mentioned previously, this quantity must be set to zero to
ensure electric charge neutrality, as a significant net excess of
electric charges could not be kept in the star by gravity.

In order to take into account the presence of neutrinos in
the appropriate scenarios, it is also advantageous to define a
modified chemical potential

μ̃ = μB + YQ (μQ + μl ) + Yl μl, (14)

which is equal to the Gibbs free energy per baryon. This value
comes from the definition of the energy density of the system,

ε = −P + T s +
∑

i

μini + μBn�, (15)

where, from Eqs. (9)–(13), it can be shown that
∑

i μini =
[μB + YQ (μQ + μl ) + Yl μl](

∑
i QB,i ni ). Because of the

condition of electric charge neutrality, YQ is zero in all cases
studied in this work, causing Eq. (14) to read μ̃ = μB + Yl μl

and
∑

i μini = μ̃(
∑

i QB,i ni ). In the case that lepton fraction
is not fixed but the condition of electric charge neutrality is
still enforced, μl = 0 (because leptons are free to leave the
system), μ̃ = μB and

∑
i μini = μB (

∑
i QB,i ni ).

When studying scenarios involving mixtures of phases,
it becomes important to define the continuous variable λ
(the volume fraction of quarks). When λ = 0, the mixture
of phases is entirely composed of hadronic matter and, when
λ = 1, it consists entirely of quark matter.

In the case that electric charge is being conserved globally,
we define λ as

λ = QH

QH − QQ

, (16)

where QH and QQ are the electric charge of the hadronic
phase and the quark phase, respectively. This equation comes
from the constraint of electric charge neutrality of the mixture,
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FIG. 1. The temperature vs. (modified) chemical potential phase
diagram for neutron-star matter with locally conserved electric
charge and proto-neutron-star matter with locally conserved electric
charge and lepton fraction.

namely

Qmix = λQQ + (1 − λ)QH = 0. (17)

In the case that lepton fraction is being conserved globally, we
define λ as

λ = Yl,mix no
B,H − nl,H

nl,Q − nl,H − Yl,mix
(
no

B,Q − no
B,H

) , (18)

where the subscripts H and Q, again, denote whether the
value corresponds to the hadronic phase or the quark phase.
This equation comes from the definition of Yl amongst the
phases, namely

Yl,mix = nl,mix

no
B,mix

, (19)

where no
B,mix = λno

B,Q + (1 − λ)no
B,H and nl,mix = (ne +

nν )mix = λ(ne + nν )Q + (1 − λ)(ne + nν )H . In the case that
electric charge and lepton fraction are both conserved globally
in proto-neutron-star matter, both values of λ are relevant and
must be equal for consistency.

In this work, we describe only astrophysical matter
(present in different stages of the evolution of stars), in which
case net strangeness does not need to be constrained. For this
reason, the strange chemical potential is zero and there is no
term dependent on strangeness or strange chemical potential
in Eqs (9), (10), and (14). This is not the case for the zero net
strangeness matter generated in heavy ion collisions, which is
described in detail in Refs. [4,48].

III. RESULTS

The simplest phase diagram we can produce is shown in
Fig. 1, for the NS LCN (Id in Ref. [48]) and PNS LCN LYl

(Ib in Ref. [48]) cases. It shows the deconfinement coexis-
tence lines for NS and PNS matter with all quantities locally
conserved. To the left of each coexistence line, we have the
hadronic phase, and to the right, the quark phase. The congru-
ent phase transition between these two phases (usually refer-

0 500 1000 1500 2000
μB (MeV)

0
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T 
(M

eV
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PNS GCN GYl
PNS LCN GYl

FIG. 2. The temperature vs. baryon chemical potential phase
diagram for neutron-star matter with globally conserved electric
charge, proto-neutron-star matter with locally conserved electric
charge and globally conserved lepton fraction, and proto-neutron-star
matter with globally conserved electric charge and lepton fraction.

