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Estimate of the signal from the chiral magnetic effect in heavy-ion collisions from measurements
relative to the participant and spectator flow planes
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An interpretation of the charge-dependent correlations sensitive to the chiral magnetic effect (CME)—–the
separation of the electric charges along the system magnetic field (across the reaction plane)—–is ambiguous due
to possible large background (non-CME) effects. The background contribution is proportional to the elliptic flow
v2; it is the largest in measurements relative to the participant plane and is smaller in measurements relative to the
flow plane determined by spectators, where the CME signal, in contrast, is likely larger. In this paper, I discuss
a possible strategy for corresponding experimental measurements and list and evaluate different assumptions
related to this approach.
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I. INTRODUCTION

The search for the chiral magnetic effect (CME) [1,2]—the
separation of the electrical charges along the magnetic field
in a chirally asymmetric medium—has been a very active
topic in the field of heavy-ion collisions for more than 10
years (for recent reviews, see Refs. [3,4]). The CME states
that particles originating from the same “P -odd domain” are
preferentially emitted either along or opposite to the magnetic
field direction depending on the particle charge. As only a few
particles (originating from the same domain) are correlated,
the signal is expected to be small and one has to suppress
other charge-dependent correlations, such as those due to the
resonance decays, charge ordering in jets, etc.. The so-called
γ correlator suggested in Ref. [5] was designed to do just
that—suppress non-CME correlation at least by a factor ≈v2,
the typical value of elliptic flow:

γαβ = 〈cos(φα + φβ − 2�)〉 = 〈cos(φα − �) cos(φβ − �)〉
− 〈sin(φα − �) sin(φβ − �)〉, (1)

where φα and φβ are the azimuthal angles of two charged
particles. α and β take values + or − denote the charge. �

denotes the azimuth of the plane across which the charge
separation is measured. For measurements relative to the
reaction plane (perpendicular to the direction of the magnetic
field), only the sin-sin term has a contribution from the CME,
while all other non-CME sources contribute to both sin-sin
and cos-cos terms and thus largely cancel. The remaining
difference between in-plane (cos-cos) and out-of-plane (sin-
sin) correlations constitutes the background to the CME mea-
surements via γ correlator. The background is zero in the case
of no elliptic flow present in the system.

The experimental measurements [6–8] are in qualitative
agreement with the theoretical expectations, but a reliable
separation of the CME signal from background effects is
still missing. As already mentioned, the background cor-
relations depend on the magnitude of elliptic flow and as

such are largest in the measurements performed relative to
the so-called participant plane, and should be smaller in
measurements relative to the spectator flow plane. In con-
trast, the CME signal, driven by the magnetic field, is likely
larger in measurements relative to the spectator plane, as the
magnetic field is mostly determined by spectator protons.
This idea was recently and independently used in Ref. [9],
where the authors attempted to estimate the CME signal
from the existing measurements as well as make prediction
for the future isobar collision measurements at the Rela-
tivistic Heavy Ion Collider (RHIC). In this short paper, I
discuss an evaluation of the CME signal based on the same
general idea from a different perspective. In particular, I
discuss in detail the role of flow fluctuations in measure-
ments relative to different flow planes and by different meth-
ods, as well as explicitly list different assumptions required
in this approach, some of which are more important than
others.

II. DEFINITIONS AND THE MAIN IDEA

I start with more definitions and recalling the derivation of
the background contribution to the γ correlator. The correlator
defined in Eq. (1) includes contributions from the charge-
independent effect (e.g., dipole flow). These are poorly known
and not very important for the CME search. Because of this,
only the charge-dependent part is discussed here:

�γ = γopposite − γsame. (2)

As both the CME signal and the background correlations are
small, one can safely assume that

�γ = �γ BG + �γ CME, (3)

neglecting the (in principle, possible) interplay between the
two effects. The background contribution to �γ very gener-
ally can be described as that due to “flowing clusters” [5],
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when both particles α and β belong to the same cluster:

�γ BG = �〈cos(α + β − 2�)〉
= �〈cos(α + β − 2φclust ) cos(2φclust − 2�)〉α,β ∈ clust,

(4)

where to simplify notations the symbols α and β are used
instead of φα and φβ . Note that the mean of the product of
two cosines in general does not factorize. The mean can be
nonzero either in the case of nonzero elliptic flow of clusters
〈cos(2φclust − 2�)〉 (see, for example, Ref. [10]), or due to
the fact that the kinematic factor 〈cos(α + β − 2φclust )〉 varies
with the cluster emission angle, or both (as in the case of
the so-called local charge conservation background [11]). The
first assumptions about background are as follows:

(A1a) �γ BG ∝ ṽ2;clust, where I used the tilde to denote the
fact that there might be no factorization in Eq. (4), in which
case this flow coefficient also accounts for the emission angle
dependence of the kinematic factor.

