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Multiphase transport model predictions of isobaric collisions with nuclear structure
from density functional theory
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Isobaric j5Ru + 55Ru and J5Zr + 55Zr collisions were performed at the Relativistic Heavy Ion Collider in 2018.
Using the “a multiphase transport” model with nuclear structures calculated by the density functional theory
(DFT), we make predictions for the charged hadron multiplicity distributions and elliptic azimuthal anisotropies
in these collisions. Emphases are put on the relative differences between the two collision systems that can
decisively discriminate DFT nuclear distributions from the commonly used Woods-Saxon densities.
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I. INTRODUCTION

The isobar run in 2018, colliding 3$Ru (Ru+Ru) and
95Zr (Zr+Zr) nuclei at the Relativistic Heavy-Ton Collider
(RHIC), was motivated by the search for the chiral magnetic
effect (CME) in quantum chromodynamics [1-3]. Because
of the different numbers of protons, the CME is expected to
differ between these two collision systems, while the major
elliptic flow-related backgrounds are expected to be the same
because of the same number of nucleons [4]. The possible
nuclear deformity was found to cause only small difference
in the eccentricity (e;) [5]. Most of the calculations so far
and the above expectations are based on the Woods-Saxon
(WS) density distributions. However, WS is only an approx-
imation to nuclear density distributions that are ultimately
determined by nuclear and Coulomb interactions among the
nucleons [6,7]. The different numbers of protons and neutrons
in Ru and Zr inevitably force their distributions to differ. The
recent density-functional-theory (DFT) calculations of their
distributions indicate that the collision geometries could cause
sizable difference in their flow backgrounds to the CME [8].

It is important to determine which of the nuclear density
distributions—the DFT or the WS—is more trustworthy. Iso-
baric collisions are the best place to do so because they are
highly similar except for the slight difference in the initial
conditions [8]. Relative measurements of isobaric collisions
are highly sensitive to those initial conditions. In this work,
we expand our study in Ref. [8] using the “a multiphase
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transport” (AMPT) model with the DFT nuclear densities. For
comparisons, we also include AMPT simulations with the WS
densities. The latter have recently been performed by Ref. [9]
focusing on the CME. In this paper we focus on standard
observables. The goal is to determine, by comparing to up-
coming experimental data of isobaric collisions, the correct
nuclear density distributions. This shall then pave the way for
further studies of isobaric collisions. In particular we contrast
the multiplicity distributions and the elliptical anisotropies
between Ru+Ru and Zr+Zr collisions, which can decisively
determine the density distributions of the colliding nuclei.

II. NUCLEAR DENSITIES

In relativistic heavy-ion collision studies, usually the WS
nuclear density is used [10,11]:

£0
1+exp[(r — Ro[1+ BY(0)])/a]’

Pys (1, 0) = (1)

where R, is the radius parameter, a is the skin diffusion
thickness, Yz0 is a spherical harmonic, 8, is the deformity
quadrupole parameter, and py is the normalization factor.
Usually no distinction is made between proton and neutron
density distributions. The charge radius parameters for Ru
and Zr are listed in Table I. These values are often taken as
the mass radii used in the WS formula of Eq. (1) because of
the lack of their experimental measurements [5]; we refer to
this WS version as “WS-Rp.” The thickness is taken to be
a = 0.46 fm for both Ru and Zr [5]. The B, values for Ru and
Zr have large uncertainties. However, it was shown that even
extreme cases of B, values introduce only small difference in
€, in midcentral to central collisions [5].
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TABLE 1. Effective nuclear radius parameters (in fm) corre-
sponding to the WS density formula [Eq. (1) with a = 0.46 fm and
B2 =0].

