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Large proton cumulants from the superposition of ordinary multiplicity distributions
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We construct a multiplicity distribution characterized by large factorial cumulants (integrated correlation
functions) from a simple combination of two ordinary multiplicity distributions characterized by small factorial
cumulants. We find that such a model, which could be interpreted as representing two event classes, reproduces
the preliminary data for the proton cumulants measured by the STAR collaboration at 7.7 GeV very well. This
model then predicts very large values for the fifth and sixth order factorial cumulants, which can be tested in
experiment.
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I. INTRODUCTION

The study of fluctuations and correlations of conserved
charges has become the focus of attention in the search of the
QCD phase transition and its conjectured critical point [1–20].
While at vanishing chemical potential lattice QCD calcula-
tions have established that the transition occurs as an analytic
crossover [21–23], no real constraints on the phase transition
at large chemical potential are currently possible. Therefore
one mainly relies on experimental studies to identify the order
of the QCD phase transition. If indeed a first order phase
transition occurs at large baryon chemical potentials and
intermediate temperatures, also an associated endpoint must
exist at which the transition becomes second order. It is well
known that first and second order phase transitions give rise to
many interesting phenomena, especially related to fluctuations
and long-range correlations [15,24]. In macroscopic systems
that slowly approach a second order phase transition the cor-
relation length diverges and similarly systems that approach
a first order phase transition will undergo nucleation, leading
to droplet formation, or spinodal decomposition [25–31]. One
observable of particular interest is higher order cumulants of
the proton number distribution. It has been shown [2] that,
close to the critical point, higher orders of the cumulants
diverge with ever increasing powers of the correlations length.

The goal of several experimental programs at the BNL
Relativistic Heavy Ion Collider (RHIC), CERN Super Proton
Synchrotron (SPS), Nuclotron-based Ion Collider fAcility
(NICA), J-PARC, and GSI/FAIR facilities is to identify ob-
servables which would show the increase of particle corre-
lations and fluctuations due to a phase transition. To do so,
heavy nuclei are brought to collision at relativistic energies.
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The system created in such collisions may have densities
several times that of normal nuclear saturation density and
temperatures of more than 200 MeV [32,33], a finding sup-
ported by microscopic transport simulations as well as fluid
dynamical simulations (see, e.g., [34–36]) at the energies
discussed.

In addition, by varying the beam energy of the collision one
is able to change the density and temperature of the created
system, which allows to ‘scan’ the phase diagram of QCD and
hopefully locate the onset of phase transition signals.

The systems created in these heavy ion collisions are very
small (a few fm in size) rapidly expanding (the expansion
velocity is close to the speed of light) and short lived (the
system decouples after 10–20 fm/c). These features affect
possible signals of a phase transition. For example, there may
not be sufficient time for the correlation length to grow sig-
nificantly near the critical point [37] or for nucleation, which
is also a comparatively slow process, to occur. On the other
hand phenomena like spinodal decomposition, i.e., the rapid
phase separation due to (mechanical) instabilities at the phase
transition are much faster due to the exponential growth of
fluctuations in the mechanically unstable region, and thus
can occur resulting in an increase of density fluctuations
[31,38]. Further complications arise from the fact that the
number of charge, strangeness, or baryon number carrying
particles is relatively small, especially for the baryon number.
As a consequence, effects of the global conservation of the
various conserved charges cannot be neglected [39–41]. In
addition, as the system rapidly drops out of equilibrium, other
effects, like resonance decays, thermal smearing, may blur the
signal. Additionally, experimental acceptance and efficiency
corrections need to be taken into account [39,41–53].

Published data on the net-proton number fluctuations,
which, with reasonable model assumptions, can be related
to the net-baryon fluctuations [54,55], only exist from the
STAR collaboration [53,56] and for a limited acceptance.
The published data (|y| < 0.5 and 0.4 < pt < 0.8 GeV) are
consistent with uncorrelated proton production and the trivial
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correlations from global baryon conservation [41]. On the
other hand preliminary data from the STAR collaboration
with a larger acceptance (0.4 < pt < 2 GeV) [57,58] show a
significant deviation from uncorrelated proton emission, i.e.,
following Poisson statistics, for collision energies

√
sNN �

11 GeV. The preliminary data consistently show an increase
of the fourth order cumulant and a decrease of the third
order cumulant with respect to uncorrelated production, in
particular at the lowest beam energies of

√
sNN = 7.7 GeV

and
√

sNN = 11 GeV. Presently, higher order net-proton cu-
mulants are also being studied in other experiments, such as
HADES [59] and NA61 [60,61].