eed to as Maxwell’s construction in astrophysics) is abrupt,
as no mixture of phases is possible when all quantities are
conserved locally. Physically, local electric charge neutrality
is enforced by a possible large surface tension between the
phases [49,50]. Locally fixed lepton fraction only serves as an
academic exercise, as there is no long range force associated
with this quantity and, thus, there is no physical reason to
expect the lepton fraction to be conserved in a strict, local
sense among a mixture of phases [48]. This scenario is know
as a “forced-congruent” case, i.e., lepton fraction is forced
to be fixed locally as opposed to the more physical case of
global conservation. Note, this is the primary motivation for
not including a PNS GCN LYl case in this paper. The same
argument also applies to baryon number density, which is not
mentioned as it is always globally conserved. For NS matter,
the modified chemical potential is simply equal to the baryon
chemical potential in each phase (μ̃ = μB,H = μB,Q) but, for
PNS matter, this is not the case and μ̃ = μB,H + 0.4 μl,H =
μB,Q + 0.4 μl,Q.

Still in Fig. 1, note that the coexistence line for PNS
matter lies to the right (at a larger modified chemical po-
tential) than the one of NS matter. This difference comes
from the way lepton fraction affects each phase differently.
In both phases, a larger lepton fraction implies more positive
hadrons/quarks (for electric charge neutrality) and, conse-
quently, more isospin-symmetric matter and a softer equation
of state. The difference is that the effect is more pronounced in
the quark phase, as there are mainly no leptons in this phase
in the case of NS matter. This is in agreement, for example,
with the conclusions of Ref. [51] performed at fixed entropy.

Now, Fig. 2 shows the same phase diagram but now al-
lowing quantities to be conserved globally in each case NS
GCN, PNS LCN GYl (IIb in Ref. [48]), and PNS GCN GYl

(V in Ref. [48]). When more than one quantity (in addition to
baryon chemical potential) is conserved globally, the phase
transition becomes noncongruent and a mixture of phases
appears (this is usually refereed to as Gibbs’s construction
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FIG. 3. Charged and lepton chemical potentials for neutron-star
and proto-neutron-star matter (all charges conserved locally), shown
for two different temperatures.

in astrophysics), which occupies a region in the phase dia-
gram in Fig. 2. Note that in all cases the deconfinement and
confinement curves are distinct and delimit a region, inside of
which the mixture of phases exists. In each case, the left-most
curve represents the deconfinement curve where λ = 0 while
the right-most curve represents the confinement curve where
λ = 1. (Notice that the range in μB of the phase coexistence
region in both PNS cases is extremely small.) In accordance
with the general rules for noncongruent phase transitions,
the congruent phase transition coexistence lines from Fig. 1 lie
between the corresponding deconfinement and confinement
lines in all cases when plotted as a function of μ̃.

In the case of NS matter, the mixture region is large. This
fact is related to the large difference in charged chemical
potential between the phases (when local charge neutrality
is enforced) as shown in Fig. 3 (the full thin black line for
T = 0). In the case of PNS matter, the mixture regions in
Fig. 2 are much smaller, as the hadronic and quark phases
become more similar within the mixture of phases. This can
be seen once more in Fig. 3, looking at the thick black lines
(both full and dashed) for the chemical potentials μQ and
μl , corresponding to the conserved electric charge and lepton
fraction, respectively, for PNS matter.

Still in Fig. 2, note that the case with two globally con-
served quantities for PNS’s generates a larger mixture region
than the case with only one globally conserved quantity. This
is quite natural, as the size of the mixture region is related to
the number of globally conserved quantities [48].

It is also worth noting the critical point for each case,
defined as the point at which first-order phase transitions no
longer occur and a smooth crossover appears. Those values
are listed in Table III. The first-order phase transitions are
found when, for each baryon chemical potential and tem-
perature, there are multiple metastable solutions in order-
parameter space, although only one is truly stable. Notice that
the critical points for both coexistence lines in Fig. 1 are very
close to each other. It is important to note that we believe the
accuracy of our numerical calculations is preventing us from
going beyond the critical points found in the case of mixtures

TABLE III. The critical points, characterized by temperature and
modified chemical potential, for all scenarios considered.