96 9%
uRu 2021

Charge mass Charge mass

WS-R, Ro 5.085 [5] 5.020 [5]
V) 4294 4.248

DFT r2) 4327 4343 4271 4366

Ro=1.183/(r3)  5.119 5138 5.053 5.165

The most commonly used framework to calculate nuclear
structure is the DFT [12,13]. It employs energy density func-
tionals which incorporate complex many-body correlations
that are primarily constrained by global nuclear properties
such as binding energies and radii [12—-14]. The Ru and Zr
proton and neutron distributions were calculated in Ref. [8].
Figure 1 shows the nucleon densities from DFT. For com-
parison the WS-Ry nucleon densities are also shown in
Fig. 1.

In order to get an intuititive comparison between the DFT
and WS densities, we calculate the root-mean-square radius,
V/ (r?), of the DFT proton and nucleon distributions [8], as
well as the WS distributions. The values are listed in Table 1.
To obtain an effective Ry parameter as in Eq. (1) for the
DFT distributions, we simply multiply the /(r2) values by
the factor 1.183 (i.e., the average ratio of Ry/+/(r?) from the
WS-Ry densities).

The DFT charge radius of Ru is larger than that of Zr
because Ru has four more protons. Because of the smaller
number of neutrons in Ru, its neutron radius is smaller than
that of Zr; actually DFT results show that it is significantly
smaller. As a result, the overall mass radius (i.e., of all
nucleons) of Ru is slightly smaller than that of Zr. On the other
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FIG. 1. The nucleon densities of J°Ru and j3Zr calculated by
DFT [8] (solid curves). The WS-R,, densities [5] (dashed curves)
are shown for comparison.

hand, in the WS densities [5], the charge radii are taken as the
mass radii, so the Ru radius is larger than the Zr radius, which
is the opposite to our DFT finding. This is one important
distinction between the DFT and WS-R densities.

III. THE AMPT MODEL

We employ the string melting version of AMPT (AMPT-
SM) [15,16] in our study. The model consists of a fluctuating
initial condition, parton elastic scatterings, quark coalescence
for hadronization, and hadronic interactions. The initial con-
dition of AMPT is based on the HIJING model [17], which
uses the Monte Carlo Glauber (MC-Glb) model for the nuclei.
We implement our DFT nuclear densities into the HIJING
component in AMPT (version 2.26t7). We refer to this as
“AMPT-SM(DFT).” For comparison purposes, we also run
AMPT-SM using the WS densities with the radius parameters
from Table I: One is WS-Ry and the other is the WS using
the effective mass radii from the DFT densities which we
refer to as “WS-Rppr.” We refer to these simulations using
WS-Rp and WS-Rpgr as “AMPT-SM(WS-Ry)” and “AMPT-
SM(WS-Rprr),” respectively.

The initial energy and particle productions in AMPT are
based on HIJING, where a given nuclear density distribu-
tion leads to corresponding distributions of the number of
wounded (participant) nucleons (Npy) and the number of
binary collisions (Npi,). AMPT-SM then converts these ini-
tial hadrons into their valence quarks and antiquarks, based
on the assumption that the parton degrees of freedom are
required to describe the early stage of high-energy heavy-
ion collisions [15,16]. The (anti-)quarks further evolve via
two-body elastic scatterings, treated with Zhang’s parton
cascade [18]. The Debye-screened differential cross-section
do/dt o< a?/(t — p3)* [16] is used in AMPT, with the strong
coupling constant oy, = 0.33 and Debye screening mass yup =
2.265/fm resulting in a total parton scattering cross section of
o = 3 mb. After partons stop interacting, a simple quark coa-
lescence model is applied to convert partons into hadrons [16].
Subsequent interactions of those formed hadrons are modeled
by a hadron cascade [16]. We terminate the hadronic interac-
tions at a cutoff time of 30 fm/c.