The experiments provide the measured cumulants of the
net-proton number distributions and not the actual multiparti-
cle correlation functions. However, the integrated n-particle
correlation functions (factorial cumulants) can be extracted
from the measured cumulants [62] and they indeed show
an interesting beam energy dependence. In particular, the
integrated four particle correlations at the lowest beam energy
accessible to STAR,

√
sNN = 7.7 GeV are very large, about

three orders of magnitude larger than a basic Glauber model
(incorporating the number of wounded nucleons [63] fluc-
tuations) combined with baryon number conservation would
predict [64]. The challenge now is to unambiguously connect
the measured correlations to physical effects from a critical
point or first order phase transition.

In this paper we will investigate how one can construct
a proton multiplicity distribution, consistent with the
unexpectedly large, as compared to expectations from
conventional models [64,65], factorial cumulants extracted
[62] from the recent preliminary STAR measurements at√

sNN = 7.7 GeV. To this end we will focus on the case where
the proton distribution function results from a superposition
of two independent distributions, or sources of protons. In
particular we want to explore if it is possible to construct such
a superposition for the case where individual distributions are
both characterized by small factorial cumulants. In principle
there are two distinct ways to construct such a superposition
of two sources/distribution: In the first scenario, one assumes
that in each event the protons arise from both sources at
the same time and thus the total proton number is simply
the sum of the protons drawn from the two distributions.
As we shall discuss in the paper, in this case the factorial
cumulants of the combined distribution are of the same order
of magnitude as those of the two individual distributions. In
the second scenario, one assumes that the superposition of
two independent distributions is such that in a given event
the proton multiplicity is drawn exclusively, with a certain
probability, from either one of the two distributions. This
case corresponds to having two distinct event classes, and
as we shall show, the factorial cumulants of the combined
distribution can be very large even if the factorial cumulants
of the individual distributions are small or even vanish as it
would be the case if we were using Poissonians. It is this
second scenario which we will concentrate on in this paper.
In particular we will discuss the extracted [62] factorial
cumulants from the STAR experiment in the context of such
multiplicity distributions. Possible interpretations in terms of
phase transition physics and ‘nonphysics’ background will

be given. Furthermore we will propose further experimental
studies which will help to better understand the origin of
experimentally measured large correlations.

II. TWO EVENTS CLASSES

Let us consider the situation where we have two different
types (or classes) of events, denoted by (a) and (b). Let us
denote the probability that an event belongs to class (a) by
(1 − α) and to class (b) by α with α � 1. In this case the
probability to find N particles or protons is given by

P (N ) = (1 − α)P(a)(N ) + αP(b)(N ), (1)

where P(a)(N ) and P(b)(N ) are multiplicity distributions gov-
erning the event classes (a) and (b), respectively. As we shall
show, the combined distribution, Eq. (1), can exhibit very
large factorial cumulants (integrated correlation functions)
even if neither P(a) nor P(b) exhibit any correlations, as would
be the case if they were Poissonian. Such a situation can
arise for example if in a heavy ion experiment the centrality
selection, for whatever reasons, mixes central events with very
peripheral ones.

In order to calculate the factorial cumulants it is best to
start with the generating function

H (z) =
∑

P (N )zN

= (1 − α)H(a)(z) + αH(b)(z). (2)

where H(a),(b) is the generating function for P(a),(b). The
factorial cumulant generating function is then given by

G(z) = ln[H (z)]

= ln[(1 − α)H(a)(z) + αH(b)(z)]

= ln[(1 − α)eln[H(a) (z)] + αeln[H(b) (z)]]

= G(a)(z) + ln[1 − α + αeG(b) (z)−G(a) (z)], (3)

where G(a),(b)(z) = ln[H(a),(b)(z)]. The factorial cumulants
read1

Ck = dk

dzk
G(z)

∣∣∣∣
z=1

, (4)

and analogously for C
(a)
k = dk

dzk G(a)(z)|z=1 and C
(b)
k =

dk

dzk G(b)(z)|z=1.
Given the distribution Eq. (1), the mean number of protons

is

〈N〉 = (1 − α)〈N(a)〉 + α〈N(b)〉 (5)

with 〈N(a),(b)〉 = ∑
N NP(a),(b)(N ) is the average particle

number for distributions P(a)(N ) and P(b)(N ), respectively. To
simplify the notation we further introduce

N = 〈N(a)〉 − 〈N(b)〉, Cn = C (a)
n − C (b)

n , (6)

1Following, e.g., Ref. [62] we denote the factorial cumulants (inte-
grated multiparticle correlation functions) by Cn and the cumulants
by Kn. This notation should not be confused by the one adapted by
the STAR collaboration, which denote the cumulants by Cn.
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and performing straightforward calculations we obtain2,3

C2 = C
(a)
2 − α{C2 − (1 − α)N

2},
C3 = C

(a)
3 − α{C3 + (1 − α)[(1 − 2α)N

3 − 3NC2]},
C4 = C

(a)
4 − α{C4 − (1 − α)[(1 − 6α + 6α2)N

4

− 6(1 − 2α)N
2
C2 + 4NC3 + 3(C2)2]}. (7)

So far the results are general and apply for an arbitrary choice
of distributions P(a) and P(b).