NS LCN: Tc = 168.82 MeV, μ̃c = 230.05 MeV
NS GCN: Tc = 168.86 MeV, μB,c = 226.50 MeV
PNS LCN LYl : Tc = 168.84 MeV, μ̃c = 241.55 MeV
PNS LCN GYl : Tc = 134.86 MeV, μB,c = 900.30 MeV
PNS GCN GYl : Tc = 150.65 MeV, μB,c = 726.65 MeV

of phases (Fig. 2). This happens because the regions con-
taining a mixture of phases (for a fixed temperature) become
infinitesimally small in the T -μ plane for large temperatures.

Going back to Fig. 3 for a more detailed analysis, we
see that in the case that all quantities are conserved locally
for NS’s (congruent) and PNS’s (forced-congruent), there are
discontinuities in μQ and μν at the phase transitions. This
occurs because in congruent cases we do not require, as an
equilibrium condition, μQ and μν to be equal in both phases.
Those “jumps” are smoothed out for larger temperatures (red
curves) as the first-order phases transition becomes weaker, a
physical feature necessary in order to obtain a critical point.

Some additional general features of Fig. 3 include the
tendency of the lepton chemical potential (dashed lines) to
increase as a function of μ̃. This is quite natural as, when
lepton fraction is fixed, the denominator in Eq. (11) increases
with μ̃, thus forcing the numerator to increase as well. At
the phase transition, μl increases as the amount of neutri-
nos increases and μν = μl (particle population plots will be
discussed later in Fig. 5 and 6 for NS’s and PNS’s). As for
the charged chemical potential μQ (full lines), it increases
in absolute value for NS matter in the hadronic phase as
electrons and muons need to balance the increasing amount
of positive protons (μe = μμ = −μQ). In the quark phase,
μe is lower in absolute value as the down quarks take care
of most of the negative contribution to electric charge neu-
trality. In PNS matter, there are more electrons in the quark
phase and the decrease in absolute value for μQ is smaller
across the phase transition. Finally, note in Fig. 3 that bulk
hadronic matter exists even for small chemical potentials for
T = 100 MeV, while it only starts at the liquid-gas phase
transition for μ̃ = μB = 938 MeV at zero temperature (before
this point, only nucleated matter exists, as opposed to free
nucleons).

Similarly to Fig. 3, Fig. 4 features results for PNS matter,
allowing for globally conserved quantities (PNS LCN GYl

and PNS GCN GYl). As one can see, the condition of local
electric charge neutrality radically shrinks the range of μB in
the mixture of phases, as already discussed. In the case of local
electric charge neutrality, the value of μQ is distinct in each
phase, while in the case of globally conserved electric charge,
μQ = μQ,H = μQ,Q. Notice how the μQ curve for PNS GCN
GYl lies between the two μQ curves for PNS LCN GYl , as
expected.

Now we explain in detail the particle populations for each
of the cases studied in this work, which should be partic-
ularly helpful in distinguishing the differences between the
equations of state for NS and PNS matter. In Figs. 5 and 6,
all quantities are locally conserved and, thus, the particle
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FIG. 4. Charged and lepton chemical potentials inside the mix-
tures of phases in proto-neutron-star matter at zero temperature.
Black curves show results for the scenario of locally conserved
electric charge and globally conserved lepton fraction and red curves
show results for the scenario of globally conserved electric charge
and lepton fraction, at T = 0.

population values change abruptly at the phase transition.
In Fig. 5 for NS matter, first there are only neutrons, then
protons and electrons, appearing at the same rate (for electric
charge neutrality). After that, the muons appear and then
the � hyperons. All other hyperons are suppressed by the
phase transition to quark matter at T = 0. For an example of
particle populations for NS’s within the CMF model without
quarks, see Ref. [35]. Back to Fig. 5, in the quark phase, there
are down and up quarks with a small amount of electrons,
followed by the more massive strange quarks. The y axis
of the figure is in terms of baryon number density, so quark
number densities are divided by 3.

