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Theoretical study of the α + d → 6Li + γ astrophysical capture process in a three-body model.
II. Reaction rates and primordial abundance
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The astrophysical S factor and reaction rate of the direct capture process α + d → 6Li + γ , as well as the
abundance of the 6Li element, are estimated in a three-body model. The initial state is factorized into the deuteron
bound state and the α + d scattering state. The final nucleus 6Li(1+) is described as a three-body bound state
α + n + p in the hyperspherical Lagrange-mesh method. Corrections to the asymptotics of the overlap integral
in the S and D waves have been done for the E2 S factor. The isospin forbidden E1 S factor is calculated
from the initial isosinglet states to the small isotriplet components of the final 6Li(1+) bound state. It is shown
that the three-body model is able to reproduce the newest experimental data of the LUNA Collaboration for the
astrophysical S factor and the reaction rates within the experimental error bars. The estimated 6Li/H abundance
ratio of (0.67 ± 0.01) × 10−14 is in a very good agreement with the recent measurement (0.80 ± 0.18) × 10−14

of the LUNA Collaboration.
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I. INTRODUCTION

There are two open astrophysical problems related to the
abundance of lithium elements in the Universe. First, the big
bang nucleosynthesis (BBN) model predicts for the 7Li/H
ratio an estimate about three times larger than the recent
astronomical observational data from metal-poor halo stars
[1,2]. The second lithium puzzle is related to the estimation of
the primordial abundance ratio 6Li/7Li of the lithium isotopes.
For this ratio, the BBN model [3] yields a value about three
orders of magnitude less than the astrophysical data [4]. In the
BBN model, the abundance of the 7Li element is estimated
on the basis of two key capture reactions α(3He, γ )7Be and
α(3H, γ )7Li (see Refs. [5–7] and references therein). For
the estimation of the 6Li/7Li ratio, the BBN model includes
as input parameters the reaction rates of the direct radiative
capture process

α + d → 6Li + γ (1)

at low energies within the range 30 � Ec.m. � 400 keV [3].
The data set of the LUNA Collaboration at two astrophysical
energies E = 94 keV and E = 134 keV [8] was recently re-
newed with additional data at E = 80 keV and E = 120 keV
[9]. These data sets were obtained as results of the direct
measurements of the astrophysical S factor at the underground
facility. The new data are lower than the old data of nondirect
measurements from Ref. [10]. Based on the new data set, the
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thermonuclear reaction rate of the process has been estimated
by the LUNA Collaboration. The results for the reaction
rates turn out to be even lower than previously reported.
This further increases the discrepancy between prediction of
the BBN model and the astronomical observations for the
primordial abundance of the 6Li element in the Universe [9].

Until recently, all the theoretical estimations of the as-
trophysical S factor of the above direct capture reaction at
low astrophysical energies were based on the so-called exact
mass prescription, in the both potential models [2,11–15]
and microscopic approaches [16,17]. The microscopic models
[18,19] deal with only the E2 transition operator, neglecting a
contribution of the E1 transition operator to the astrophysical
S factor. Within this prescription, the matrix elements of the
isospin forbidden E1 transition were estimated by using the
exact experimental mass values of the colliding nuclei 2H and
4He. As was shown recently in Ref. [20] in detail, this way
has no microscopic background at all and cannot be used, for
example, in the description of the capture process d(d, γ )4He
of two identical nuclei. Of course, the cross sections estimated
in this way and S factors of the α(d, γ )6Li capture reaction
can be fortuitously close to the experimental data; however,
this method does not yield a relevant energy dependence of
the S factor and cross section and correct predictive power
for future ab initio studies [20]. An alternative approach to
the description of the capture processes is based on solving
the three-body Faddeev equations [21] using quasiseparable
potentials. An advantage of this method is that it allows an
easier treatment of nonlocal effects that can be extended to
three-body problems.