Our goal here is to obtain large factorial cumulants Cn from
ordinary multiplicity distributions characterized by small fac-
torial cumulants, namely, C (a)

n � Cn and C (b)
n � Cn. This

is motivated by a surprisingly large three- and four-proton
factorial cumulants, C3 and C4, measured in central Au+Au
collisions at

√
sNN = 7.7 GeV, which are much larger than

simple expectations from baryon conservation or Npart fluc-
tuation. The ultimate case where this holds is when the two
classes are governed by Poisson distributions, where C (a)

n =
C (b)

n = 0. In this case the factorial cumulants reduce to

C2 = α(1 − α)N
2 ≈ αN

2
,

C3 = −α(1 − α)(1 − 2α)N
3 ≈ −αN

3
, (8)

C4 = α(1 − α)(1 − 6α + 6α2)N
4 ≈ αN

4
,

where in the last step we assumed α � 1. In general, for small
α we have (n > 1)

Cn ≈ (−1)nαN
n
, α � 1, n > 1 (9)

and the higher order factorial cumulants can assume very large
values even for small values of α.

In general, if the measured Cn � C (a)
n and Cn � C (b)

n , we
obtain Eqs. (8) and (9). In this case, Cn is independent of
the details of P(a)(N ) and P(b)(N ), and the signal is driven
almost exclusively by the superposition between the two
distributions. This results in the relation between factorial
cumulants of adjacent order

Cn+1

Cn

≈ −N, (10)

for α � 1 with the first correction being O(αN ). Also in this
limit, the above ratio does not depend on α. At 7.7 GeV,
C4/C3 ∼ −17, see Ref. [62], (with admittedly large error
bars). Our approach clearly predicts the ratio of higher order
cumulants, as well as the fact that their signs are alternating,
see Eq. (9), which can be tested by future experimental data
on C5/C4 and C6/C5.4 To summarize, if indeed the large

2The formulas for higher orders are given in Appendix A.
3We note that the terms involving α such as α, α(1 − α), α(1 −

α)(1 − 2α), etc., appearing in Eq. (7) are simply the cumulants of
the Bernoulli distribution. This becomes apparent from Eq. (3), since
upon replacing G(b)(z) − G(a)(z) = t (z) the second term represents
the cumulant generation function of the Bernoulli distribution.

4Using C2 in this analysis is not advised since, e.g., at 7.7 GeV
the measured C2 is consistent with an ordinary background and the
condition Cn � C (a)

n and Cn � C (b)
n is not satisfied.

factorial cumulants observed at 7.7 GeV originate from the
superposition of two event classes with α � 1, we expect

C6

C5
≈ C5

C4
≈ C4

C3
= −17 ± 6, (11)

where the uncertainty is based on C4 = 170 ± 45 and C3 =
−10 ± 2.5 [62].

In [62,66] it was shown that the integrated correlation func-
tions (factorial cumulants) obtained from the STAR measure-
ments are consistent with rapidity and transverse momentum
independent normalized multiparticle correlation functions. In
other words, the STAR data are consistent with a very large
correlation length in rapidity and transverse momentum. This
in turn implies that the factorial cumulants scale with the
mean proton number like Cn ∼ 〈N〉n. As seen from Eqs. (8)
and (9), valid if Cn � C (a)

n and Cn � C (b)
n , this is naturally

explained in our superposition model. Indeed, if we were
really dealing with two event classes, the relative weight of the
two distributions, α, would be independent of the size of the
rapidity window, whereas the mean number of particles from
event types (a) and (b) would roughly scale with the rapidity
window 〈N(a)〉 ∼ �Y and 〈N(b)〉 ∼ �Y . Consequently 〈N〉 ∼
�Y and N ∼ �Y . As a result, N ∼ �Y ∼ 〈N〉. Of course,
this observation constitutes no proof for the existence of two
event classes in the STAR data, as there may very well be
other distributions with a similar scaling, but it certainly is a
nice consistency check.

We note that our model is not well suited for multiplicity
distributions characterized by small Cn. In this case the details
of C (a)

n and C (b)
n are crucial and we lose any predictive power.

However, if Cn is small, there is most likely no need to
introduce two event classes and the signal may very well be
explained by an ordinary background. This is, e.g., the case
for

√
sNN = 19 GeV collisions, where the measured C3 and

C4 are close to zero and, in fact, are consistent (within larger
error bars) with simple baryon conservation with possible
contribution from Npart fluctuation.

The main finding of this section is that our model of
two event classes indeed leads to large values for the higher
order factorial cumulants and that we predict a straightforward
relation between them, Eqs. (10) and (11), which can be tested
in experiment. Next let us turn to a somewhat more refined
analysis of the STAR data at

√
sNN = 7.7 GeV.