In Fig. 6, the population curves for PNS matter are quite
different. Besides the obvious change of moving the phase
transition to a larger μ̃ value and the appearance of neutrinos,
the ratio of protons to neutrons becomes closer to unity, via
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FIG. 5. Particle populations for neutron-star matter with locally
conserved electric charge, at T = 0.
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FIG. 6. Particle populations for proto-neutron-star matter with
locally conserved electric charge and lepton fraction, at T = 0. The
curve for electrons mainly overlaps with the curve of protons.

a large increase in the number of protons. And in the quark
phase, the ratio of up quarks to down quarks also becomes
closer to unity, via a large increase in the number of up quarks.
As previously mentioned, this occurs as a consequence of
fixing both electrons and electron neutrinos in PNS matter.
The resulting increase in the number of electrons causes the
number of positive hadrons/quarks to increase, as dictated by
the condition of electric charge neutrality. This shift to more
isospin-symmetric matter contributes to the softening of the
equation of state of proto-neutron-star matter, in comparison
to neutron-star matter. Notice that the increase in the number
of electrons in the hadronic phase leads to a decrease in the
number of muons (a result of electric charge neutrality) while
the increase in the number of protons in the hadronic phase
leads to a decrease in the number of � hyperons (a result of
fixing Yl and baryon number conservation). This shifting of
the appearance of hyperons to larger baryon density values
via neutrino trapping, on the other hand, contributes to the
stiffening of the equation of state of PNS matter [52,53].
Another consequence of PNS matter having more electrons
in the quark phase is the suppression of the negative strange
quarks. This together with the suppression of hyperons in the
hadronic phase (due to the deconfinement phase transition)
causes the amount of strangeness to dramatically decrease in
both phases of PNS matter.

The large number of down quarks after the deconfinement
phase transition means fewer electrons are necessary to ensure
electric charge neutrality, thus leading to a drop in the amount
of electrons across this phase transition in Figs. 5 and 6. In
PNS matter, an increase in the population of neutrinos in
the quark phase accompanies this phenomenon, as the lower
number of electrons requires a higher number of electron
neutrinos, all in order to maintain Yl at a value of 0.4.

In contrast, Figs. 7–9 feature at least one quantity that is
conserved globally and thus, the particle population values
change more gradually in noncongruent phase transitions
(i.e., this change is made more slowly via the presence of
mixtures of phases). More specifically, for NS matter, Fig. 7
is the corresponding version of Fig. 5, when a mixture of
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FIG. 7. Particle populations for neutron-star matter with globally
conserved electric charge, at T = 0.

phases with global electric charge neutrality is present. In this
case, the quarks appear slowly while the baryons disappear
slowly over a range of baryon chemical potential values. The
electrons decrease in amount over this range and then, in the
quark phase, increase, only to decrease again when the strange
quarks appear. In the beginning of the mixture of phases, the
quantity of protons increases slightly to balance the negative
quarks.

For PNS matter, Figs. 8 and 9 are the corresponding ver-
sions of Fig. 6 where mixtures of phases with globally fixed
lepton fraction are present. In this case, the quarks appear and
the baryons disappear over a small range of baryon chemical
potential values. The electrons decrease in quantity a bit, the
electron neutrinos increase a bit, and the muons disappear over
this range. In the case that electric charge neutrality is also
conserved globally, the baryon chemical potential range for
the mixture of phases is larger (a range of around 30 MeV in
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FIG. 8. Particle populations for proto-neutron-star matter with
locally conserved electric charge and globally conserved lepton
fraction at, T = 0. The curve for electrons mainly overlaps with the
curve of protons in the hadronic phase.
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FIG. 9. Particle population curves for proto-neutron-star matter
with globally conserved electric charge and lepton fraction at, T = 0.
The curve for electrons mainly overlaps with the curve of protons.

Fig. 9 for T = 0 in comparison to a range of around 8 MeV in
Fig. 8).

