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Extended Skyrme interactions for transport model simulations of heavy-ion collisions
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Based on an extended Skyrme interaction that includes the terms in relative momenta up to sixth order,
corresponding to the so-called Skyrme pseudopotential up to next-to-next-to-next-to leading order (N3LO),
we derive the expressions of Hamiltonian density and single-nucleon potential under general nonequilibrium
conditions which can be applied in transport model simulations of heavy-ion collisions induced by neutron-rich
nuclei. While the conventional Skyrme interactions, which include the terms in relative momenta up to second
order, predict an incorrect behavior as a function of energy for nucleon optical potential in nuclear matter,
the present extended N3LO Skyrme interaction can give a nice description for the empirical nucleon optical
potential. We also construct three interaction sets with different high-density behaviors of the symmetry energy
by fitting both the empirical nucleon optical potential up to energy of 1 GeV and the empirical properties of
isospin asymmetric nuclear matter. These extended N3LO Skyrme interactions will be useful in transport model
simulations of heavy-ion collisions induced by neutron-rich nuclei at intermediate and high energies, and they
can also be useful in nuclear structure studies within the mean-field model.
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I. INTRODUCTION

One of primary goals of nuclear physics is to study the
in-medium nuclear effective interactions. These studies help
us to understand the properties of neutron-rich nuclear matter
at both subsaturation and suprasaturation densities, which
are of fundamental importance in nuclear physics and as-
trophysics to investigate the properties of various nuclear
systems or nuclear processes [1–15], e.g., heavy-ion colli-
sions induced by neutron-rich nuclei, the properties of nu-
clei close to the drip lines, the nucleosynthesis in different
astrophysical sites, the structure of compact stars, and the
explosion mechanism of supernova. The equation of state
(EOS) is one of basic properties of nuclear matter, and it
is conventionally defined as the binding energy per nucleon.
While the EOS of symmetric nuclear matter has been rel-
atively well constrained, even up to about five times nu-
clear saturation density (ρ0) by analyzing the experimental
data on giant resonances of finite nuclei [16–19] as well
as the collective flows and kaon production in heavy-ion
collisions [2,20,21], the isospin-dependent part of the EOS
of isospin asymmetric nuclear matter, which is described by
the symmetry energy, is still largely uncertain, especially for
its suprasaturation density behaviors (see, e.g., Ref. [10,22]).
Determining the density dependence of the symmetry energy
provides the main motivation of many radioactive beam fa-
cilities around the world, such as CSR/Lanzhou and BRIF-
II/Beijing in China, SPIRAL2/GANIL in France, FAIR/GSI
in Germany, SPES/LNL in Italy, RIBF/RIKEN in Japan,
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RAON in Korea, and FRIB/NSCL and T-REX/TAMU in the
USA.

At subsaturation densities, information on the EOS of
neutron-rich nuclear matter or the symmetry energy can be
obtained from analyzing experimental data either from finite
nuclei, e.g., the binding energy, the charge radius as well as
the isovector modes of resonances [23–27], or from heavy-ion
collisions (HICs) induced by neutron-rich nuclei at intermedi-
ate energies, such as collective flows and particle production
[4,7,28–31]. As for the exploration of the suprasaturation den-
sity behaviors of the symmetry energy, heavy-ion collisions
at intermediate to high energies turn out to be a unique tool
in terrestrial labs [32–39]. Theoretically, microscopic trans-
port models, e.g., the Boltzmann-Uehling-Uhlenbeck (BUU)
equation [40] and the quantum molecular dynamics (QMD)
model [41], provide a powerful tool to extract information
on nuclear matter EOS from analyzing data in heavy-ion
collisions [42,43]. The microscopic transport models can be
also applied to describe some dynamical properties of finite
nuclei, e.g., the giant or pygmy resonances [44–50]. The basic
input in one-body transport model (e.g., the BUU equation)
is the single-nucleon potential (nuclear mean-field potential)
under nonequilibrium conditions since the reaction system in
the dynamical process of heavy-ion collisions is generally
far from equilibrium. Due to the exchange term of finite-
range nuclear interaction, intrinsic momentum dependence
of nuclear interaction, nuclear short-range correlations, and
other possible contributions, the single-nucleon potentials are
generally dependent on nucleon momentum [51–53], and this
is also evident from the observed momentum/energy depen-
dence of nucleon optical model potential. In the past few
decades, many momentum-dependent mean-field potentials
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have been constructed and developed and extensively em-
ployed to study both nuclear matter and heavy-ion collisions
[30,54–65].