A. Data analysis

From the analysis [62] of the preliminary STAR data [57]
we know that for central collisions at

√
sNN = 7.7 GeV the

factorial cumulants of the proton multiplicity distribution up
to fourth order are

STAR: 〈N〉 ≈ 40, C2 ≈ −2, C3 ≈ −10, C4 ≈ 170,

and, as already pointed out, C3 and C4 are much larger than
expectations from an ordinary background, such as baryon
conservation and Npart fluctuation [64].

Thus we are in the situation discussed in the previous
section, where the superposition of two ordinary multiplic-
ity distributions, Eq. (1), can easily generate large factorial
cumulants which are independent on the specific choice for
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FIG. 1. The multiplicity distribution P (N ) at
√

sNN = 7.7 GeV in the two component model given by Eq. (1) constructed with (a)
efficiency unfolded values for 〈N〉, C3 and C4 and (b) with imposed efficiency of 0.65.

P(a)(N ) and P(b)(N ), provided C (a)
n and C (b)

n are much smaller
then the measured Cn, see Eqs. (8) and (9). The simplest
choice is to take Poisson distributions for both P(a) and P(b).
The next refinement is to use a binomial distribution for
P(a) in order to capture the effect of baryon number conser-
vation [64]. This actually results in C2 < 0, as seen in the
data.

Consequently, we take Pa (N ) as binomial,

Pa (N ) = B!

N !(B − N )!
pN (1 − p)B−N (12)

with B = 350, which properly captures baryon number con-
servation, and Pb(N ) as Poisson.5 In this case the relevant
factorial cumulants are given by

C
(a)
2 = −p2B, C

(a)
3 = 2p3B, C

(a)
4 = −6p4B,

C
(a)
5 = 24p5B, C

(a)
6 = −120p6B (13)

with 〈N(a)〉 = pB. Obviously C (b)
n = 0 and Cn = C (a)

n .
Using Eqs. (7) we fit the mean number of protons as well

as the third and the fourth order factorial cumulants resulting
in

α ≈ 0.0033, N ≈ 14.7, p ≈ 0.114, (14)

which also gives 〈N(a)〉 ≈ 40 and 〈N(b)〉 ≈ 25.3. We note that
indeed α � 1 as assumed in Eqs. (9), (10), and (11).

5We could also chose binomial here but this is rather irrelevant for
our results. For example, C2 depends on C

(b)
2 through αC2 which

is expected to be much smaller than C
(a)
2 . An actual fit to two

binomials results in C2 = −4.03 which, given the uncertainty of the
contribution due to participant fluctuations [64], is in equally good
agreement with the STAR data. At the same time the predictions for
C5 and C6 are within 3% of those using just one binomial.

Given the fit, we can also predict the factorial cumulants,
C2, C5, C6 and we obtain6

C2 ≈ −3.85, C5 ≈ −2645, C6 ≈ 40900, (15)

which corresponds to the following values for the cumulant
ratios7:

K5/K2 ≈ −34, K6/K2 ≈ 312. (16)

It is worth pointing out that C6/C5 ≈ C5/C4 ≈ C4/C3 is
in agreement with the discussion presented in the previous
section. We note that the resulting C2 ≈ −3.85 is slightly
more negative than the data. However, as shown, e.g., in
[64], the second order factorial cumulant receives a sizable
positive contribution from participant fluctuations �C2 	 2–3
whereas the correction to C3 and C4 are small. In any case cor-
recting data for the fluctuations of Npart should be done very
carefully to avoid model dependencies. In view of the sizable
errors in the preliminary STAR data we consider the present
fit as satisfactory.

The resulting probability distribution for the proton num-
ber, P (N ), Eq. (1), is shown in the left panel of Fig. 1.8

Even though the component centered at N ∼ 25 has a very
small probability α ∼ 0.3% it gives rise to a shoulder at low
N which should be visible in the multiplicity distribution.
However, this would require an unfolding of the measured dis-
tribution [43] in order to remove the effect of a finite detection
efficiency. Assuming a binomial model for the efficiency with

6Taking C4 = 130 (210), being consistent with the prelim-
inary STAR data [62], we obtain α ≈ 0.0078 (0.0017), N ≈
10.92 (18.43), p ≈ 0.115 (0.114), and C2 ≈ −3.64 (−3.99), C5 ≈
−1546 (−4030), C6 ≈ 17970 (77229). Also K5/K2 = −14 (−61)
and K6/K2 = 62 (818). For larger C4, the value of α gets smaller
but N gets larger, which is more effective in increasing the value of
C4, see Eq. (8).

7K2 = 〈N〉 + C2, K5 = 〈N〉 + 15C2 + 25C3 + 10C4 + C5, and
K6 = 〈N〉 + 31C2 + 90C3 + 65C4 + 15C5 + C6.