Due to the difficulty in constraining the equation of state
of matter via nuclear physics experiments as we get farther
from saturation density, another approach must be taken.
Although low energy heavy-ion collision experiments are
slowly approaching larger densities (like in Facility for An-
tiproton and Ion Research, Nuclotron-based Ion Collider Fa-
cility, and the beam energy scan at Relativistic Heavy Ion
Collider), we are still not in a position to use that data to
constrain the equation of state of matter at large densities.
For these reasons, we use PQCD to study the behavior of
our equation of state at large densities/chemical potentials.
In particular, we are going to use results from Ref. [32],
where a state-of-the-art three-loop result was derived for the
pressure of deconfined quark matter, valid for all values of
temperature and density in the asymptotically high energy
regime. This calculation employed resummations provided
by dimensional reduction [54] and Hard Thermal Loop [55]
effective theories to account for the contributions of both static
and non-static long-distance gluon fields, and added to this a
contribution from the perturbative hard field modes, obtained
from Ref. [56]. The uncertainty of the result can be roughly
estimated from its dependence on the renormalization scale,
which is conventionally varied by a factor of two around a
central value to obtain a band of viable equations of state,
although other factors such as higher-order terms in the per-
turbative expansion, truly nonperturbative contributions, etc.,
are not accounted for.

While a very versatile result that is immediately available
both in and out of β equilibrium, the perturbative pressure
can only be trusted at relatively high energy densities. This
stems not only from the running of the gauge coupling, but
also from the fact that quark masses have been set to zero
in the perturbative computation of Ref. [32], implying that
the strange quark mass has to be negligible in comparison
with either the temperature or the baryon chemical potential.
According to the criterion used, e.g., in Refs. [57,58], at
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FIG. 10. Comparison of our results for neutron-star matter (with
globally conserved electric charge) with results provided by PQCD,
shown for several temperatures (Ref. [32]). Except for the largest
temperature, the lower edge of the PQCD regions lie to the right of
the figure bounds.

T = 0 the perturbative results can be considered to be reason-
ably trustworthy from ca. μB = 2.4 GeV onwards, where their
relative uncertainty is ca. ±23%. Recently, Ref. [59] presented
PQCD results with charge neutrality and fixed lepton fraction
but only for zero temperature. Here, we present for the first
time PQCD results suited for for proto-neutron-star conditions
at relevant finite temperatures.

Figure 10 shows our equation of state for NS matter with
global charge neutrality (dashed lines) for several temper-
atures relevant for cold neutron stars, proto-neutron stars,
and neutron-star mergers. In the same figure, we plot the
PQCD results (full lines) for the same conditions (chemical
equilibrium and electric charge neutrality). For the largest
temperature (T = 100 MeV), the lower PQCD bound appears
in the figure, but for the two lower temperatures, their lower
bounds lie to the right of the figure. The colored points
indicate the baryon chemical potential/pressure beyond which
our equation of state starts to disagree (by becoming stiffer)
with the PQCD results. The corresponding baryon chemical
potentials and pressures that characterize these points are
shown in Table IV. Note that PQCD calculations cannot
be applied below baryon chemical potentials at which the

TABLE IV. The pressure (measured in MeV/fm3), baryon chem-
ical potential (measured in MeV), and corresponding baryon number
density values after which our results no longer lie between the
limits provided by PQCD results, for neutron-star matter (top) and
proto-neutron-star matter (bottom) at several temperatures. Note that
we use for saturation density ρ0 = 0.15 fm−3.

T = 0: P = 281.75, μB = 1411.04, ρB/ρ0 = 14.93
T = 45 MeV: P = 401.10, μB = 1419.76, ρB/ρ0 = 17.27
T = 100 MeV: P = 691.47, μB = 1356.87, ρB/ρ0 = 20.20

T = 0: P = 336.27, μB = 1421.69, ρB/ρ0 = 15.67
T = 45 MeV: P = 469.42, μB = 1429.09, ρB/ρ0 = 17.80
T = 100 MeV: P = 794.52, μB = 1364.08, ρB/ρ0 = 20.60
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FIG. 11. Comparison of our results for proto-neutron-star matter
(with locally conserved electric charge and globally conserved lepton
fraction) with results provided by PQCD, shown for several temper-
atures (Ref. [32]). Except for the largest temperature, the lower edge
of the PQCD regions lie to the right of the figure bounds.

hadrons are expected to be present, as they only contain
quark degrees of freedom. Remember that in our formalism,
as temperature goes up, hadrons start to appear in the so-
called quark phase. At T = 0, our equation of state predicts
a neutron star with a central baryon chemical potential of
1319 MeV, well below the PQCD limiting value. It is worth
mentioning once more, that varying the renormalization scale
by a larger value than what was used in the PQCD results
presented here (or including other effects) would increase the
size of their region accordingly.