Most of momentum-dependent mean-field potentials so
far applied in transport model simulations for heavy-ion
collisions are parameterized phenomenologically and they
are difficult to be directly used in mean-field calculations
for finite nuclei. Therefore, it is interesting and construc-
tive to use the same effective interaction to describe the
properties of both finite nuclei and heavy-ion collisions
on the same footing. By doing this, experimental observ-
ables from finite nuclei and heavy-ion collisions will pro-
vide crosschecks for the single-nucleon potentials and thus
obtain more reliable information on the in-medium nu-
clear effective interactions and the associated nuclear matter
EOS.

The Skyrme interaction [66,67] is perhaps the most popular
nuclear effective interaction in nuclear physics, and it has
been used very successfully in describing the ground-state and
lowly excited state properties of finite nuclei in mean-field
calculations [68,69] as well as in the study of heavy-ion
collisions at low energies in time-dependent Hartree-Fock
(TDHF) calculations [70,71]. Unfortunately, the conventional
Skyrme interactions [72–75] (and their various variants, see,
e.g., Refs. [76,77]), which include only the terms in relative
momenta up to second order, cannot be applied in transport
model simulations of heavy-ion collisions at higher energies
(above about 300 MeV/nucleon) since the predicted simple
parabolic form as a function of momentum for nucleon mean-
field potential fails to reproduce the empirical results on the
nucleon optical potential obtained by Hama et al. [78,79]. This
hinders the application of the Skyrme interaction in transport
model simulations of heavy-ion collisions at intermediate and
high energies.

In the present work, we demonstrate that the recently de-
veloped effective Skyrme pseudopotential [80,81], which in-
cludes additional higher-order derivative terms (higher-power
momentum dependence) in the conventional Skyrme inter-
actions, may overcome the shortcoming of the conventional
Skyrme interactions and can give a nice description for the
empirical nucleon optical potential up to energy of 1 GeV.
This provides the possibility to study structure properties
of finite nuclei and heavy-ion collisions at incident energy
up to about 1 GeV/nucleon (where the nuclear matter with
about 3ρ0 can be formed during the collisions [82]) on the
same footing by using the same nuclear effective interaction.
In particular, based on the Skyrme pseudopotential up to
next-to-next-to-next-to leading order (N3LO) that includes the
terms in relative momenta up to sixth order, we derive the
Hamiltonian density and isospin- and momentum-dependent
single-nucleon potential under general nonequilibrium con-
ditions which can be applied in one-body transport model
simulations of heavy-ion collisions induced by neutron-rich
nuclei. Furthermore, three new parameter sets are obtained
by considering the empirical properties on both EOS of
asymmetric nuclear matter and single-nucleon potential up to
energy of 1 GeV.

The paper is organized as follows: In Sec. II, we in-
troduce the Skyrme pseudopotential up to N3LO and de-
rive the expressions of the Hamiltonian density and isospin-
and momentum-dependent single nucleon potential under
general nonequilibrium conditions. In Sec. III, we present
the experimental data and constraints adopted in our fit-
ting and give three new interaction parameter sets of the
extended Skyrme interactions. The properties of cold nu-
clear matter, including the EOS and single-particle behav-
iors of the newly constructed interactions, are presented
in Sec. IV. Finally, we summarize our conclusions and
make a brief outlook in Sec V. We present in Appendix
some details of the derivation for the Hamiltonian density
with the extended Skyrme interaction used in the present
work.