Realistic three-body models are based on the isovector
E1 transition from the initial Ti = 0 (isosinglet) states to the
Tf = 1 (isotriplet) components of the final 6Li(1+) bound
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state or from the initial isotriplet components to the main
isoscalar part of the final 6Li(1+) nucleus bound state [20].
The first attempt to estimate in a correct way the matrix
elements of the isospin forbidden E1 transition together with
the E2 transition for the 4He(d, γ )6Li direct capture process
was done in the three-body model [22]. The formalism of the
model has been developed in a consistent way and correct ana-
lytical expressions have been obtained for the matrix elements
of the E1 and E2 transitions, including the isovector transition
matrix elements. The numerical results were obtained on the
basis of the final three-body wave function 6Li = α + p + n
in hyperspherical coordinates [23,24], which had a small
isotriplet component with the norm square of 1.13 × 10−5.
Because of smallness of the isotriplet component of the final
three-body bound state, the corresponding numerical calcula-
tions in Ref. [22] have reproduced the existing experimental
data for the S factor only in the frame of the exact mass
prescription and with the help of an additional spectroscopic
factor. Further studies in Ref. [20] have demonstrated that the
quality of the final three-body wave function 6Li = α + p + n
can be improved and a convergent isotriplet component can be
reached with the norm square of 5.3 × 10−3, which is larger
than the old number by two orders of magnitude. This led to
the fact that the E1 S factor also increased by two orders of
magnitude. Additionally, as was shown in that paper, the E2 S
factor can be improved owing to the correction of the S-wave
asymptotics of the overlap integral of the 6Li and deuteron
wave functions at a distance of 5–10 fm. Below, we describe
an influence of the correction to the D-wave asymptotics of
the overlap integral on the E2 S factor and the reaction rates
at low energies.

The aim of present study is to estimate the reaction rates of
the α(d, γ )6Li direct capture process and the primordial abun-
dance of the 6Li element in the Universe within the improved
realistic three-body model [20,22]. The initial wave function
is factorized into the deuteron bound-state and the α − d
scattering-state wave functions. The final 6Li(1+) state is
described as a α + p + n three-body bound system. The wave
function on the hyperspherical Lagrange mesh basis available
for the 6Li(1+) bound state [23,24] will be employed.

The hyperspherical harmonics method is an effective tool,
widely used in the literature for the description of the three-
body bound states of halo nuclei [25], resonances and non-
resonant continuum [26,27]. The Faddeev hyperspherical har-
monics method was applied to the three-body problem with a
core excitation [28], while its combination with the R-matrix
approach has been applied to estimate the triple-α rate in a full
three-body model [29]. The harmonic oscillator basis method
has been applied to the description of the bound and contin-
uum spectrum of the halo nucleus 6He [30] and three-body
capture [31] of this nucleus. The hyperspherical R-matrix
method was also applied to the description of two-neutron
emission of the 16Be halo nucleus [32] and α + α + n + 208Pb
four-body scattering, breakup, and fusion processes [33] as an
alternative to complex range Gaussian basis [34] method. As
an astrophysical application, in Ref. [35] the hyperspherical
adiabatic expansion method was used for the estimation of
relative production rates and abundance of the 6He, 9Be, and
12C nuclei in a three-body model.

In Sec. II we describe the model, in Sec. III we discuss
obtained numerical results, and finally in the last section we
draw conclusions.

II. THEORETICAL MODEL

A. Cross sections of the radiation capture process

The cross sections of the radiative capture process read

σE (λ) =
∑
JiTiπi

∑
Jf Tf πf

∑
�λ

(2Jf + 1)

[I1][I2]

32π2(λ + 1)

h̄λ([λ]!!)2 k2λ+1
γ C2

s

×
∑
lωIω

1

k2
ωvω

|〈�Jf Tf πf ‖M�
λ

∥∥�
JiTiπi

lωIω

〉∣∣2
, (2)

where � = E or M (electric or magnetic transition); ω denotes
the entrance channel; kω, vω, and Iω are the wave number,
velocity of the α − d relative motion, and the spin of the
entrance channel, respectively; Jf , Tf , and πf (Ji , Ti , and
πi) are the spin, isospin, and parity of the final (initial) state;
I1 and I2 are channel spins; and kγ = Eγ /h̄c is the wave
number of the photon corresponding to the energy Eγ =
Eth + E with the threshold energy Eth = 1.474 MeV. The
wave functions �

JiTiπi

lωIω
and �Jf Tf πf represent the initial and

final states, respectively. The reduced matrix elements are
evaluated between the initial and final states. We also use
short-hand notations [I ] = 2I + 1 and [λ]!! = (2λ + 1)!!.

