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Cumulants of the baryon number from central Au+Au collision at Elab = 1.23 GeV/nucleon
reveal the nuclear mean-field potentials
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Fluctuations of the baryon number in relativistic heavy-ion collisions are a promising observable to explore
the structure of the QCD phase diagram. The cumulant ratios in heavy-ion collisions at intermediate energies
(
√

sNN < 5 GeV) have not been studied to date. We investigate the effects of mean-field potential and clustering
on the cumulant ratios of baryon and proton number distributions in Au+Au collisions at beam energy of
1.23 GeV/nucleon as measured by the HADES Collaboration at GSI. Ultrarelativistic quantum molecular
dynamics (UrQMD) and the JAM model are used to calculate the cumulants with different mean-field potentials.
It is found that the cumulant ratios are strongly time dependent. At the early stage, the effects of the potentials
on the fluctuations of the particle multiplicity in momentum space are relatively weak. The mean fields enhance
the fluctuations during the expansion stage, especially for small rapidity acceptance windows. The enhancement
of cumulant ratios for free protons is strongly suppressed as compared to that for all baryons. The mean-field
potentials and the clustering play an important role for the measured cumulant ratios at intermediate energy.

DOI: 10.1103/PhysRevC.98.054620

I. INTRODUCTION

The major motivation to study relativistic heavy-ion col-
lisions (HICs) is to explore the QCD phase diagram and to
reveal the properties of the dense matter formed, e.g., of the
quark-gluon plasma (QGP). It is known from lattice QCD, at
zero baryon chemical potential (μB), that the transition from
hadronic matter to a QGP is a smooth crossover. Theoretical
studies suggest that a first-order phase transition may exist
at large baryon chemical potentials μB , with a QCD critical
point (the endpoint of the first-order phase boundary) at a
certain temperature TC and μC [1–3]. So far, the existence of
the conjectured critical point is an important open issue [4].
QCD matter off the ground state, can be created at different
T and μB by varying the colliding systems size, beam energy,
and impact parameters, to search for the critical endpoint. This
is one of the prime goals of the Beam-Energy Scan (BES)
program at Relativistic Heavy Ion Collider (RHIC) [5–9], the
NA61 experiment at the CERN-SPS [10], the HADES and
CBM experiments at GSI and FAIR [11], as well as dedicated
future programs at NICA [12] and J-PARC [13].
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To determine the critical point from HICs, the fluctuations
of conserved charges, which are sensitive to the correlation
length ξ in (QCD) matter, have been conjectured as a promis-
ing observable [14,15]. The divergence of ξ results in critical
phenomena near the critical point, see, e.g., [16–26].

The STAR Collaboration has measured the fluctuations
of net-proton, net-charge, and net-kaon number in Au+Au
collisions from

√
sNN = 7.7–200 GeV. A flat beam-energy

dependence of net-charge and net-kaon number fluctuations
was observed, while preliminary data on the kurtosis (κσ 2) of
net protons show a nonmonotonic behavior as a function of
beam-energy in the most central Au+Au collisions [27–31].
This interesting nonmonotonic behavior is a strong motivation
for the BES-II program at RHIC. The STAR Collaboration
has proposed to measure cumulants in Au+Au collision
from

√
sNN = 7.7–19.6 GeV. Fixed target experiments from√

sNN = 2.7–4.9 GeV have been proposed at the Compressed
Baryonic Matter (CBM) detector at the future Facility for
Antiproton and Ion Research (FAIR) [11] adjacent to GSI.