Hadronization in AMPT-SM is modeled with a simple
quark coalescence, where two nearest partons in coordinate
space (one quark and one antiquark) are combined into a
meson and three nearest quarks (or antiquarks) are combined
into a baryon (or antibaryon). In addition, when the flavor
composition of the coalescing quark and antiquark allows
the formation of either a pseudoscalar or a vector meson,
the meson species whose mass is closer to the invariant
mass of the coalescing parton pair will be formed. The same
criterion is also applied to the formation of an octet or a
decuplet baryon with the same flavor composition. The hadron
cascade in AMPT includes explicit particles such as m, p,
w, n, K, K*, ¢ mesons, N, A, N*(1440), N*(1535), A,
¥, B, Q baryons and antibaryons, plus deuterons and an-
tideuterons [19]. Hadronic interactions include meson-meson,
meson-baryon, and baryon-baryon elastic and inelastic scat-
terings. More details can be found in Ref. [16].
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FIG. 2. Impact parameter (b) probability distributions in Ru+Ru
and Zr+Zr collisions simulated by AMPT-SM(DFT). Proton and
neutron density distributions of the 35Ru and 35Zr nuclei are assumed
spherical and calculated by DFT.

IV. MODEL PREDICTIONS

We simulate a total of 80, 35, and 32 million minimum-
bias (MB) events each for Ru+Ru and Zr+Zr collisions
using AMPT-SM(DFT), AMPT-SM(WS-Ry), and AMPT-
SM(WS-Rprr), respectively. The impact parameter (b) range
is set to be 0-20 fm.

Figure 2 shows the probability distributions in b from
AMPT-SM(DFT) for an interaction to happen (Npat = 2).
The probability is linear in b up to 10 fm or so because at
small b the two colliding nuclei are guaranteed to interact.
At larger b the probability drops because not every encounter
can have at least one nucleon-nucleon (N N) interaction. The
drop happens at slightly smaller 4 in Ru+Ru than Zr+Zr
collisions because Ru is slightly smaller than Zr from the DFT
calculations.

A. Multiplicity distributions

Figure 3 shows the midrapidity charged hadron multiplicity
(Ng,) distributions from the AMPT-SM(DFT) simulations.
The multiplicity counts all charged pions, charged kaons, pro-
tons, and antiprotons within the pseudorapidity range of |n| <
0.5 and transverse momentum range of pr > 0.2 GeV/c. The
distributions are almost identical between Ru+Ru and Zr+Zr
collisions. The average multiplicities (N.,) for MB Ru+Ru
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FIG. 3. Midrapidity charged hadron multiplicity (N.,) distri-
butions in Ru+Ru and Zr+Zr collisions simulated by AMPT-
SM(DFT). N, is the sum of charged pion, charged kaon, proton,
and antiproton multiplicities within || < 0.5 and py > 0.2 GeV/c.
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FIG. 4. Ratio of the N, distributions in Ru+Ru and Zr+Zr
collisions simulated by AMPT-SM. Three types of nuclear density
distributions are shown: DFT [8], WS-R, and WS-Rpgr.

and Zr+Zr collisions are 65.97 and 65.15, respectively. The
slightly larger (N.p) and larger Ng, tail in Ru+Ru than Zr+Zr
collisions is because of the smaller effective radius of Ru than
Zr from the DFT mass densities [8]. With smaller radius, the
Ru+Ru collision zone is smaller to start with, and the energy
density should be higher and the number of binary collisions
larger.

Figure 4 shows the ratio of the N, distribution in Ru+Ru
to that in Zr+-Zr collisions. The DFT density result is shown in
red where the ratio curves up at large N, because of the larger
Ny tail in Ru+Ru (see Fig. 3). Also shown for comparison is
the ratio from the WS-R densities, which is consistent with
the calculation in Ref. [5]. The trend of the ratio in the WS-Ry
case is the opposite to the DFT case, because the Ru charge
radius is larger than the Zr’s in the WS-Ry. These opposite
behaviors are a decisive discriminator for the relative mass
radii between the Ru and Zr nuclei. Also shown in Fig. 4 is
the ratio from simulations using the WS-Rpgr, which give
a similar trend as AMPT-SM(DFT) that directly used DFT
densities. This confirms the conclusion that the tail behavior
in the ratio is mainly due to the ordering of the nuclear mass
radii.