Constant C2
s is the spectroscopic factor [36]. As argued in

Ref. [14], if the two-body potentials of the model correctly
reproduce experimental phase shifts in the partial waves and
physical bound-state energies of the two-body subsystems,
then a value of the spectroscopic factor must be taken equal to
1. This reflects the fact that the potential parameters already
include many-body effects. Accordingly, the factor is set equal
to 1.

The analytical expressions of the E1 and E2 electric-
transition operators, including isospin transition operators and
their matrix elements in the three-body model, have been
described in Ref. [22]. For the sake of brevity, we refer to that
paper for the details of the model.

The astrophysical S factor of the process is expressed in
terms of the cross section as [37]

S(E) = E σE (λ) exp(2πη), (3)

where η is the Coulomb parameter.

B. Reaction rates

The reaction rate Na (σv) is estimated according to [36,37]

NA(σv) = NA

(8/π )1/2

μ1/2(kBT )3/2

∫ ∞

0
σ (E)E exp(−E/kBT )dE,

(4)

where kB is the Boltzmann constant, T is the temperature,
and NA = 6.0221 × 1023 mol−1 is the Avogadro number. The
reduced mass is written as μ = AmN with the corresponding
reduced mass number A = A1A2/(A1 + A2) for the α + d
system, where A1 = 2 and A2 = 4. Consequently, a value
of A = 4/3 is fixed. When a variable kBT is expressed in
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units of MeV, it is convenient to use a variable T9 for the
temperature in units of 109 K according to the equation kBT =
T9/11.605 MeV. In our calculations T9 varies in the interval
0.001 � T9 � 10.

After substitution of these variables, the above integral for
the reaction rates can be expressed as

NA(σv) = 3.7313 × 1010A−1/2 T
−3/2

9

×
∫ ∞

0
σ (E)E exp(−11.605E/T9)dE. (5)

III. NUMERICAL RESULTS

A. Details of the calculations

Calculations of the cross section and astrophysical S fac-
tor have been performed under the same conditions as in
Ref. [20]. The radial wave function of the deuteron is the
solution of the bound-state Schrödinger equation with the
central Minnesota potential VNN [38,39] with h̄2/2mN =
20.7343 MeV fm2. The Schrödinger equation is solved using
a highly accurate Lagrange-Laguerre mesh method [40]. It
yields Ed = −2.202 MeV for the deuteron ground-state en-
ergy with the number of mesh points N = 40 and a scaling
parameter hd = 0.40.

The scattering wave function of the α − d relative motion
is calculated with a deep potential of Dubovichenko [41]
with a small modification in the S wave [15]: V

(S)
d (R) =

−92.44 exp(−0.25R2) MeV. The potential parameters in the
3P0, 3P1, 3P2 and 3D1, 3D2, 3D3 partial waves are the same
as in Ref. [41]. The potential contains additional states in the
S and P waves forbidden by the Pauli principle. The above
modification of the S-wave potential reproduces the empiri-
cal value Cαd = 2.31 fm−1/2 of the asymptotic normalization
coefficient (ANC) of the 6Li(1+) ground state derived from
α − d elastic scattering data [42].

The final 6Li(1+) ground-state wave function was cal-
culated using the hyperspherical Lagrange-mesh method
[23,24,43] with the same Minnesota NN potential. For the
α − N nuclear interaction, the potentials of Voronchev et al.
(model A) [44] and Kanada et al. (model B) [45] were
employed, which contain a deep Pauli forbidden state in
the S wave. The potentials were slightly renormalized by
a scaling factors 1.014 (model A) and 1.008 (model B) to
reproduce the experimental binding energy Eb = 3.70 MeV.
The Coulomb interaction between α and proton is taken as
2e2 erf (0.83 R)/R [39]. The coupled hyperradial equations
are solved with the Lagrange-mesh method [23,40]. The hy-
permomentum expansion includes terms up to a large value
of Kmax, which ensures a good convergence of the energy
and of the T = 1 component of 6Li. For the treatment of
Pauli forbidden states in the three-body system, we employ
a method of orthogonalizing pseudopotentials (OPP) [46] as
an alternative to the method of supersymmetric transformation
(SUSY) [47].