At intermediate energies, from 0.1–2 GeV/nucleon, at the
present Schwer-Ionen Synchrotron (SIS) accelerator at GSI,
the higher moments of the proton number distribution in
Au+Au collisions at beam energy of 1.23 GeV/nucleon have
been measured by the HADES Collaboration. Here one does
not expect a phase transition from dense nuclear matter to
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a quark gluon plasma to have occurred yet, but one expects
the system to be dominated by strong nuclear interactions.
Understanding the effects of these nuclear interactions is
essential for the interpretation of the data and a comparison
to data at higher beam energies, which is presently discussed.
We would like to stress that the goal of this paper is not to
aim at a transport description of the chiral or deconfinement
phase transition of QCD (as attempted in Ref. [32]), but to un-
derstand the contribution of nuclear interactions on fluctuation
observables. At SIS18 energies, nuclear matter with densities
of twice to three times saturation density is created and a large
fraction of the emitted protons and neutrons at midrapidity
is bound in fragments. Both the collective flow (v1 and v2)
and the baryon stopping reach their maximum here. Thus,
the higher moments of the proton number distribution at SIS
energies are more complicated to evaluate. Higher moments
of the net-proton number distribution are also influenced by
other effects, such as system volume fluctuations [33,34],
efficiency corrections [21,35], baryon clustering [36], global
charge conservation [37], etc. The ultrarelativistic quantum
molecular dynamics (UrQMD) model has been used to study
the higher-order cumulants of net protons in Au+Au colli-
sions at a beam energy of Elab = 1.23 GeV/nucleon. The nu-
clear interactions have shown sizable effects on the cumulant
ratios [38].

In the present work, the multiplicity distributions of
baryons and protons at central Au+Au collisions at beam
energy Elab = 1.23 GeV/nucleon are calculated with the
UrQMD model and different mean-field potentials and nu-
clear clustering effects are studied. The difference of the
cumulants calculated for all baryons and free baryons (where
baryons inside clusters are subtracted) is found to be large.

II. URQMD MODEL

The UrQMD model is a microscopic many-body transport
approach in which each hadron is represented by a Gaussian
wave packet in phase space. The time evolution of the cen-
troids (ri and pi) of the Gaussians obey Hamilton’s equations,

ṙi = ∂〈H 〉
∂pi

, ṗi = −∂〈H 〉
∂ri

. (1)

Here 〈H 〉 is the total Hamiltonian function of the system, it
consists of the kinetic energy of the particles and the effective
interaction potential energy. The importance of the mean-field
potential for describing HICs has been extensively studied
[39–44]. For studying HICs at SIS energies, the following
density and momentum dependent potential has been widely
used [44–46],

U = α

(
ρ

ρ0

)
+ β

(
ρ

ρ0

)γ

+ tmd ln2[1 + amd (pi − pj )2]
ρ

ρ0
.

(2)
Here α, β, γ, tmd , and amd are parameters that can be ad-
justed to yield a different nuclear incompressibility (K0)
for isospin symmetric nuclear matter. In this treatment, the
gradient [see Eq. (1)] of the net-baryon density ρ, effec-
tively introduces a finite-range interaction through the treat-
ment of baryons as Gaussian wave packets. This finite-range

TABLE I. Parameter sets of the nuclear equation of state.

EoS K0(MeV) α(MeV) β(MeV) γ tmd (MeV) amd ( c2

GeV 2 )

SM 200 −393 320 1.14 1.57 500
H 300 −165 126 1.676 − −
HM 380 −138 60 2.084 1.57 500

interaction is attractive for dilute systems and repulsive for
dense systems. Thus, it can be essential for the formation of
correlations over long distances.

In order to study the influence of different nuclear mean-
field potentials on higher moments of the multiplicity dis-
tribution, the so-called soft and momentum-dependent (SM),
hard and momentum-dependent (HM), as well as the hard and
momentum-independent (H) nuclear potentials are chosen.
The set of parameters is displayed in Table I. Those parameter
sets have been widely used in studying mean-field potential
effects in HICs at intermediate energies [46].

As it can be important for the fluctuations we should note at
this point that the momentum-dependent potentials do violate
the conservation of energy by a few percent. While strictly this
should have effects on the fluctuations of baryons, practically
the conservation of the baryon number and charge, which are
enforced strictly, are more important.