There is observable difference in the intermediate N,
region between simulations directly using DFT densities and
using WS densities with DFT effective radii. This may be
used to tell whether the density distribution is DFT like or
simply WS like with the correct ordering of the mass radii.
In fact, the intermediate N, regions of the ratios from the
two WS densities appear unfeatured; however, that from the
DFT density seems nontrivially structured. If experimentally
confirmed, then it would constitute strong evidence for the
validity of the DFT densities for the isobaric nuclei.

A very successful isobar run has just concluded in 2018.
STAR has taken approximately 2 billion minimum bias events
each for Ru+Ru and Zr+Zr collisions. This is a factor of
25 higher statistics compared to the AMPT statistics we
have run for AMPT-SM(DFT). The data statistical error bars
would be approximately a factor of 5 smaller than those

054907-3



LI, XU, ZHAO, LIN, ZHANG, WANG, SHEN, AND WANG

PHYSICAL REVIEW C 98, 054907 (2018)

shown in Fig. 4. Given the isobar beam qualities and the
frequent alternating of the Ru and Zr beams during the run,
the experimental systematic uncertainties are expected to be
small in the ratio of the multiplicity distributions. With the
large, opposite behaviors of the ratios at large N, between
the DFT and WS densities, there should be no ambiguity to
distinguish them. Even the intermediate N, range may have
enough discrimination power.

B. Centrality definition and Glauber calculations

We define centrality using midrapidity (|n| < 0.5) charged
hadron multiplicity in py > 0.2 GeV/c as shown in Fig. 3,
similarly to experimental data analysis [20]. We determine the
multiplicity ranges of 20 centrality bins of 5% equal size. The
most central bin is referred to as 0-5% (or top 5%). Because of
the slight difference in the multiplicity distributions, the
multiplicity ranges for a given centrality bin can be slightly
different between Ru+Ru and Zr+Zr collisions.

With the distributions of impact parameters in each central-
ity multiplicity bin obtained from the AMPT-SM model, we
use a MC-GIb model [10,21-24] to simulate the initial geom-
etry of each isobaric collision in a given centrality bin. In our
MC-GIb model, the locations of protons and neutrons in a nu-
cleus are generated according to the given (DFT or WS) pro-
ton and neutron density profiles. The minimum internucleon
distance is set to be din = 0.4 fm and the nucleon-nucleon
cross section is set to be oy = 42 mb. Instead of the hard-
sphere approximation with a traditional step function, a par-
ticipant nucleon is determined by a Gaussian-type nucleon-
nucleon collision profile p(b) = Aexp (—m Ad? /oNnN), Where
d is the relative transverse distance between the nucleon and
the surrounding nucleons from the other nucleus and A =
0.92 [22]. We then calculate the average number of participant
nucleons (Npa) and the average number of binary nucleon-
nucleon collision (Ny;,) for each centrality bin.

The initial geometric anisotropy of the transverse overlap
region of a heavy-ion collision is often described by eccen-
tricity of the nth-harmonic order [25]:

€, = \/<r% cos nq&,)2 + (r# sin n¢,)2/(r%). 2)

Here r7 and ¢, are the polar coordinate of each participant
nucleon in the transverse plane, and (...) denotes the per-event
average.

Figure 5 shows the ratio of eccentricities in Ru+Ru to
Zr+Zr collisions as a function of b. Three types of the density
distributions are displayed. The two WS density distributions
give similar ratios. The DFT density gives quite different
eccentricities for Ru+-Ru and Zr+Zr; the ratio significantly
deviates from unity [8]. This indicates that the eccentricity is
sensitive to the internal structure of the colliding nuclei. It can
be used to tell apart the DFT and WS density scenarios with
the same effective radii, where the multiplicity distributions
may lose distinguishing power (see Sec. IV A). The experi-
mental quantity to tell them apart is the elliptical anisotropy
v (as v, is proportional to €,, discussed in Sec. IV D).
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FIG. 5. Eccentricity ratios in Ru+Ru to Zr+Zr collisions calcu-
lated by MC-Glb. Three types of nuclear density distributions are
shown: DFT [8], WS-R, (Table I), and WS-Rpgr (Table I).