In Fig. 1, we display the convergence of the 6Li ground-
state energy with respect to the maximal hypermomentum
Kmax. In particular, for Kmax = 20 the level of convergence is
better than 1% within model A which is based on the α − N

FIG. 1. Convergence of the 6Li ground-state energy with respect
to Kmax within models A and B.

potential of Voronchev et al. [44]. In the case of Kmax = 24,
the level of convergence is better than 0.2%, while for the
Kmax = 30, it is 0.1%. The same convergence behavior is
observed within model B with the α − N potential of Kanada
et al. One can conclude that the energy of the three-body
system is well converged already at Kmax = 20. At the same
time, the norm square of the T = 1 isotriplet components
of the three-body wave function, which is important for the
isospin forbidden E1 transition, is within (5.3−5.4) × 10−3

and (4.2−4.3) × 10−3 in models A and B, respectively, for
the values of Kmax = 12–30. For the case of Kmax = 24,
the ground state is essentially spin triplet (96%). The matter
rms radius of the ground state (with 1.4 fm as α radius) is
found as

√
r2 ≈ 2.25 fm with the potential of Ref. [44] or

2.24 fm with the potential of Ref. [45], i.e., values slightly
lower than the experimental value 2.32 ± 0.03 fm [48]. The
isotriplet component in the 6Li ground state has a squared
norm 5.3 × 10−3 with the potential of Ref. [44] (model A)
and 4.2 × 10−3 with the potential of Ref. [45] (model B).

B. Estimation of the astrophysical S factor

In Fig. 2, we display E1 astrophysical S factors for the
direct α + d → 6Li + γ capture process within model A from
the initial partial 3P0, 3P1, and 3P2 scattering waves to the
T = 1 (isotriplet) components of the final ground state of 6Li.

At low astrophysical energies, the E2 cross section is very
sensitive to the asymptotic behavior of the overlap integrals
of the deuteron wave function �d and the three-body wave
functions �1M+

f for the L = 0 and L = 2 partial waves up
to large α − d distances R. The asymptotic normalization
coefficients (ANCs) of the 6Li nucleus in the α + d channel
can be extracted within the effective range expansion method
[49,50] or from the analytical continuation of the scattering
amplitude [42]. In contrast to the convergence of the three-
body energy, the convergence of the asymptotics of the three-
body wave function is quite slow and requires many additional
three-body channels with large orbital angular momenta. Our
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FIG. 2. Partial E1 astrophysical S factors of the direct α + d →
6Li + γ capture process within model A (see text).

results show that the overlap integrals of the three-body and
the deuteron wave functions for the cases of Kmax = 20 and
Kmax = 24 are identical up to the distance of R = 5.5 fm;
however, they behave differently beyond the internal region.
The values of the S-wave overlap integral for Kmax = 20 are
4.2 × 10−3, 1.2 × 10−5, 2.5 × 10−8, and 2.2 × 10−13 fm−1/2

at R = 10, 20, 30, and 40 fm, respectively. For the case of
Kmax = 24, we have estimations of 4.6 × 10−3, 1.9 × 10−5,
5.0 × 10−8, and 1.2 × 10−11, respectively. These numbers
should be compared with the correct asymptotics of the
overlap integral, i.e., 5.7 × 10−3, 1.1 × 10−4, 3.0 × 10−6, and
9.5 × 10−8 fm−1/2 at R = 10, 20, 30, and 40 fm, respectively.
Our further study shows that even Kmax = 30 results are far
from the correct asymptotics: The corresponding numbers are
5.0 × 10−3, 3.3 × 10−5, 1.0 × 10−7, and 2.3 × 10−11 fm−1/2,
respectively. As we can see, the asymptotics is improved with
increasing Kmax, but very slowly. This analysis demonstrates
that in order to have the correct three-body asymptotics, one
may have to go as high as Kmax = 40, which would require
huge computer resources, especially when calculating the
Raynal-Revai coefficients in the developed model. However,
there is an alternative way, which we use in our study of the
capture process. Namely, Kmax is fixed at 24 and beyond R =
5.5 fm the overlap integral for the each three-body channel
with ly = 0 and 2 (corresponding to the S- and D-wave α − d
relative motion) is replaced by its known asymptotic expres-
sion. Then this number is multiplied by the corresponding
spin-angular matrix element of the E2-transition operator.
The results obtained this way for the astrophysical E2 S
factor will be close to that obtained using the three-body wave
function with the correct asymptotic behavior.