Besides the nuclear mean-field potential, a short-range
stochastic scattering between two particles is also neces-
sary in the transport model to compensate the strong re-
pulsive short-range component of the nuclear interaction. It
is well known that the in-medium nucleon-nucleon elastic
cross section should be smaller than the free one [47–49].
Thus, in the present version of the UrQMD model, a density
and momentum-dependent in-medium correction factor on
the free elastic cross section is applied. Details about the
in-medium nucleon-nucleon cross section can be found in
Ref. [50]. At SIS energies, a large fraction of protons (neu-
trons) is bound in light fragments, e.g., in central Au+Au col-
lision at Elab = 1.2 GeV/nucleon, the percentage of protons
bound into clusters is about 40% [51]. Therefore, a proper
treatment of the clustering process is necessary. In this work,
an isospin-dependent minimum spanning tree method [52] is
used to recognize nuclear clusters at the end of the simulation.
In this method, if the relative distance between two protons
or two neutrons (neutron and protons) is smaller than 2.8 fm
or 3.8 fm, and the relative momentum is smaller than 0.25
GeV/c, they are considered to belong to the same cluster. It
has been found that by properly adjusting these parameters,
the fragment mass distribution in intermediate energy HICs
can be reproduced [53–56].

At the beam energy studied in this work, the contributions
from inelastic nucleon-nucleon collisions cannot be neglected.
For central Au+Au collision at 1.2 GeV/nucleon, the multi-
plicities of π+ and π− are approximately 14 and 24, respec-
tively. This implies that some of neutrons will be converted
into protons through inelastic collisions to ensure total charge
conservation. This will have an influence on the multiplicity
fluctuations of protons and neutrons, which can be observed
in our results.
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III. FLUCTUATIONS

In the grand-canonical ensemble, fluctuations of conserved
charges can be characterized by susceptibilities, which are the
derivatives of the partition function ln Z with respect to the
corresponding chemical potential,

χ
q
i = ∂[ln Z(V, T , μq )/V T 3]

∂[μq/T ]i
. (3)

In the grand-canonical ensemble these are related to the cumu-
lants of particle multiplicity distributions on an event-by-event
basis:

C1 = M = 〈N〉, C2 = σ 2 = 〈(δN )2〉,
C3 = Sσ 3 = 〈(δN )3〉. (4)

Here δN = N − 〈N〉 with N being the number of particles in
a given acceptance window (e.g., the rapidity or the transverse
momentum window) for a single event. M is the mean value,
σ is the standard deviation and S is the skewness, which
measures the degree of asymmetry of a distribution. Usually,
the ratios of cumulants are constructed to cancel the unknown
volume dependence and directly compared with theoretical
calculations of susceptibilities,

C2/C1 = σ 2/M, C3/C1 = Sσ 3/M,

C3/C2 = Sσ. (5)

According to the Delta theorem [57], the statistical error of the
cumulants and their ratios can be approximated as follows:

error(Cr ) ∝ σ r/
√

n,

error(Cr/C2) ∝ σ (r−2)/
√

n. (6)

Here n is the total number of events.

IV. NUMERICAL RESULTS

The degree of stopping reaches a maximum at SIS en-
ergies. Hence, we first investigate the influence of different
mean-field potentials on the stopping [51,58,59]. The degree
of stopping can be measured by varxz, the ratio of the width
of the transverse (usually refers to the x direction) rapidity
distribution over that of the longitudinal (the z direction)
rapidity distributions, defined as [51],

varxz =
〈
y2

x

〉
〈
y2

z

〉 . (7)

Here

〈
y2

x,z

〉 =
∑(

y2
x,zNyx,z

)
∑

Nyx,z

, (8)

where 〈y2
x 〉 and 〈y2

z 〉 are the widths of the rapidity distributions
of particles in the x and z directions, respectively. Nyx

and
Nyz

denote the numbers of particles in each yx and yz bins.
Thus, in the case of full stopping: varxz = 1, while full
transparency yields varxz = 0.

In this work, we focus on central Au+Au collisions at a
beam energy of 1.23 GeV/nucleon, as defined by the impact
parameter b = 0 fm. Experimentally measured centrality bins

FIG. 1. Yield distributions of all baryons as functions of the
reduced longitudinal (yz/yb, filled squares) and transverse (yx/yb,
open circles) rapidities from central Au+Au collisions at beam
energy of 1.23 GeV/nucleon. Calculations with the soft momentum-
dependent (SM), the hard momentum-dependent (HM), and the hard
without momentum-dependent (H) mean-field potentials are com-
pared to calculation without mean-field potential (cascade mode).
The corresponding values of varxz are also shown. The error bars
are smaller than the symbols size.