II. THEORETICAL FRAMEWORK

A. N3LO Skyrme pseudopotential

Effective interactions with quasilocal operators depending
on spatial derivatives are conventionally called as pseudopo-
tential. In pervious literatures [80,81], the Skyrme interaction
has been recognized as the pseudopotential with which a
quasilocal nuclear energy-density functional (EDF) can be
derived when averaged within the Hartree-Fock (HF) approx-
imation, and a mapping has been established from the N3LO
local EDF [80] to Skyrme interaction with additional fourth
and sixth-order derivative terms. This is rather important since
the quasilocal EDF based on the density-matrix expansion
provides an efficient way to investigate the universal EDF of
nuclear system. On the other hand, the similar pseudopotential
containing derivative terms have also been developed pertur-
batively up to N3LO (sixth-order derivative terms) based on
harmonic-oscillator effective operators [83]. Since the precise
structure of nuclear EDF can be derived from low-energy
quantum chromodynamics (QCD) with chiral perturbation
theory [84–86], such a mapping from quasilocal EDF to
quasilocal effective interaction (Skyrme interaction) provides
an order-by-order way to examine the validity of each term
in the quasilocal effective interaction. The generalization of
Skyrme interaction with higher-order derivative terms, or usu-
ally called as Skyrme pseudopotential in previous literatures
[80,81], has been employed to describe EOS of nuclear matter
[87–91], as well as the properties of finite nuclei [92,93] ever
since it was introduced.

The N3LO Skyrme pseudopotential [80,81] is a general-
ization of the standard Skyrme interaction by adding terms
that depend on derivative operator (momentum operator) up to
sixth order, corresponding to the expansion of the momentum
space matrix elements of a generic interaction in powers of
the relative momenta up to the sixth order. In this sense,
the standard Skyrme interaction [72–75] is an N1LO Skyrme
pseudopotential. The full Skyrme pseudopotential generally
contains spin-independent, spin-orbit, and tensor components
(see, e.g., Refs. [80,81,88,90]). In the present work, we only
keep the spin-independent component and ignore the last two
components since they do not contribute to spin-averaged

054618-2



EXTENDED SKYRME INTERACTIONS FOR TRANSPORT … PHYSICAL REVIEW C 98, 054618 (2018)

quantities, on which we are focusing here. The corresponding Skyrme interaction used in this work is then written as

vSk = V C
N3LO + V DD

N1LO, (1)

with the central term

V C
N3LO = t0(1 + x0P̂σ ) + t

[2]
1

(
1 + x

[2]
1 P̂σ

)
1
2 ( �̂k′2 + �̂k2) + t

[2]
2

(
1 + x

[2]
2 P̂σ

)�̂k′ · �̂k + t
[4]
1

(
1 + x

[4]
1 P̂σ

)[
1
4 ( �̂k′2 + �̂k2)2 + ( �̂k′ · �̂k)2

]
+ t

[4]
2

(
1 + x

[4]
2 P̂σ

)
( �̂k′ · �̂k)( �̂k′2 + �̂k2) + t

[6]
1

(
1 + x

[6]
1 P̂σ

)
( �̂k′2 + �̂k2)

[
1
2 ( �̂k′2 + �̂k2)2 + 6( �̂k′ · �̂k)2

]
+ t

[6]
2

(
1 + x

[6]
2 P̂σ

)
( �̂k′ · �̂k)[3( �̂k′2 + �̂k2)2 + 4( �̂k′ · �̂k)2], (2)

and the density-dependent term

V DD
N1LO = 1

6 t3(1 + x3P̂σ )ρα ( �R). (3)

In the above expressions, P̂σ represents the spin exchange
operator defined as P̂σ = 1