The overlap integrals are written as

IL(R) = 〈[�d ⊗ YL(�R )]1M
∣∣�1M+

f

〉
, (6)

where the integration is done over internal coordinates of the
deuteron and the angular part of the variable R. In the present
three-body model, over the interval 5–10 fm IL(R) follows
the expected asymptotic behavior C

(L)
αd W−ηb,L+1/2(2kbR)/R,

FIG. 3. Overlap integral with the initial three-body and the cor-
rected (at R0 = 5.5 fm) asymptotics within model A.

where ηb and kb are the Sommerfeld parameter and wave
number calculated at the separation energy 1.474 MeV of
the 6Li bound state into α and d [20]. The values of the
S-wave and D-wave asymptotic normalization coefficients
(ANC) have been estimated for different values of matching
point R0. We found that S-wave ANC is maximal (conse-
quently optimal) for the matching point at 5.5 fm: C

(0)
αd =

2.116 fm−1/2 and C
(0)
αd = 2.051 fm−1/2 for model A and model

B, respectively. The first number is slightly larger than C
(0)
αd ≈

2.05 fm−1/2 [20], obtained with R0 = 7.75 fm and in reason-
able agreement with the value C

(0)
αd ≈ 2.30 fm−1/2 extracted

in Ref. [42] from experimental data on α + d scattering.
The estimated values of D-wave ANC are less than the
corresponding values of the S-wave ANC by two orders of
magnitude and vary in the range between 2.160 × 10−2 and
2.175 × 10−2 fm−1/2 for model A for matching points from
R0 = 5.5 fm to 7.5 fm. Model B yields the range between
2.179 × 10−2 and 2.188 × 10−2 fm−1/2, respectively.

In Fig. 3, the overlap integrals I0(r ) and I2(r ) with the ini-
tial three body and the asymptotics corrected at R0 = 5.5 fm
within model A are displayed. The S-wave overlap integral
changes the sign at small distances due to orthogonality to the
α − d Pauli forbidden state; this is why the absolute values
of the overlap integrals are shown. As can be seen from
the figure, beyond about 10 fm the absolute value of IL(R)
decreases faster than the correct asymptotics. Hence, within
the three-body model, the E2 astrophysical S factor is under-
estimated at low collision energies. This is the motivation to
estimate the E2 S factor with corrected asymptotics of the
overlap integral.

In Fig. 4, we show E2 astrophysical S factors for the direct
α + d → 6Li + γ capture process within model A from the
initial 3S1, 3D1, 3D2, 3D3 partial waves to the ground state
of 6Li with the corrected asymptotics of I0(R) and I2(R)
at a distance R0 = 5.5 fm. As can be seen from the figure,
at low energies the contribution of the partial 3S1 α + d
configuration is less than the contributions of partial D waves
at least by an order of magnitude. However, the S-wave
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FIG. 4. Partial E2 astrophysical S factors of the direct α + d →
6Li + γ capture process within model A with the corrected asymp-
totics of the overlap integral.

contribution has a weak energy dependence, while the small-
est 3D1 wave contribution increases sharply from 5 × 10−11

up to 6 × 10−8 MeV b within the same energy interval.
The influence of the D-wave correction to the asymptotics

for the E2 S factor is mostly important at low energies.
The results for the E2 S factor from the initial 3S1 α −d
scattering state increases several times through the correction
to the D-wave asymptotics. However, it is still small in
comparison with the E2 S factor from the initial D-wave
α − d scattering states. In model A at energy E = 1 keV,
the E2 S factor for the initial 3S1 α −d scattering state
increases from 1.55 × 10−12 to 5.96 × 10−12 MeV b, while
the total E2 S factor changes slightly from 2.042 × 10−10

to 2.068 × 10−10 MeV b. At the same time, the correction
to the S-wave asymptotics sharply enhances the E2 S factor
from 2.537 × 10−11 to 2.042 × 10−10 MeV b due to the initial
D-wave α − d scattering states.

In Fig. 5, we compare the E1 and E2 transition com-
ponents of the S factor with available experimental data,
including recent data from Refs. [8,9]. As can be seen from the
figure, at low energies the E1 transition dominates even with
corrected asymptotics of the overlap integral for the E2 tran-
sition, while at higher energies the E2 component is stronger.
Finally, in Fig. 6 we compare the obtained theoretical results
for the astrophysical S factor of the direct α + d → 6Li +
γ capture process with experimental data from Refs. [8–
10,51,52]. One can note that Figs. 5 and 6 are very similar
to Figs. 2 and 3 of Ref. [20], respectively. In fact, presently
we include also a correction to the D-wave asymptotics of
the overlap integral. As discussed above, the influence of
the D-wave correction to the asymptotics on the S factor is
about 1%.