8Since we extract the multiplicity distribution from bin width
corrected cumulants, our result corresponds to an appropriately bin
width corrected multiplicity distribution.
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FIG. 2. P (N ) for 7 GeV and twice the rapidity coverage as the present preliminary STAR data. See text for details.

a constant detection probability of ε = 0.65, which roughly
corresponds to that of the STAR measurement, the observed
multiplicity distribution of the two component model is shown
in the right panel of Fig. 1. In this case the small component
∼α is barely visible. This observation is consistent with the
fact that the efficiency uncorrected cumulants measured by
STAR are more or less consistent with a Poisson (or binomial
to be more precise) expectation.

Another complication arises from the fact that the pro-
ton distribution functions are only measured in rather broad
centrality bins. Directly correcting the distribution functions
for this centrality bin-width effect is not straightforward.
One should also note, that we only considered the most
central data, as only here one observes significantly large
correlations, i.e., C (a)

n � Cn. For more peripheral centrality
bins the situation is less clear, as the correlations, Cn, become
smaller, which does not allow for a clear distinction between
a single ordinary distribution and the superposition of two
distributions.

For the next phase of the RHIC beam energy scan, it
is expected that STAR may be able to increase its rapidity
coverage. If it could be doubled, and the observed scal-
ing Cn ∼ 〈N〉n persists, the resulting probability distribution
would look like Fig. 2. In this case, even with an efficiency
of ε 	 0.65 the two components should be visible in the
efficiency uncorrected data.

III. DISCUSSION AND CONCLUSIONS

To understand the relevance of the previous results several
comments are in order:

(i) The factorial cumulants (integrated genuine correla-
tion functions) based on the present STAR data in
central

√
sNN = 7.7 GeV collisions are consistent

with the assumption of two distinct event classes.
This model not only reproduces the factorial cumu-
lants but also naturally explains the long correlation
length observed in the STAR data.

(ii) Provided that the measured factorial cumulants Cn

are much larger than expectations from an ordinary
background (baryon conservation, etc.) we predict
that the factorial cumulants satisfy a simple relation

given in Eq. (10), that is, Cn+1/Cn does not depend
on n. This can be tested in experiment by comparing
C4/C3 with C5/C4 and C6/C5.

(iii) If indeed two event classes are at play, we predict
that the fifth and sixth order factorial cumulants are
very large. In addition, with the increasing accep-
tance of the STAR detector to be expected in the
next phase of the RHIC beam energy scan, the third
and fourth order factorial cumulants should increase
leading to a probability distribution which should
exhibit a clear second event class which might even
be visible without unfolding the data.

(iv) In the STAR experiment events are selected in
centrality classes by the number of charged parti-
cles (other than protons and antiprotons) within the
STAR acceptance [53,57]. Therefore, in order to
have two distinct event classes one of two things
need to happen: Either there is a mechanism which
removes protons from a central event which has
many charged particles. Or, for some reason there
are peripheral events, where naturally only few pro-
tons are stopped and brought to mid rapidity, but at
the same time lots of charged particles (i.e., pions)
are produced and the event is classified as a central
one. The latter situation is hard to fathom (as far
as originating from a physical effect). However, one
could imagine that the observed lack of protons in
some central events is compensated by an abundance
of deuterons or other light nuclei. If true, this would
result in a significant anticorrelation between the
proton and deuteron number.

(v) The present STAR dataset for
√

sNN = 7.7 GeV
contains 3 × 106 events so that the most central 5%
correspond to 150k events [53]. Given α ≈ 0.0033
there are roughly 500 events for N < 20 and it
maybe worthwhile to inspect these events individ-
ually to see if there are some systematic deviations
or common experimental issues. Indeed, in a recent
paper [45] the possibility that a certain subset of
events could have different/fluctuating efficiency has
been discussed, and it was shown that such a sce-
nario would effectively result in two or more event
classes.
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FIG. 3. (a) Transverse momentum distributions of charged pions from the UrQMD transport model. (b) Elliptic flow of charged pions as a
function of the transverse momentum from UrQMD simulations. In both plots three different event selections are compared. The black solid
lines correspond to all most central (0–5%) events, while the red short dashed lines depict only most central events with a small proton number
(N < 25). The blue dashed lines correspond to the reference events with exactly 25 protons, but selected from all centralities.

(vi) The natural way to explore the possible presence of
distinct event classes in the STAR data, is to select
events with a small number of protons (in central
events) to enrich the contribution of the small event
class. Then one can investigate whether these events
exhibit certain characteristics, which distinguishes
them from all other events in that centrality class.
Such an event characteristic could be any other
observable such as, e.g., the mean transverse mo-
mentum, the elliptic flow v2, Hanbury Brown–Twiss
radii, etc. Of course some observables may change
with the proton number even if there are no separate
event classes. To illustrate this and to set some kind
of baseline for the case where we do not have
distinct event classes, we show the charged pion
transverse momentum distributions and elliptic flow
from ultrarelativistic quantum molecular dynamics
(UrQMD) simulations, as function of the transverse
momentum in Figs. 3(a) and 3(b). To produce these
results 3 × 107 minimum bias UrQMD events of
Au+Au collisions at a beam energy of