2 (1 + σ̂1σ̂2), where σ̂1 and σ̂2 are
Pauli matrices acting on first and second state, respectively;

the �̂k′ and �̂k are derivative operators acting on left and right,

respectively, and they take the conventional form as −( �̂∇1 −
�̂∇2)/2i and ( �̂∇1 − �̂∇2)/2i, and �R = (�r1 + �r2)/2. In addition,
an overall factor δ̂(�r1 − �r2) should be understood in Eqs. (2)
and (3) but omitted here for the sake of clarity. The density-
dependent term V DD

N1LO is taken to be exactly the same as in the
standard Skyrme interaction (see, e.g., Refs. [74,75]), which is
introduced to phenomenologically mimic the effects of many-
body interactions. The t

[n]
i , x

[n]
i (n = 2, 4, 6 and i = 1, 2), t0,

t3, x0, x3, and α are Skyrme parameters, and the total number
of these parameters is 17 for the present effective interaction.

B. Hamiltonian density and single-nucleon potential in
one-body transport model

As mentioned earlier, the single-nucleon potential (nuclear
mean-field potential) is a basic input in one-body transport
model simulations of heavy-ion collisions. During heavy-ion
collision process, the nucleons are generally in the state far
from equilibrium, and in transport models they are described
by the phase-space distribution function (Wigner function)
fτ (�r, �p), with τ = 1 [or n] for neutrons and −1 [or p]
for protons. When the collision system approaches to equi-
librium, the nucleon distribution function fτ (�r, �p) becomes
the Fermi-Dirac distribution in momentum space. For the
single-nucleon potentials Uτ (�r, �p) used in one-body transport
model [40] which is to solve the time evolution of fτ (�r, �p), we
thus need to express Uτ (�r, �p) in terms of fτ (�r, �p). Similarly,
the Hamiltonian density H(�r ) of the collision system can be
also expressed in terms of fτ (�r, �p), and this is important
since we need it to check the energy conservation of the
collisions system during the time evolution in the transport
model simulations. Moreover, the Hamiltonian density H(�r )
is also a basic input in one-body transport model within
certain frameworks, e.g., the lattice Hamiltonian Vlasov
method [94].

In the present work, we derive H(�r ) and Uτ (�r, �p) in the
HF approximation with the extended Skyrme interaction, i.e.,
Eq. (1). The expectation value of the total energy of the

collision system can be obtained as

E =
∑

i

〈i| p2

2m
|i〉 + 1

2

∑
i,j

〈ij |vSk (1 − P̂MP̂σ P̂τ )|ij 〉

≡
∫

H(�r )d3r, (4)

where P̂M and P̂τ are the Majorana and isospin-exchange
operators, respectively. In the present work we focus on the
spin-averaged quantities, and omit all the other irrelevant
terms in the Hamiltonian density. It should be pointed out that
for the spin-dependent quantities, time-odd and other spin-
dependent terms can be important [95–101]. For some specific
quantities, for example, fusion barrier and cross section, even
tensor terms should be taken into consideration [102]. The
Hamiltonian density H(�r ) of the collision system with the
extended Skyrme interaction used in the present work can be
expressed as (detailed derivation can be found in Appendix)

H(�r ) = Hkin(�r ) + Hloc(�r ) + HMD(�r ) + Hgrad(�r ) + HDD(�r ),

(5)

where Hkin(�r ), Hloc(�r ), HMD(�r ), Hgrad(�r ), and HDD(�r ) rep-
resent the kinetic, local, momentum-dependent, gradient, and
density-dependent terms, respectively. The kinetic term

Hkin(�r ) =
∑

τ=n,p

∫
d3p

p2

2mτ

fτ (�r, �p), (6)

and the local term

Hloc(�r ) = t0

4

[
(2 + x0)ρ2 − (2x0 + 1)