are usually different, depending on the experiment and/or
method used. In the current work we will not go into a detailed
discussion on the effects of different centrality determinations,
as it has been done already in the past (see, e.g., Refs. [60,61]).
For each of the different potentials presented, 2 × 106 events
were simulated. The total propagation time was 100 fm/c,
unless explicitly stated otherwise. Figure 1 shows the yield
distributions of all baryons for head-on (b = 0 fm) Au+Au
collisions. Clearly, the rapidity distributions are influenced
by the mean-field potential. The degree of stopping is much
larger for the HM than that in the cascade mode, due to
the strong repulsive interaction at the high-density phase,
in the case of the HM. It is evident that the mean-field
potential also has a strong effect on the clustering. This will
influence the measurable cumulant ratios, as we will see
later.

A. Final results on baryon number cumulants

Figures 2 and 3 display the cumulants and their ratios
for all baryons in different rapidity window �y0 (around
midrapidity). Here y0 is the scaled rapidity divided by the
beam rapidity in the c.m. frame of the collision: y0 = y/yb.

We also compare the cumulants from the transport simu-
lations with a binomial baseline. This baseline essentially as-
sumes uncorrelated baryon emission, while enforcing global
baryon number conservation. C2 and C3 for the binomial
distribution are obtained by

C2 = Np(1 − p) (9)

C3 = Np(1 − 2p)(1 − p), (10)
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FIG. 2. Rapidity dependence for the cumulants (C1–C3) of all
baryons produced in central Au+Au collisions at beam energy of
1.23 GeV/nucleon. Results have been calculated with SM, HM, and
H potentials as well as in the cascade mode (solid symbols). The
results are compared to a baseline from the binomial distribution
(open symbols). Error bars for all data shown, are smaller than the
symbol sizes.

with N = 394 being the total baryon number and p = C1/N
being the average fraction of baryons in the given acceptance.
Here C1 is taken from simulation in the cascade mode. We
have found that the baseline of the binomial distribution will
not change much if C1 is taken from different scenarios.
Hence only the baselines of the cascade mode are shown.

In general, the results obtained for different mean-field
potentials as well as those without mean-field potential (cas-
cade mode) have analog features (e.g., C2 first increases with
the rapidity window up to a maximum then decreases. Both
C2/C1 and Sσ show a monotonous decrease with the rapidity
window, while C3/C1 first decreases with increasing accep-
tance, up to a minimum and then increases). On the other hand
the magnitude of the change of the cumulants and their ratios
varies drastically for the different potential implementations.
While the momentum dependent potentials essentially give
the same result, they also show the largest deviation from
the binomial baseline. The momentum-independent potentials
give results that are closer to those of the cascade version of
the model. In particular, for small rapidity windows �y0 ≈
0.4, C2/C1, C3/C1, and Sσ calculated with mean-field po-
tentials (i.e., SM, HM, and H) are larger than the binomial

FIG. 3. Rapidity dependence for the cumulant ratios
(C2/C1, C3/C1, Sσ ) of all baryons produced in central Au+Au
collisions at beam energy of 1.23 GeV/nucleon. Results have been
calculated with SM, HM, and H potentials as well as in the cascade
mode (solid symbols). The results are compared to a baseline from
the binomial distribution (open symbols). Error bars for all data
shown, are smaller than the symbol sizes.

baseline, while the ones calculated in the cascade mode are
smaller than the binomial baseline.

The increased cumulant ratios in calculations with the
mean-field potentials indicates that the nuclear interaction
enlarge the correlation (i.e., the fluctuation of δN) in each
rapidity window. This is due to the attractive nature of the
interaction at smaller densities near freeze-out. For larger
rapidity windows, the differences in the cumulant ratios
among different calculations steadily decrease, and their val-
ues approach the limiting values obtained from the binomial
distribution for p = 1, i.e., C2/C1 = C3/C1 = 0, and Sσ =
−1, due to the dominant contribution from baryon conser-
vation. In addition, as �y0 becomes larger than the corre-
lation length of the potential interaction, the effect will also
decrease.