The assumption (A1a) by itself is not very useful without
further assumption on ṽ2;clust:

(A1b) ṽ2;clust ∝ v2, where v2 is the average (over some
rapidity and pT ranges) elliptic flow of charged particles. One
can combine (A1a) and (A1b) into one assumption,

(A1) �γ BG = b v2, where b is the proportionality constant.
This is the assumption employed almost in any attempt

to disentangle background effects from the CME signal; e.g.,
it is used by ALICE and CMS Collaborations [12,13] in the
estimates of the CME signal with the event-shape engineering
technique [14]. I reiterate that (A1a) assumes linear depen-
dence of the background contribution to �γ on ṽ2;clust and
(A1b) assumes the proportionality of the latter to the elliptic
flow of charged particles.

Because of the initial-state fluctuations, the elliptic flow
as well as the elliptic flow fluctuations measured relative to
different flow symmetry planes are different. Then, it becomes
convenient to modify the correlator, namely, to consider
(�γ /v2) with v2 calculated in the same way as γ itself:

(�γ /v2) = 〈cos(α + β − 2ψ )〉
〈cos(2a − 2ψ )〉 , (5)

where, for simplicity, the sign � in the numerator is omitted
(here and everywhere below in the expressions involving
particles α and β the difference between opposite and same
charge combinations is assumed); a stands for the same set of
particles as α and β, and the average is performed inclusively
of all charges. In the denominator measurement, it is assumed
that the nonflow contribution is eliminated or suppressed.
Note that the calculations of this ratio do not involve any
explicit correction for the so-called reaction plane resolution.
To emphasize this, here and below all the flow planes that in-
clude statistical fluctuations (due to finite number of particles
used for their determination [15]) are denoted with lowercase
ψ and the angles that do not include statistical fluctuations
(depend only on specific initial configuration) are denoted
with with uppercase �.

An important feature of the ratio, Eq. (5), is that in the case
of zero CME signal (pure background) this ratio is the same
irrespective of what is used for the ψ and how strongly (or

weakly) elliptic flow fluctuates relative to this plane. Namely,
in the no-CME case, this ratio equals b, the proportionality
coefficient in the assumption A1. For example, if instead of ψ
the azimuthal angle of a particle c is used, this ratio equals

(�γ /v2)c = 〈cos(α + β − 2c)〉
〈cos(2a − 2c)〉 = b

〈
v2

2,PP

〉
〈
v2

2,PP

〉 = b, (6)

where again for shorter notations the particle symbol is used
to denote the particle azimuthal angle. Note that this case
corresponds to elliptic flow measured with respect to the
participant plane, and 〈v2

2,PP
〉 = v2

2{2}. For simplicity, it is also
assumed that the flows of both particles a and c are the same.

Instead of ψ , in Eq. (5) one can use the event plane angle
ψ2,EP (the azimuth of the flow vector in another subevent) or,
which is more relevant for this discussion, the spectator flow
angle ψ1,SP

(�γ /v2)SP = 〈cos(α + β − 2ψ1,SP )〉
〈cos(2a − 2ψ1,SP )〉 . (7)

Under the background scenario, all these ratios equal one to
another. If two different measurements yield different ratios,
this would immediately indicate a contribution different from
that of background, namely, the CME. Note that in calcu-
lations of the denominators (flow with respect to different
angles), nonflow contribution should be eliminated or sup-
pressed (e.g., by imposing a rapidity gap in measurements or
by any other technique). If two ratios differ, one can try to es-
timate the CME signal. This will rely on further assumptions,
but as discussed below, the requirement for accuracy of those
is lower.

In the case of a nonzero CME signal, the ratios calculated
relative to different angles using Eq. (5) can be different. For
concreteness, let us consider the double ratio

(�γ /v2)SP

(�γ /v2)c
= 〈cos(α + β − 2ψ1,SP )〉/〈cos(2a − 2ψ1,SP )〉

〈cos(α + β − 2c)〉/〈v2
2,PP

〉 ,

(8)

where as above the same elliptic flows of particles a and c
are assumed. Recall also that the particles a and c flow in the
participant plane. For the discussion of the CME contribution,
I introduce the angle �2,B for the orientation of the plane per-
pendicular to the magnetic field (across which the maximum
charge separation occurs). This angle is not measurable, and
one needs to make further assumptions to relate the obtained
expressions to the experimental measurements. Then, I de-
compose the correlators in background and the signal parts
similarly to Eq. (3):