Figure 11 is analogous to Fig. 10 but for PNS matter.
In this case, we agree with PQCD up until relatively larger
baryon chemical potentials. This is expected, as both we
and PQCD calculations treat the leptons in exactly the same
way, as a free gas. Again, the corresponding baryon chemical
potentials and pressures that characterize the colored points
beyond which we do not agree with PQCD results are shown
in Table IV. Finally, note that our curves are shown for the
PNS LCN GYl case. Otherwise being identical, the PNS GCN
GYl case would only smooth out the “kink” at the phase
transition and would not change the position of the colored
points. For PNS structure calculations, the temperature cannot
be fixed throughout each star, nevertheless, a rough estimate
predicts within the CMF model stars with a central baryon
chemical potential around 1330 MeV, again well below the
PQCD limiting value. This will be studied in detail in another
publication.

In preparation for analyzing Fig. 12 (a phase diagram in the
T -P plane), let us discuss the Clausius-Clapeyron relation,
which relates dP/dT to the difference in the entropy per
baryon (or entropy density per baryon density) SB between
two coexisting phases and the difference in the baryon number
density between these phases:

dP

dT
= SB,I − SB,II

1/nB,I − 1/nB,II

. (20)
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FIG. 12. The temperature vs. pressure phase diagram for proto-
neutron-star matter with locally conserved electric charge and lepton
fraction.

Now, in the case of the liquid-gas phase transition (general
or nuclear), dP/dT is positive and, thus, correctly implies
that SB,G > SB,L. In the case of the deconfinement phase
transition in heavy-ion matter [4,60] and neutron star matter
[61], dP/dT was shown to be instead negative. This then
implies that SB,Q > SB,H , which is quite natural as the quarks
contain extra color degrees of freedom. Such a case can lead
to unexpected thermodynamic properties [62,63]. But, as we
can see for the PNS LCN LYl case in Fig. 12, in the direction
of increasing temperature, dP/dT starts off as being positive
at intermediate temperatures and then becomes negative.

This result is not surprising, as requiring electric charge
neutrality and fixing Yl significantly modifies the kinds of de-
grees of freedom in the quark phase by increasing the amount
of leptons, which do not contain color degrees of freedom.
Numerically, the total entropy density over baryon density
flips sign across the coexistence line around T = 135 MeV
when the increase in the � contirbution s�/nB becomes larger
than the decrease in the fermionic contribution (sB + sl )/nB .

In Fig. 13, we show the phase diagram in the T -nB plane
for all three PNS cases. In the case of locally fixed Yl , there
is a jump for each temperature from the hadronic phase value
nB,H to the quark phase value nB,Q, as this is a congruent
phase transition. In the PNS LCN GYl case there is a mixture
of phases, each phase having a different μQ value (locally
charge neutral) but the same μl value (black lines in Fig. 4) in
a way that nB increases continuously for a given temperature.
In the PNS GCN GYl case, μQ and μl are both the same
in each phase. At this point it is important to note again
that we believe the accuracy of our numerical calculations
is preventing us from going beyond the critical points found
for the mixture of phases for both of the PNS cases with at
least one globally conserved quantity. In this case, the PNS
LCN GYl and PNS GCN GYl lines would continue to go
up and would eventually merge in Fig. 13. Nevertheless, by
comparing Fig. 13 with Fig. 2 from Ref. [38] and Ref. [64], it
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PNS LCN GYl
PNS GCN GYl

FIG. 13. The temperature vs. number density phase diagram
for proto-neutron-star matter with locally conserved electric charge
and lepton fraction, locally conserved electric charge and globally
conserved lepton fraction, and globally conserved electric charge and
lepton fraction.

becomes clear that a fixed, large Yl pushes the deconfinement
phase transtion to larger baryon number densities.