As was noted in Ref. [20], the E2 S factor can be enhanced
owing to the D-wave components of the deuteron, 4He and the
final 6Li nucleus with the help of tensor forces in microscopic
ab initio models. Together with the aforementioned weak
dependence of the E2 S factor from the initial S wave at very

FIG. 5. Relative contributions of the E1 and E2 astrophysical S

factors of the direct α + d → 6Li + γ capture process within model
A in comparison with available experimental data.

low energies, this can lead to a larger S-wave contribution for
the process at low astrophysical energies.

C. Reaction rates and abundance

In Table I, we give theoretical estimations for the
d(α, γ )6Li reaction rates in the temperature interval 106 K
� T � 1010 K (0.001 � T9 � 10) calculated with the two
α + N potentials of Voronchev et al. [44] (model A) and
Kanada et al. [45] (model B). In the second and third columns
of the table, we give “the most effective energy” E0 and the
width of the Gamov window �E0 (5). They are expressed as
[36]

E0 =
(μ

2

)1/3
(

πe2Z1Z2kBT

h̄

)2/3

= 0.122
(
Z2

1Z
2
2A

)1/3
T

2/3
9 [MeV] (7)

FIG. 6. Theoretical astrophysical S factor for the direct α + d →
6Li + γ capture process within models A and B in comparison with
available experimental data.
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TABLE I. Theoretical estimations of the direct d (α, γ )6Li capture reaction rate in the temperature interval 106 K � T � 1010 K (0.001 �
T9 � 10).

T9 E0 (MeV) �E0 (MeV) NA(σv) (cm3 mol−1 s−1) T9 E0 (MeV) �E0 (MeV) NA(σv) (cm3 mol−1 s−1)

Model A Model B Model A Model B

0.001 0.002 0.001 3.47 × 10−30 2.37 × 10−30 0.120 0.052 0.054 1.83 × 10−5 1.38 × 10−5

0.002 0.003 0.002 1.04 × 10−23 7.14 × 10−24 0.130 0.055 0.057 2.68 × 10−5 2.03 × 10−5

0.003 0.004 0.003 1.42 × 10−20 9.74 × 10−21 0.140 0.058 0.061 3.79 × 10−5 2.88 × 10−5

0.004 0.005 0.003 1.33 × 10−18 9.18 × 10−19 0.150 0.060 0.064 5.21 × 10−5 3.96 × 10−5

0.005 0.006 0.004 3.36 × 10−17 2.32 × 10−17 0.160 0.063 0.068 6.96 × 10−5 5.31 × 10−5

0.006 0.007 0.004 3.93 × 10−16 2.72 × 10−16 0.180 0.068 0.075 1.17 × 10−4 8.96 × 10−5

0.007 0.008 0.005 2.79 × 10−15 1.93 × 10−15 0.200 0.073 0.082 1.83 × 10−4 1.41 × 10−4

0.008 0.009 0.006 1.41 × 10−14 9.77 × 10−15 0.250 0.085 0.099 4.53 × 10−4 3.54 × 10−4

0.009 0.009 0.006 5.52 × 10−14 3.83 × 10−14 0.300 0.096 0.115 9.17 × 10−4 7.23 × 10−4

0.010 0.010 0.007 1.79 × 10−13 1.25 × 10−13 0.350 0.106 0.131 1.62 × 10−3 1.29 × 10−3

0.011 0.011 0.007 5.00 × 10−13 3.48 × 10−13 0.400 0.116 0.146 2.62 × 10−3 2.10 × 10−3

0.012 0.011 0.008 1.24 × 10−12 8.66 × 10−13 0.500 0.134 0.176 5.68 × 10−3 4.60 × 10−3

0.013 0.012 0.008 2.80 × 10−12 1.96 × 10−12 0.600 0.152 0.205 1.06 × 10−2 8.67 × 10−3

0.014 0.012 0.009 5.82 × 10−12 4.08 × 10−12 0.700 0.168 0.233 1.79 × 10−2 1.49 × 10−2