The fact that the cumulant ratios calculated with SM and
HM are very close to each other even though the difference
in the nuclear incompressibility K0 is as large as 180 MeV,
while the results obtained with H do not track closely with
the results of HM illustrate, that the cumulant ratios are less
sensitive to the incompressibility K0 but more sensitive to the
momentum-dependent component of the nuclear potential.
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FIG. 4. Time evolution for the cumulants (C1, C2, and C3) of all
baryons at midrapidity produced from central Au+Au collisions at
beam energy of 1.23 GeV/nucleon. Results have been calculated
with HM and SM potentials as well as in the cascade mode (solid
symbols). Error bars are smaller than symbols size.

B. Understanding the time evolution of the cumulants

In order to better understand the mean-field effects on
the cumulant ratios, the results at various time points are
displayed in Figs. 4 and 5. The rapidity window |y0| � 0.1
is chosen to weaken the influences of baryon number conser-
vation. Comparing with the binomial baseline, the different
deviations imply different correlations. In the early stage (t �
15 fm/c), which corresponds to the compression period, the
cumulant ratios obtained from HM, SM and cascade mode are
very close to each other, and decrease with increasing time
because of the increased baryon number in the midrapidity
region. Our previous work [38] found that the cumulant ratios
in the coordinate space are significantly influenced by the
mean-field potential at an early stage. This makes sense, as the
correlations are first spacelike and need to be transformed to
momentum-space correlations at a later time. At t � 15 fm/c,
the compressed matter begins to expand, the magnitudes of
the cumulant ratios obtained with the mean fields (HM and
SM) increase with increasing time and saturate at a larger
value, while these obtained with the cascade mode as well as
the binomial distribution baseline almost remain constant. The
enhanced magnitude of the cumulant ratios in the presence of
mean-field potential also can be observed in a larger rapidity
acceptance window. Since at late times most of the collision

FIG. 5. Time evolution for the cumulants ratios (C2/C1, C3/C1,
and Sσ ) of all baryons at midrapidity produced from central Au+Au
collisions at beam energy of 1.23 GeV/nucleon. Results have been
calculated with HM and SM potentials as well as in the cascade
mode (solid symbols). Error bars are smaller than symbols size.
The results are compared to the baseline of the binomial distribution
(open symbols).

have ceased, the momentum of particles will not be modified
too much in the absence of mean-field potential, thus the
cumulant ratios remain constant in the cascade mode. In the
presence of mean-field potential (SM and HM), the momen-
tum of particles could be influenced by surrounding particles
through the nuclear interaction. Figures 4 and 5 show that the
nuclear interaction will enhance the momentum correlation of
nucleons in the freeze-out stage. When the system becomes
dilute at late times, subsaturation density is reached, the
long-range attractive interaction dominates, which leads to
a positive correlation between baryons, thus it increases the
C2/C1. In addition, the results for SM increase faster than that
for HM, because SM yields a stronger attractive potential at
low densities.

C. Model dependence

The extracted values of the cumulants may depend on the
parameters and details of the potential implementation. To
study the model dependence on the cumulants, we plot in
Fig. 6, the C2/C1 of all baryons from the transport model
JAM. A detailed description of JAM can be found in Ref. [62].
We use the parameter set for the potentials, which was found
in Ref. [63]. Previously, JAM was applied for higher beam
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FIG. 6. Time evolution for C2/C1 of all baryons from JAM.
Calculations with momentum-dependent hard (MH) and soft (MS)
potentials are compared to the result obtained with cascade mode.

energies (
√

sNN = 5 GeV), and it was found that nuclear
potential effects are very small for the cumulants [64] at
these energies. The implementation of hadronic mean field in
JAM is different from that in UrQMD; JAM uses the same
Skyrme-type density-dependent potential as UrQMD, but it
uses the Lorentzian-type momentum-dependent potential. In
addition, potentials in JAM are implemented as scalar, based
on the simplified version of relativistic molecular dynamics
(RQMD/S) [65,66].

Regardless of the difference of the detailed implementa-
tions, the results from the two models are almost entirely
consistent with each other, i.e„ after t � 20 fm/c, C2/C1

increases with increasing time in the presence of mean-field
potential, while it remains constant in the calculation without
mean-field potential. The hard potential results in a smaller
value of C2/C1 than the soft one. These similar results from
two transport models manifest that mean-field potential plays
important role on C2/C1, while other physical ingredients
of the transport models do not significantly affect C2/C1.
Moreover, it can be seen that the effect of the Coulomb
potential on C2/C1 of all baryons is very small.