〈cos(α + β − 2c)〉
= 〈cos(α + β − 2c)〉BG + 〈cos(α + β − 2c)〉CME

= b
〈
v2

2,PP

〉 + �γ CMEv2{�2,B}, (9)

where �γ CME = 〈cos(α + β − 2�2,B)〉CME and v2{�2,B} =
〈cos(2c − 2�2,B)〉. In a similar way,

〈cos(α + β − 2ψ1,SP )〉
= b 〈cos(2a−2ψ1,SP )〉+�γ CME〈cos(2�2,B−2ψ1,SP )〉. (10)
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Combining everything together,

(�γ /v2)SP

(�γ /v2)c
= 1 + f CME

PP

(
〈cos(2�2,B − 2ψ1,SP )〉〈v2

2,PP

〉
〈cos(2a − 2ψ1,SP )〉v2{�2,B} − 1

)
,

(11)

where

f CME
PP = 〈cos(α + β − 2c)〉CME

〈cos(α + β − 2c)〉 (12)

is the fraction of the CME signal in the three-particle cor-
relator measured relative to the second harmonic participant
plane. The angle ψ1,SP fluctuates around the spectator plane
�1,SP, but one can see that in Eq. (11) the corresponding event
plane resolution factors cancel out and

(�γ /v2)SP

(�γ /v2)c
= 1 + f CME

PP

(
〈cos(2�2,B − 2�1,SP )〉〈v2

2,PP

〉
v2{�1,SP}v2{�2,B} − 1

)
,

(13)

where v2{�1,SP} = 〈cos(2a − 2�1,SP )〉.

III. DISCUSSION

To proceed further, one has to make assumptions about
the relative orientations of three angles, �2,PP, �1,SP, and
�2,B. A few reasonable scenarios are discussed below. First,
it is instructive to compare the centrality dependence of
v2{2}, v2{4}, and v2{�1,SP} [16]. Recall also that to a good
approximation (exact in the so-called Gaussian model of ec-
centricity fluctuations [15]), v2{4} measures the flow relative
to the true reaction plane. Experimentally [16] in midcentral
collisions, centrality ≈40–50%, v2{�1,SP} is very close to
v2{4}; it is much closer to v2{2} in central, <10%, collisions.
A possible interpretation of that would be that the spectator
plane is close to the reaction plane in midcentral collisions
and close to the participant plane in central collisions.

Having this in mind, one of the assumptions would be the
following:

(A2) In midcentral collisions, both the spectator plane and
the magnetic field plane coincide with the reaction plane. In
this case,

(�γ /v2)SP

(�γ /v2)c
= 1 + f CME

PP

( 〈
v2

2,PP

〉
(v2{�1,SP})2

− 1

)
. (14)

Note that this relation really requires only coincidence of �1,SP

and �2,B, not necessarily coincidence with �RP. Then, Eq. (14)
is also true even if

(A3) in central collisions �2,B deviates from �RP but coin-
cides with �1,SP.

It is interesting that one has the same relation event under
the quite different assumption that

(A4) in central collisions the spectator plane coincides with
participant plane but �2,B coincides with �RP. In this case,

v2{�2,B}
〈cos(2�2,B − 2�1,SP )〉 = v2{�1,SP} (15)

and one again arrives to Eq. (14).
Although in general it is difficult to get the exact value

of the expression in parentheses in Eq. (11), based on the
above assumptions (A2)–(A4) and having in mind that ex-
perimentally v2{2} is larger than v2{ψ1,SP} by about 15%,
one can conclude that for an estimate of the CME fractional
contribution to the γ correlator f CME

PP at the level of 5%, the
ratio in Eq. (5) should be measured with an accuracy better
than 1%.

Finally, I make two short remarks on the experimental
selection of the angles ψ1,SP and its relation to �2,B. Experi-
mentally ψ1,SP is usually measured with zero-degree calorime-
ters (ZDC), most often capturing only neutrons. Then (a)
an additional decorrelation between ψ1,SP and �2,B can arise
due to difference in plane determined by spectator neutrons
and spectator protons. If two ZDC are used, then (b) the
result might depend on how the angles from two detectors
are used in the analysis. For example, using only one of
ZDCs might yield ψ1,SP, which is more strongly correlated
with the participant plane, while combining two angles might
eliminate this bias.

IV. SUMMARY

In conclusion, it is shown that measuring the ratios in
Eq. (5) relative to the participant and spectator planes can be
used to determine the fraction of the CME signal in the γ
correlator measurements. If the double ratio, Eq. (8), deviated
from unity, it will indicate a nonzero CME contribution that
can be further quantified under reasonable assumptions. In
order to measure the fractional CME signal at the level of
about 5%, one would need to measure the ratio in Eq. (8) free
from the nonflow effect at a level better than 1%.
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