∑
τ=n,p

ρ2
τ

]
, (7)

are the same as that from the conventional Skyrme interaction
(see, e.g., Refs. [74,75]). The ρτ (�r ) in the local term is the
nucleon density, which is related to fτ (�r, �p) through ρτ (�r ) =∫

fτ (�r, �p)d3p and the total nucleon density ρ(�r ) = ρn(�r ) +
ρp(�r ).
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The momentum-dependent term and gradient term contain
the contributions from additional derivative terms in Eq. (2).
The momentum-dependent term can be expressed as

HMD(�r ) = C[2]

16h̄2 Hmd[2](�r ) + D[2]

16h̄2

∑
τ=n,p

Hmd[2]
τ (�r )

+ C[4]

32h̄4 Hmd[4](�r ) + D[4]

32h̄4

∑
τ=n,p

Hmd[4]
τ (�r )

+ C[6]

16h̄6 Hmd[6](�r ) + D[6]

16h̄6

∑
τ=n,p

Hmd[4]
τ (�r ), (8)

where Hmd[n](�r ) and Hmd[n]
τ (�r ) are defined as

Hmd[n](�r ) =
∫

d3pd3p′( �p − �p′)nf (�r, �p)f (�r, �p′), (9)

Hmd[n]
τ (�r ) =

∫
d3pd3p′( �p − �p′)nfτ (�r, �p)fτ (�r, �p′), (10)

with f (�r, �p) = fn(�r, �p) + fp(�r, �p). The gradient term is
expressed as

Hgrad(�r ) = 1

16
E[2]{2ρ(�r )∇2ρ(�r ) − 2[∇ρ(�r )]2} + 1

16
F [2]

∑
τ=n,p

{2ρτ (�r )∇2ρτ (�r ) − 2[∇ρτ (�r )]2}

+ 1

32
E[4]{2ρ(�r )∇4ρ(�r ) − 8∇ρ(�r )∇3ρ(�r ) + 6[∇2ρ(�r )]2}

+ 1

32
F [4]

∑
τ=n,p

{2ρτ (�r )∇4ρτ (�r ) − 8∇ρτ (�r )∇3ρτ (�r ) + 6[∇2ρτ (�r )]2}

+ 1

16
E[6]{2ρ(�r )∇6ρ(�r ) − 12∇ρ(�r )∇5ρ(�r ) + 30∇2ρ(�r )∇4ρ(�r ) − 20[∇3ρ(�r )]2}

+ 1

16
F [6]

∑
τ=n,p

{2ρτ (�r )∇6ρτ (�r ) − 12∇ρτ (�r )∇5ρτ (�r ) + +30∇2ρτ (�r )∇4ρτ (�r ) − 20[∇3ρτ (�r )]2}. (11)

In above expressions, for convenience, we have recom-
bined the Skyrme parameters related to the derivative terms
in Eq. (2), namely t

[n]
1 , t

[n]
2 , x

[n]
1 , and x

[n]
2 , into the parameters

C[n], D[n], E[n], and F [n], i.e.,

C[n] = t
[n]
1

(
2 + x

[n]
1

) + t
[n]
2

(
2 + x

[n]
2

)
, (12)

D[n] = −t
[n]
1

(
2x

[n]
1 + 1

) + t
[n]
2

(
2x

[n]
2 + 1

)
, (13)

E[n] = in

2n

[
t

[n]
1

(
2 + x

[n]
1

) − t
[n]
2

(
2 + x

[n]
2

)]
, (14)

F [n] = − in

2n

[
t

[n]
1

(
2x

[n]
1 + 1

) + t
[n]
2

(
2x

[n]
2 + 1

)]
. (15)

Among these parameters, C[n]’s and D[n]’s are for
momentum-dependent terms while E[n]’s and F [n]’s are
for gradient terms. The density-dependent term comes from
V DD

N1LO, i.e., Eq. (3), and can be expressed as

HDD(�r ) = t3

24

[
(2 + x3)ρ2 − (2x3 + 1)

∑
τ=n,p

ρ2
τ

]
ρα. (16)

If we only keep second-order terms, Eqs. (8) and (11) are
then reduced to the corresponding momentum-dependent and
gradient terms of the Hamiltonian density from the conven-
tional Skyrme interaction [74,75], see, e.g., Ref. [103] for the
momentum-dependent term.