√
sNN =

7.7 GeV were generated. Then the 0–5% most cen-
tral events where selected as the most central bin,
and are plotted as black-full lines. Here, we used the
same event selection as used in the STAR analysis,
namely the centrality was determined by the number
of charged particles (except protons and antiprotons)
in |y| � 1. The number of protons is also determined
in the STAR acceptance, |y| � 0.5 and 0.4 � pT �
2.0 GeV, which gives a mean net-proton number
of 〈N〉 ≈ 42. From these 0–5% most central events
we then selected the 0.3% events with the smallest
number of net protons (N < 25), i.e., the left tail
of the net proton multiplicity distribution, which is
shown as red-dotted lines. This effect stems only
from the fact that even different events in a given
centrality class will have varying v2. As a compari-
son we also selected, from all minimum bias events,
only the events with a net proton number of N =

25, shown as blue-dashed lines. Interestingly the
resulting transverse momentum distributions seem
almost independent of the event selection (the actual
difference between the curves is less than 5%).

On the other hand, the elliptic flow, v2, depends
rather strongly on the event selection. The most
central events exhibit the smallest and the more
peripheral events (blue line) have the largest elliptic
flow. However, the central events with the smallest
number of protons also show an increased v2 com-
pared to all central events. This is understandable,
as the left tail of the proton distribution for the
most central events contains a larger number of
‘peripheral’ events, i.e., events with a larger impact
parameter and therefore larger initial anisotropy.

We can therefore conclude that the elliptic flow is
a good criterion to select events based on their initial
anisotropy. As a consequence, if STAR finds that the
elliptic flow in the left tail (small number of protons)
of the most central events has an elliptic flow which
is as large as the elliptic flow in peripheral events
with the same proton number, the additional events
are likely due to misidentified peripheral events.
On the other hand if STAR finds that the events
in the low proton number tail have a v2 equal to
or smaller than the average of all central events,
interesting physics may be at play. This would also
be the case if one would find a significant deviation
in the transverse momentum spectra for the evens in
the lower tail of the most central events.

(vii) It is noteworthy that two event classes distribution
looks very similar to that of a system close to a first
order phase transition in a finite system. To illustrate
this, we have used the van der Waals model in a finite
volume to calculate the multiplicity distributions for
various points near the co-existence line for a system
of fixed volume (details are in Appendix B). This
is shown in Fig. 4. The multiplicity distribution
extracted from the STAR cumulants, Fig. 1, looks
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FIG. 4. Probability distribution at various points close to the
co-existence line for the van der Waals model for system at fixed
volume: (T/Tc, μ/μc ) = (1.02, 0.99) (a), (1.02, 1.004) (b), (0.98,
1.0015) (c), (0.98, 1.004) (d), (0.95, 1.0062) (e). The model and
parameters are described in Appendix B.

qualitatively similar to the distribution to the right
of the phase-coexistence line in Fig. 4. In this case
the “bump” at small N corresponds to events where
the system would be in the “dilute” phase whereas
the large maximum at large N corresponds to the
events where the system is in the “dense” phase,
which dominates the distribution.

(viii) Naturally, the knowledge of only four factorial cu-
mulants, C1, . . . , C4 does not uniquely determine
the multiplicity distribution. And indeed applying
the methods of [67] based on the Poisson-Charlier
expansion (see Appendix C for some details) one
can generate a different distribution which also re-
produces the factorial cumulants of the preliminary
STAR data.9 We verified that this distribution shows
a much smaller shoulder on the left as the two
event classes model used here. While the first four
cumulants are the same for the two distributions
by construction, the prediction for the fifth and
sixth differ dramatically, as this distribution results
in C5 = −200 and C6 = 4220, which are about an
order of magnitude smaller than that of the two event
classes model. If, on the other hand, we enforce
the C5 and C6 to be of the same magnitude as the
two classes model, the resulting probability distri-
bution from the Poisson-Charlier method develops
a shoulder at low N similar to the one of the two
classes model. In other words, if the magnitude of
the predicted values of C5 and C6 in Eq. (15) are
confirmed by experiment, the presence of a shoulder

9See also Ref. [68] for another way of constructing a probably
distribution based on the Pearson curve method.

at low N is very likely, thus favoring the two event
classes hypothesis.

(ix) Instead of two distinct event classes one could have
the situation, where we have two mechanisms con-
tributing at the same time to each event. In this case
the multiplicity distribution is given by

P (N ) =
∑

N(a),N(b)

P(a)(N(a) )P(b)(N(b) )δN(a)+N(b)−N,

(17)

and the generating function H (z) = H(a)(z)H(b)(z),
and the factorial cumulant generating function is
G(z) = G(a)(z) + G(b)(z). In this case the factorial
cumulants are given by

Ck = C
(a)
k + C

(b)
k . (18)

Clearly, to get large Ck we either need C
(a)
k or

C
(b)
k to be large. This situation would for example

correspond to the case of cluster formation discussed
in [64], where the presence of clusters lead to large
correlations.