Finally, Fig. 14 shows again the PNS matter curve from
Fig. 1 together with two example trajectories of the tempera-
ture inside a PNS in which entropy density per baryon density
is fixed, in the simple case where all quantities are conserved
locally. Such treatment results in a small jump in temperature
across the phase transition, not following the condition of
thermal equilibrium. As explained in section 3D of Ref. [48],
this is not the correct treatment and a mixture of phases must
be accounted for. We are currently working on an extended
treatment for the case in which the entropy is fixed across

FIG. 14. The temperature vs. modified chemical potential phase
diagram for proto-neutron-star matter with locally conserved electric
charge and lepton fraction. Two example trajectories show the tem-
perature corresponding to a fixed value of entropy density per baryon
density (SB = s/nB ) for each modified chemical potential.
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the phase transition, instead of temperature. In any case, these
jumps are of about 1 MeV in the cases shown in Fig. 14.

IV. CONCLUSIONS AND OUTLOOK

The relativistic, mean-field formalism based on the CMF
model described in this work is ideal for describing the
features of the phase diagram, as it effectively describes both
hadronic and quark matter. Note that this is the usual proce-
dure when studying the nuclear liquid-gas phase transition
[25]. This allows us to study congruent phase transitions
(where there is no phase coexistence and the phases are dis-
tinctly separated) and noncongruent phase transitions (where
there is a phase coexistence of two or more macroscopic
phases with different chemical compositions), the latter fea-
turing a mixture of phases. Note that noncongruent decon-
finement phase transitions have somehow been studied in the
past, even with fixed lepton fraction but using the bag model
[65], and without the introduction of the modified chemical
potential μ̃.

In this work, we built on our previous work by investigating
the effects of neutrino trapping and the consequent consid-
eration of fixing lepton fraction Yl in the phase transition
associated with quark deconfinement. This provided us with
a new conserved quantity (in addition to charge neutrality
and baryon number conservation). This in turn suppressed
the hyperons and pushed the deconfinement phase transition
to higher chemical potentials. A new modified chemical po-
tential was introduced and simple coexistence curves were
shifted to larger chemical potentials due to the fixing of Yl ,
which made the quark matter equation of state softer than
the hadronic one. Different phase diagrams and particle pop-
ulation figures were shown and discussed and comparisons
with our previous works were drawn. Mixtures of phases with
different globally conserved quantities were also obtained. As
a result, we found that proto-neutron-star matter possess much

smaller mixtures of phases than those of neutron-star matter
(i.e., they extend through much smaller ranges of chemical
potentials and smaller ranges of densities). This is a very opti-
mistic result as these mixtures of phases, which could possibly
disguise a signal for deconfinement in proto-neutron stars, are
reduced. This information will be particularly helpful when it
comes to interpreting signals from supernova events observed
in the future.

Additionally, for the first time a thorough analysis of the
behavior of the CMF model in comparison with PQCD was
performed at large densities and temperatures. It was shown
that the model is in agreement with PQCD results calculated
for neutron and proto-neutron star conditions for all ranges
that can exist inside compact stars. The results from PQCD
presented here are in the form of a band, which includes some
but not all of the uncertainties in their calculations.

In the future, we will be focusing on the consequences of
mixtures of phases for the macroscopic structure of proto-
neutron stars with fixed entropy, together with rotation and
magnetic field effects. This has been previously shown in
Ref. [36] where, for proto-neutron stars containing only
hadrons, the space anisotropy created by the magnetic field
also creates an anisotropy in the amount of neutrinos in the
star. We would like to investigate this again in the presence
of phase transitions. In addition, we intend to study phase
transitions and mixtures of phases in the context of neutron
stars mergers. More specifically, we want for example to
check if phase transitions can change relations between neu-
tron star radii and tidal deformabilities, such as the one found
in Ref. [66].
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