C. Particle production

Figure 6 shows the charged hadron multiplicity per partici-
pant pair as a function of Nlj"‘“/z — 1 in the 0-70% centrality
range where Ny and Ny, are determined by MC-GIb in
Sec. IVB. Since the centrality is defined by multiplicity,
there is always a multiplicity bias in peripheral and central
collisions. The bias is evident for the top 5% centrality where
the data point does not follow the trend of the other data
points. The trend bends down in peripheral collisions, likely
also because of multiplicity biases. We defer detailed studies
of multiplicity biases in centrality definitions to a future work.

We fit the 5-50% centrality range where multiplicity biases
are minimal by a two-component model as in Refs. [26-28]:

dNe/d Ny
ch/ n _ pp[l +X< bin . 1>i| (3)
Npart/2 Npan/z

The n,, is the corresponding charge multiplicity in p + p
collisions and the fraction x represents the contribution to
the multiplicity from “hard processes.” The fitting results are

= 3.5 T —
%Wm [+ RutRu ]
% = o Zr+Zr ]
3 Two-Component Fit (Ru+Ru) —
[ -eeeee Two-Component Fit (Zr+2Zr) = ]
2_5; M/ ]
L = ]
|- o 4
2+ o —
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0 1 2 4

Nbin -1

Noar/2

FIG. 6. Charged particle multiplicity per participant pair as a
function of N‘"" — 1 in Ru+Ru and Zr+Zr collisions simulated by
AMPT- SM(DFT) The star and open square represent AMPT results.
The line are two-component model fits to the 5-50% centrality range.
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FIG. 7. Difference of the invariant mass (m;,,) distributions of
opposite-sign (OS) pion pairs and same-sign (SS) pion pairs in MB
Ru+Ru and Zr+Zr collisions simulated by AMPT-SM(DFT). Pions
within |n| < 1 are used.

shown in Fig. 6. The fit parameters are n,, ~ 2.1 and x ~ 9%
for both Ru+-Ru and Zr+Zr. These values are in the ballpark
of those extracted experimentally at RHIC [28].

We have presented predictions on the production of com-
mon charged hadrons (mainly pions, kaons, protons, and
antiprotons). It is interesting to also examine short -lived
resonances. This is especially interesting for the isobaric col-
lisions because resonance decays present major backgrounds
to the CME [3,29-35]. Figure 7 shows the difference of the
opposite-sign and same-sign pion pair invariant mass (minv)
distributions in MB Ru+Ru and Zr+Zr collisions. The m;p,
distributions are nearly identical and the ratio is flat. The
average ratio of the distribution in Ru+Ru to that in Zr+Zr
is approximately 1.013 £ 0.007, consistent with the average
(N.p) ratio (see Fig. 3). Note that the shape of Fig. 7 is some-
what different from Ref. [35] where the hadronic rescatterings
were not included.

D. Elliptic anisotropy

There are many methods to analyze anisotropic flows (v,)
in heavy-ion collisions [36]. We use the event plane (EP)
method in this study as commonly used in experiments. Our
main objective is to investigate the relative v, magnitudes
between Ru+Ru and Zr+Zr collisions. The relative v, mag-
nitudes are insensitive to analysis methods.

We reconstruct the EP from the final-state particle momen-
tum distribution [36]:

Y, = satan2((sin 2¢), (cos 2¢)) , )

where ¢ is the particle azimuthal angle and
atan2((sin 2¢»), (cos 2¢)) returns the four-quadrant inverse
tangent of (sin2¢)/(cos2¢). Due to finite multiplicity, the
reconstructed EP is not 100% precise. An correction is
applied to v, for the EP resolution R5:

vy = (C0s 2(¢ — ¥2)) /Ry . &)

The resolution is obtained by an iterative procedure using the
subevent method [36].

The v, from the EP method is shown in Fig. 8 as a function
of centrality. In our EP calculation, we used all particles
within |n| < 1, except for the particle of interest (POI) for v,

01~ AMPT-SM(DFT) .