D. Effects of cluster formation

At the beam energy of 1.23 GeV/nucleon, multifragmenta-
tion is one of the main features and a large number of baryons
belongs to fragments. In a previous study it was claimed that
the formation of nuclear clusters can have a significant impact
on the measured cumulant ratios [67]. However, the previous
study was rather simplified and effects of conservation laws
were neglected. Thus it is important to study the cumulant
ratios for free baryons (baryons that do not form a cluster)
within a microscopic model as UrQMD. The results of our
study are shown in Figs. 7 and 8. It can be seen that the
magnitude of the cumulant ratios for free baryons is also
enhanced by the mean-field potential, as compared to the
cascade simulation, similar to what was shown in Fig. 2. A
stronger attractive potential will thus yield more clusters. The
mean value (C1) obtained from the cascade mode is the largest
one and the one obtained with SM is the smallest one. On the

FIG. 7. Rapidity dependence for the cumulants (C1–C3) of free
baryons, i.e. excluding all baryons that are in a cluster, produced
in central Au+Au collisions at beam energy of 1.23 GeV/nucleon.
Results have been calculated with SM, HM and H potentials as well
as in the cascade mode (solid symbols). Error bars for all data shown,
are smaller than the symbol sizes.

other hand, the higher cumulants obtained from the cascade
mode are the smallest, which is similar to the result for all
baryons.

The general trends of the cumulant and cumulant ratios for
free baryons are analogous to that for all baryons, but the
cumulant ratios will no longer approach the binomial limit
for large rapidity acceptances, since the free baryon number
is no longer conserved. On the other hand a clear difference
between the calculation with the soft and hard momentum-
dependent potentials appears. Thus, the momentum depen-
dence likely leads to a difference in cluster formation.

To understand this difference we show in Fig. 9, the
cumulant ratios for free baryons and all baryons as a function
of C1, nearly the same as in Figs. 3 and 8, but the �y0 on the
x axis is replaced with the mean number (C1). We find that
the difference in the HM and SM results are mainly due to the
difference in C1, which is caused by a different clusterization
with various mean-field potentials.

The difference in the cluster formation for the HM and SM
potentials is shown in Fig. 10. There also the results on the
cumulant ratios for all baryons are directly compared to the
ratios for free cumulants. If the results would lie on the diag-
onals, no effect of the clustering would be observed. Points
that lie below the diagonals indicate a suppression of the
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FIG. 8. Rapidity dependence for the cumulant ratios
(C2/C1, C3/C1, Sσ ) of free baryons, i.e., excluding all baryons
that are in a cluster, produced in central Au+Au collisions at beam
energy of 1.23 GeV/nucleon. Results have been calculated with
SM, HM, and H potentials as well as in the cascade mode (solid
symbols). Error bars for all data shown, are smaller than the symbol
sizes.

cumulant ratio with respect to all baryons, while points that
lie above the diagonal show an enhancement with respect to
all baryons. One observes large deviations from the diagonals
for all potential models. The ratio between the free baryons
and all baryons in the case of SM show the largest deviations
from the diagonals as there are five times more clusters created
than in the cascade simulation.

Consequently, the cumulant ratios depend mainly on C1.
The C1 dependence also implies that the cumulant ratios
for free baryons are less sensitive to the equation of state
(EoS). For small C1 values (small �y0), the magnitude of
the cumulant ratios for free baryons is smaller than that for
all baryons, this qualitatively agrees with the result presented
in Ref. [67], where a strong reduction of cumulant ratio at
midrapidity in the presence of deuteron formation was shown.
The reason for this effect is that the coalescence mechanism
selectively removes baryons, which are close in phase space,
i.e., give a positive contribution to the correlation function
and thus to the scaled variance. The remaining free baryons
are therefore less correlated in phase space and consequently
have a smaller cumulant ratio. However, for large values of
C1 the effect is reversed and the cluster formation leads to an
increase in the cumulant ratio. This effect can be understood

FIG. 9. The cumulant ratios (C2/C1, C3/C1, Sσ ) of free
baryons (solid symbols) and all baryons (open symbols) as a function
of C1. When plotted as function of C1, the cumulant ratios for HM
and SM parametrizations essentially agree with one another.

as a relaxation of the strict baryon number conservation for
the free baryons, which becomes more relevant for larger
�y0. These results manifests that the clusterization effect also
plays an important role on the cumulant ratios of free baryons
distributions.