To conclude, we have considered a model where the parti-
cle (proton) multiplicity distribution arises from two distinct
event classes. We showed that in this case, the factorial
cumulants of the combined distribution can be very large,
even though the distribution of the individual classes may
have small or even vanishing factorial cumulants, as in the
case of Poisson distributions. We further showed that in this
picture the factorial cumulants would scale like Cn ∼ 〈N〉n
and their ratios do not depend on n, Cn+1

Cn
= const (n > 3 at

7.7 GeV). Consequently, their magnitude increases rapidly
with the order of the cumulants, and the factorial cumulants
grow very fast with increasing acceptance. Both these features
are seen in the presently available preliminary STAR data,
which can be reproduced in this model. Our model predicts
large values for the fifth and sixth factorial cumulants, and
thus it can be ruled out if STAR measures values considerably
smaller.

Note added in proof. Meanwhile, we have found that the
statistics of the presently available STAR data for the central
collision at 7.7 GeV is sufficient to test our predictions for the
fifth and sixth order factorial cumulants, Eq. (15). For details
see the addendum of Ref. [69].
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APPENDIX A: RESULTS FOR C5 AND C6

Here, we list the result for the factorial cumulants C5 and C6 in the two component model, Eq. (1). First the full result:

C5 = C
(a)
5 − α{C5 + (1 − α)[(1 − 2α)(1 − 12α + 12α2)N

5 − 10(1 − 6α + 6α2)N
3
C2

+ 10(1 − 2α)N
2
C3 + 15(1 − 2α)N (C2)2 − 5NC4 − 10C2C3]},

C6 = C
(a)
6 − α{C6 − (1 − α)[(1 − 30α(1 − α)(1 − 2α)2)N

6 − 15(1 − 2α)(1 − 12α + 12α2)N
4
C2

+ 20(1 − 6α + 6α2)N
3
C3 − 15N

2
(C4(1 − 2α) − 3(C2)2(1 − 6α + 6α2))

+ 6N (C5 − 10C2C3(1 − 2α)) − 15(1 − 2α)(C2)3 + 10(C3)2 + 15C2C4]}. (A1)

Next the case of small or vanishing factorial cumulants of the individual distributions, C (a)
n 	 Cb

n 	 0:

C5 = C
(a)
5 − α(1 − α)(1 − 2α)(1 − 12α + 12α2)N

5 ≈ C
(a)
5 − αN

5
,

(A2)
C6 = C

(a)
6 + α(1 − α)(1 − 30α(1 − α)(1 − 2α)2)N

6 ≈ C
(a)
6 + αN

6
,

where on the right-hand side we assumed α � 1.

APPENDIX B: MULTIPLICITY DISTRIBUTION IN A
FINITE-VOLUME van der WAALS MODEL

Here, we illustrate how a multiplicity distribution visually
similar to Figs. 1 and 2 emerges in a simple toy model of
interacting nucleons in a finite volume V . To this end we use
the well known van der Waals model (see, e.g., Ref. [70])
which combines a repulsive interaction, realized via an ex-
cluded volume b, and an attractive interaction by means of
the mean-field potential, which is proportional to density:
U = a N

V
. The canonical partition function of this model reads

ZCE (N,V, T ) = 1

N !

∫ ∏ d3xid
3pi

(2πh̄)3N
e−UN/T

= 1

N !
(V ϕ(T ))N

(
1 − bN

V

)N

e
aN2

V T , (B1)

where ϕ(T ) = g
2π2 T

3( m
T

)2K2( m
T

), g = 4 being the degener-
acy of the nucleons and m the proton mass. If the volume V
is embedded into a thermal bath with baryochemical potential
μ, the probability wN to find N protons inside of the volume
is given by

wN = eμN/T ZCE (N,V, T )∑
N eμN/T ZCE (N,V, T )

. (B2)

It is this probability which is plotted in Fig. 4.
The denominator of Eq. (B2) is the grand-canonical par-

tition function, �(μ,V, T ) = ∑
N eμN/T ZCE (N,V, T ). To

verify, that the above expression for the probability wN is
really that of the van der Waals model, let us consider the
thermodynamic limit (V → ∞, N → ∞, N/V → n) and
extract the resulting equation of state. In this case the grand-
canonical partition function � can be approximated by the

largest term of the sum, determined by

∂ log(eμN/T ZCE (N,V, T ))

∂N

∣∣∣∣
N=N∗

= 0 . (B3)

This condition is equivalent to

N∗

ϕ(T )(V − bN∗)
=exp

(
μ

T
− bN∗

V − bN∗ + 2aN∗

V T

)
, (B4)

which coincides with the grand-canonical van der Waals
equation of state [71]. Indeed, substituting it to the expression
for � and using pV = T log �, one obtains familiar (p +
an2)(1 − nb) = nT , where n = N∗/V .