0.05

Q20 40 60 80 100
Centrality (%)
FIG. 8. Azimuthal anisotropies v, of charged hadrons (within

[n] < 1) with respect to the EP in Ru+Ru and Zr+Zr collisions as
a function of centrality, simulated by AMPT-SM(DFT).

calculation. There is no n gap between the POI and the EP
to suppress nonflow contributions [37], noting that nonflow is
not a major effect in central collisions because of the large
event multiplicity. It is, however, a significant contributor to
v, in peripheral collisions.

As shown in Sec. IV B, the DFT and WS density distri-
butions give appreciable difference in the eccentricity. This
difference should be reflected in the final-state v,. We show
in Fig. 9 the v; ratios in Ru+Ru to Zr+Zr collisions for three
types of density distributions as a function of b. Indeed, the
eccentricity difference shows up in the final-state v,.

Since experimentally the v, is measured against centrality,
Fig. 10 shows the v, ratio in Ru+Ru to Zr+Zr collisions
for the three types of density distributions as a function
of centrality. The centralites for AMPT-SM(WS-Ry) and
AMPT-SM(WS-Rpgr) are obtained in a similar way using
their respective multiplicity distributions. The ratio obtained
from the DFT densities is clearly different from those using
the WS densities. This can be exploited to discriminate be-
tween DFT and WS nuclear densities by comparing to the
upcoming v, measurements from the isobaric collision data.
With the approximate 25-fold higher data statistics compared

—
L L R B ) D B N B O

0.98~ —=— AMPT-SM(DFT) 3
—— AMPT-SM(WS-R__) 1
0.961 =~ AMPT-SM(WS-R ) 5
L PR Y PR Y P B R SR B! L
0 8 10
b (fm)

FIG. 9. Ratios of charged hadron v, in Ru+Ru to Zr+Zr col-
lisions as a function of b. Three nuclear density distributions are
simulated: DFT, WS-R, and WS-Rppr.
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FIG. 10. Ratios of charged hadron v, in Ru+-Ru to Zr+Zr colli-
sions as a function of centrality. Three nuclear density distributions
are simulated: DFT, WS-R, and WS-Rpgr.

to our AMPT simulation, and with largely canceled systematic
uncertainties in the v, ratio, the two scenarios of DFT and WS
nuclear densities can be decisively determined. Note that the
difference in the DFT v, ratios between Fig. 9 and Fig. 10 is
because of the smearing in » when the centrality is defined
according to multiplicity.

V. SUMMARY

In this paper, we make predictions of isobaric JoRu + 35Ru
and 35Zr + 30Zr collisions using the string-melting version of
the AMPT model with the nuclear density distributions calcu-
lated by the DFT. We present the charged hadron multiplicity
(Nen) distributions and the elliptic azimuthal anisotropies v,

as a function of centrality. Emphases are put on the relative
differences between the two isobaric systems.

We show that, while the charge radius of 35Ru is larger than
that of 35Zr, the mass radius of j5Ru from DFT is slightly
smaller than that of ESZr. Because of this, the ratio of the
Ny, distributions in Ru+Ru to Zr+Zr collisions curves up at
large N, opposite to the trend obtained using the common
WS densities with charge radii. This feature can be checked
against isobaric data to decisively determine the relative mass
radii of the isobaric nuclei.

With the same effective mass radii, while the multiplicity
distribution ratio may lose the discriminating power between
DFT and WS densities, the centrality dependence of the v,
ratio in Ru+Ru to Zr+Zr collisions can decisively determine
whether DFT density is more realistic than WS.

For the CME search, it is important to first determine the
initial conditions of the isobaric collisions. The importance of
our work lies in the testable predictions from several viable
nuclear density distributions by a commonly used transport
model. With the large data statistics (billions of events) ac-
cumulated in the isobar run at RHIC and cancellation of
systematic uncertainties, our predictions should be able to
decisively determine the initial conditions of the isobaric
collisions and pave the way for further studies, particularly
in terms of the CME search.
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