0.015 0.013 0.010 1.13 × 10−11 7.94 × 10−12 0.800 0.184 0.260 2.88 × 10−2 2.43 × 10−2

0.016 0.014 0.010 2.08 × 10−11 1.46 × 10−11 0.900 0.199 0.287 4.43 × 10−2 3.80 × 10−2

0.018 0.015 0.011 6.11 × 10−11 4.30 × 10−11 1.000 0.213 0.313 6.56 × 10−2 5.70 × 10−2

0.020 0.016 0.012 1.55 × 10−10 1.09 × 10−10 1.500 0.279 0.439 2.72 × 10−1 2.45 × 10−1

0.025 0.018 0.015 9.90 × 10−10 7.03 × 10−10 2.000 0.338 0.558 6.04 × 10−1 5.50 × 10−1

0.030 0.021 0.017 4.08 × 10−9 2.91 × 10−9 2.500 0.393 0.672 9.88 × 10−1 8.99 × 10−1

0.040 0.025 0.021 3.23 × 10−8 2.32 × 10−8 3.000 0.443 0.782 1.39 1.26
0.050 0.029 0.026 1.41 × 10−7 1.02 × 10−7 4.000 0.537 0.994 2.26 2.02
0.060 0.033 0.030 4.35 × 10−7 3.18 × 10−7 5.000 0.623 1.197 3.24 2.87
0.070 0.036 0.034 1.07 × 10−6 7.88 × 10−7 6.000 0.704 1.393 4.35 3.83
0.080 0.040 0.038 2.26 × 10−6 1.67 × 10−6 7.000 0.780 1.584 5.54 4.87
0.090 0.043 0.042 4.27 × 10−6 3.17 × 10−6 8.000 0.853 1.771 6.78 5.95
0.100 0.046 0.046 7.38 × 10−6 5.51 × 10−6 9.000 0.922 1.953 8.05 7.06
0.110 0.049 0.050 1.19 × 10−5 8.94 × 10−6 10.00 0.989 2.133 9.31 8.16

and
�E0 = 4(E0kBT /3)1/2

= 0.2368
(
Z2

1Z
2
2A

)1/6
T

5/6
9 [MeV]. (8)

Now we discuss the influence of the D-wave correction
of the overlap integral on the reaction rates. The theoretical
estimations for the reaction rates increase after the correction
to the D-wave asymptotics of the overlap integral by no more
than 1% at low temperatures T9 � 0.1. In other words, its
influence is of the same order as for the E2 S factor. However,
we have shown that a contribution of the initial 3S1 α − d
scattering state to the E2 S factor can increase several times
after the correction to the D-wave asymptotics of the overlap
integral at low energies. This feature is very important for
the development of the three-body and microscopic models
including tensor forces, which give rise to the D-wave com-
ponents of the final-state wave function.

In Fig. 7, we display the estimated reaction rates of the
direct α + d → 6Li + γ capture process within models A and
B normalized to the standard NACRE 1999 experimental data
[36]. For comparison, we also display the lines corresponding
to the adopted values of the NACRE II 2013 data [53], new
LUNA 2017 [9] data, and data fit from Ref. [54]. As can be
seen from the figure, our results obtained within models A and
B show the same temperature dependence at low values of T9

as the newest direct data of LUNA 2017 [9] and differ from
the data of NACRE II 2013 [53] and the data fit in Ref. [54].
Consequently, the corresponding energy dependence of the

FIG. 7. Reaction rates of the direct α + d → 6Li + γ capture
process within models A and B normalized to the NACRE 1999
experimental data.
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TABLE II. The fitting coefficients of the analytical approximation for the direct d (α, γ )6Li capture reaction rate.

Model p0 p1 p2 p3 p4 p5 p6 p7 p8

A 6.004 −2.558 34.730 −115.482 205.801 −169.456 71.428 −11.614 42.354
B 5.154 −5.830 52.356 −163.500 272.839 −218.444 89.174 −14.107 41.384

astrophysical S factor, obtained in the developed theoretical
model, is mostly consistent with the last direct data of the
LUNA Collaboration [9].