FIG. 10. Comparison of the cumulant ratios for all baryons vs
free baryons. The diagonals are drawn to guide the eye. Mostly, an
enhancement of the cumulant ratio with respect to all baryons is
observed.
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FIG. 11. Rapidity dependence for the cumulant ratios of free
protons (protons that are not bound in clusters) produced in central
Au+Au collisions at beam energy of 1.23 GeV/nucleon. Results
have been calculated with SM, HM, and H potentials as well as in
the cascade mode. Again, the differences between the cumulants for
the different model setups is strongly decreased due to the almost
random isospin distribution.

E. Results for free protons

In the CBM and HADES experiments, the fluctuation of
net-proton number is used as the proxy observable for net-
baryon number as they cannot measure neutrons. Thus, it is
necessary to present the cumulant ratios for free protons, as
shown in Fig. 11. The cumulant ratios of free protons would
be affected by the isospin randomization [e.g., neutron (pro-
ton) can be converted to proton (neutron) through the inelastic
nucleon-nucleon collision] and the clusterization (i.e., a large
fraction of protons is clustered in fragments).

In Ref. [68], a set of formulas have been derived to convert
the measured net-proton cumulants to the net-baryon cumu-
lants by taking the effects of isospin exchange. In HICs, based
on the assumption that the nucleons tend to completely forget
their initial isospin, these formulas are expected to hold for√

sNN > 10 GeV. The assumption is likely not true anymore
at intermediate energies due to the fact that the collision is
not violent enough for the nucleons to completely lose the
information on their initial isospin, i.e., 〈Np〉 �= 1

2 〈NB〉.
In the UrQMD simulations, the cumulant ratios for free

protons decrease monotonically with an increasing size of the
rapidity window, which is similar to the behavior of the free
baryons. However, the differences in the cumulant ratios for

free protons between the different potentials becomes much
smaller compared to that for free baryons or all baryons. The
enhancements contributed from the mean-field potentials still
can be observed. Though, no cumulant ratios exceeds the
value of 1.

V. SUMMARY

The cumulant ratios for all baryons, free baryons, and
free protons in central Au+Au collisions at a beam energy
of 1.23 GeV/nucleon are investigated in the UrQMD and
JAM models. Calculations with the soft and hard momentum-
dependent (SM, HM) nuclear potential, and the hard potential
without momentum dependence (H), are compared to each
other and to the calculation without any mean-field potential.

The cumulant ratios depend strongly on the reaction time:
For early times, i.e., before 15 fm/c, the cumulant ratios
obtained from HM, SM, and cascade mode lie very close
to each other in the momentum space. Their magnitudes are
all smaller than the binomial baseline. During the subsequent
expansion stage, after 15 fm/c, the mean-field potentials en-
hance the magnitude of the cumulant ratios. This is predicted
by both the UrQMD model and the JAM model. A strong
enhancement of the magnitude of the cumulant ratios of all
baryons and of free baryons is clearly predicted for small
rapidity acceptance when the mean-field potentials are taken
into account. The enhancements are strongly reduced for free
protons. The cumulant ratios of all baryons are less sensitive
to the density-dependent component of the nuclear potential
but more sensitive to its momentum-dependent component.
The results of free baryons vs. those of all baryons show
suppressed cumulant ratios for free baryons only at small
rapidity windows. Here the effects of the baryon number
conservation are less important. For large rapidity windows,
clustering actually decreases the effects of the conservation
laws. Therefore, the cumulants increase. Both the mean field,
in particular its momentum-dependent potential, and the clus-
tering play important roles in the cumulant ratios at interme-
diate energy heavy-ion collisions. In future studies we plan to
investigate the beam energy and centrality dependence of the
cumulant ratios, especially for lower beam energies, where a
phase transition should also be signaled by a deviation of the
fluid-dynamical scaling behavior [69].
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