For reference, the parameters a and b are chosen such that
the critical temperature Tc = 8a

27b
= 0.070 GeV and critical

density ρc = 1
3b

= 0.3 GeV/fm3. The volume is taken to be
V = 200 fm3.

APPENDIX C: CONSTRUCTING A DISCREET
DISTRIBUTION FROM GIVEN FACTORIAL CUMULANTS

In the main body of this paper the first four factorial cumu-
lants C1–4 of the proton multiplicity distribution are described
based on a specific form for the distribution. Of course, the
first four factorial cumulants do not uniquely determine the
distribution. It is therefore useful to explore, how different
discreet distributions with the same set of factorial cumulants
could be. To find out, here we provide a simple way to
construct a (nonunique) distribution which will return a given
set of factorial cumulants, C1 . . . Cn, inspired by the Poisson-
Charlier expansion [67].

Let us denote the Poisson distribution with mean μ by
πμ(k) = μk

k! e
−μ and assume that πμ(k < 0) = 0. Let us also
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introduce a forward difference operator ∇ acting on an arbi-
trary discreet function ϕ:

∇ϕ(k) = ϕ(k) − ϕ(k − 1), (C1)

∇ lϕ(k) =
l∑

j=0

(
l

j

)
(−1)jϕ(k − j ) . (C2)

Next one introduces the distribution fn which depends on
the first n factorial cumulants, C1 . . . Cn as follows: First one
defines an operator Dn(t ) which represents all the terms of the
Taylor expansion in t of

exp

⎛
⎝ ∞∑

j=2

Cj

j !
(−t∇ )j

⎞
⎠ = Dn(t ) + O(tn+1) (C3)

up to order tn. This ensures that Dn(t ) involves no factorial
cumulants of order k > n. Given the operator Dn(t ) the distri-
bution fn(k) is then defined as

fn(k) = Dn(t = 0) πμ(k). (C4)

For example, for the first four orders, this results in

f1(k) = πμ(k), (C5)

f2(k) = πμ(k) + C2

2
∇2πμ(k), (C6)

f3(k) = πμ(k) + C2

2
∇2πμ(k) − C3

6
∇3πμ(k), (C7)

f4(k) = πμ(k) + C2

2
∇2πμ(k) − C3

6
∇3πμ(k)

+ 3C2
2 + C4

24
∇4πμ(k). (C8)

The functions fn are normalized by construction. Indeed, it is
easy to see that

∑
k ∇ lπμ(k) = ∑l

j=0

(
l
j

)
(−1)j = (1 − 1)l =

0 for any l > 0. Therefore
∑

k fn(k) = ∑
k πμ(k) = 1.

The higher factorial cumulants of fn are not zero, as one
might naively expect. For example, in case of f4 one gets

C
f4
2 = C2, (C9)

C
f4
3 = C3, (C10)

C
f4
4 = C4, (C11)

C
f4
5 = −10C2C3, (C12)

C
f4
6 = −5

(
3C3

2 + 2C2
3 + 3C2C4

)
. (C13)

Finally let us prove that the first n factorial cumulants of
fn are indeed C1, C2, . . . , Cn. The proof is by induction. We
first show that the first n factorial cumulants fn+1 and fn are
identical. Then we use the result of Appendix B from [67],
that all the factorial cumulants of f∞ coincide with Ci (i =
1 . . . ∞) used to construct it. Let Fn(z) be factorial cumulant
generating function of fn,

Fn(z) = log

( ∞∑
k=0

fn(k)(z)k
)

. (C14)

Then Fn+1 and Fn are connected by

eFn+1(z) = eFn(z) + A

∞∑
k=0

∇n+1πμ(k)(z)k

= eFn(z) + A(1 − z)n+1eμ(z−1), (C15)

where A is some expression containing the factorial cumu-
lants, C1 . . . Cn+1, [see, e.g., Eq. (C8)] and thus is a real
number independent on z and k. Then

Fn+1(z) = Fn(z) + log(1 + A(1 − z)n+1eμ(z−1)−Fn(z) ),

(C16)

and one can see that the Taylor expansion of the second term
in z around z = 1 starts with the power n + 1, since Fn(z) is a
polynomial in z − 1. Therefore, the first n factorial cumulants
of fn+1 and fn are identical. In other words, adding terms
of order larger than n does not change the first n factorial
cumulants. Hence, since f∞ and fn coincide up to order n,
their first n factorial cumulants are identical and equal to
C1, . . . , Cn.

Unfortunately, fn(k) is not always a proper probability
mass function, because it can become negative. So one needs
to explicitly verify if a given expansion is actually positive
definite. The resulting distribution based on the STAR fac-
torial cumulants, Eq. (12), is indeed positive definite and, of
course, normalized as proven above.
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