For the estimation of the primordial abundance of the
6Li element, we use the well-known PARTHENOPE [55] pub-
lic code, which, however, operates only with an analytical
form of the reaction rate dependence on the temperature T9.
This way the theoretical reaction rate is approximated within
1.84% (model A) and 2.46% (model B) using the following
analytical formula:

NA(σv) = p0T
−2/3

9 exp
(−7.423T

−1/3
9

)
× [

1 + p1T
1/3

9 + p2T
2/3

9 + p3T9 + p4T
4/3

9

+p5T
5/3

9 + p6T
2

9 + p7T
7/3

9

]
+p8T

−3/2
9 exp

(−7.889T −1
9

)
. (9)

The coefficients of the analytical polynomial approximation
of the d(α, γ )6Li reaction rates estimated with the α + N
potential of Voronchev et al. (model A) and Kanada et al.
(model B) are given in Table II in the temperature interval
(0.001 � T9 � 10).

On the basis of the theoretical reaction rates and with the
help of the PARTHENOPE [55] public code, we have estimated
the primordial abundance of the 6Li element. If we adopt
the Planck 2015 best fit for the baryon density parame-
ter �bh

2 = 0.02229+0.00029
−0.00027 [56] and the neutron life time

τn = 880.3 ± 1.1 s [57], for the 6Li/H abundance ratio we
have an estimation from 0.66 × 10−14 to 0.68 × 10−14 within
model A. Model B yields an estimation from 0.49 × 10−14 to
0.51 × 10−14. The results of model A are mostly consistent
with the new estimation 6Li/H = (0.80 ± 0.18) × 10−14 of
the LUNA Collaboration [9] than the models based on the
exact mass prescription method [54] 6Li/H = (0.90–1.8) ×
10−14. Finally, using this result and the estimate of the 7Li/H
abundance ratio of (5.2 ± 0.4) × 10−10 from Ref. [58], we
get 6Li/7Li = (1.30 ± 0.12) × 10−5, which agrees with the
standard estimate from the BBN model [3].

As noted before, the OPP method [46] has been used for the
treatment of Pauli forbidden states in the three-body system
resulting from the S-wave α − N deep interaction potential.
In addition, an alternative method for eliminating the three-
body Pauli forbidden states based on the SUSY method [47]
has been tested. The results indicated that the SUSY method
yields too small of an isotriplet (T = 1) component of the 6Li
ground state, which plays the main role in the description of
E1 S factor, although the energy value of the ground state
was reproduced at the same level as in the case of the OPP
method. Indeed, the norm square of the isotriplet component
was estimated to be 1.102 × 10−4 and 1.104 × 10−4 within
models A and B, respectively. These numbers are about 50
and 40 times less than the corresponding estimations obtained

within the OPP method. A similar level of decreasing was
observed for the corresponding E1 S factor, although the E2
S factor was very close to the one resulting from the OPP
method. Most likely, the SUSY method suppresses important
isotriplet components of the 6Li ground-state wave function.
These results indicate that the isospin forbidden E1 transition
depends strongly on the method used for elimination of Pauli
forbidden states in many-body systems.

IV. CONCLUSIONS

The astrophysical direct capture process α + d → 6Li +
γ has been studied in the three-body model. The reaction
rates, E1 and E2 astrophysical S factors, and the primor-
dial abundance of the 6Li element have been estimated. The
asymptotics of the overlap integral in the S and D waves
have been corrected. This increased the E2 S factor by an
order of magnitude at low astrophysical energies mostly due
to the S-wave corrections. The D-wave correction yields only
about 1% increase to the total S factor and the reaction rates
at low energies. Together with the corrected E2 S factor,
the contribution of the E1-transition operator to the S fac-
tor from the initial isosinglet states to the small isotriplet
components of the final 6Li(1+) bound state is shown to be
able to reproduce the new experimental data of the LUNA
Collaboration within the experimental error bars. The theo-
retical reaction rates have the same temperature dependence
at low temperatures as the newest direct 2017 data of the
LUNA Collaboration. For the abundance ratio 6Li/H, we have
obtained an estimation of (0.67 ± 0.01) × 10−14, consistent
with the new estimation of the LUNA Collaboration and much
lower than the results of the models based on the exact mass
prescription. Further improvement of the theoretical estima-
tions of the reaction rates and 6Li abundance is expected with
the help of NN -tensor forces within ab initio calculations. It is
established that the isospin forbidden E1 transition is highly
sensitive to the method used for treating the Pauli forbidden
states in three-body systems.
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