Within the framework of Landau Fermi liquid theory, the
single-nucleon energy can be calculated by the variation of
H(�r ) with respect to fτ (�r, �p). Since the Hamiltonian density
contains density gradient terms, the single-nucleon potential
can then be calculated as [104]

Uτ (�r, �p) = δHpot (�r )

δfτ (�r, �p)
+

∑
n

(−1)n∇n δHpot (�r )

δ[∇nρτ (�r )]
, (17)

where Hpot (�r ) = H(�r ) − Hkin(�r ) is the potential energy
density. Substituting Eq. (5) into Eq. (17), we then obtain the
single-nucleon potential of the extended Skyrme interaction
used in the present work, i.e.,

Uτ (�r, �p) = 1

2
t0[(2 + x0)ρ(�r ) − (2x0 + 1)ρτ (�r )] + α

24
t3

[
(2 + x3)ρ(�r )2 − (2x3 + 1)

∑
τ=n,p

ρτ (�r )2

]
ρ(�r )α−1

+ 1

12
t3[(2 + x3)ρ(�r ) − (2x3 + 1)ρτ (�r )]ρ(�r )α + 1

8h̄2 C[2]Umd[2](�r, �p) + 1

8h̄2 D[2]Umd[2]
τ (�r, �p)

+ 1

16h̄2 C[4]Umd[4](�r, �p) + 1

16h̄2 D[4]Umd[4]
τ (�r, �p) + 1

8h̄2 C[6]Umd[6](�r, �p) + 1

8h̄2 D[6]Umd[6]
τ (�r, �p)

+ 1

8
E[2]∇2ρ(�r ) + 1

8
F [2]∇2ρτ (�r ) + 1

16
E[4]∇4ρ(�r ) + 1

16
F [4]∇4ρτ (�r ) + 1

8
E[6]∇6ρ(�r ) + 1

8
F [6]∇6ρτ (�r ), (18)
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where the momentum-dependent terms Umd[n](�r, �p) and
Umd[n]

τ (�r, �p) are expressed as

Umd[n](�r, �p) =
∫

d3p′( �p − �p′)nf (�r, �p′), (19)

Umd[n]
τ (�r, �p) =

∫
d3p′( �p − �p′)nfτ (�r, �p′). (20)

Based on the above analyses, one can see that the Hamilto-
nian density H(�r ) and the single-nucleon potential Uτ (�r, �p)
are explicitly dependent on fτ (�r, �p) as well as the local
densities and their derivatives. It should be mentioned that
the momentum-dependent part of nuclear mean-field poten-
tial could have various origins, e.g., the finite-range ex-
change term in the nucleon-nucleon interaction, the intrin-
sic momentum dependence, and nucleon short-range cor-
relations. In the Skyrme-Hartree-Fock (SHF) approach, all
these different contributions are combined effectively into the
momentum-dependent terms of Eq. (18), corresponding to
the HF approximation of the derivative terms of the Skyrme
interaction.

C. Equation of state of cold nuclear matter

For static infinite cold nuclear matter at zero temper-
ature, fτ (�r, �p) becomes a theta function, i.e., fτ (�r, �p) =

2
(2πh̄)3 θ (pF

τ − | �p|) with pF
τ = h̄(3π2ρτ )1/3 being the Fermi

momentum of nucleons with isospin τ in asymmetric nuclear
matter, and the gradient terms in Eq. (5) vanishes. In this
case, the Hamiltonian density can be expressed analytically
as a function of nucleon density ρ and isospin asymme-
try δ = (ρn − ρp )/ρ. For the extend Skyrme interaction
in Eq. (1), the nuclear matter energy density is obtained
as

E (ρ, δ) = 3

5

h̄2a2

2m
ρ5/3F5/3

+ 1

8
t

[0]
0

[
2
(
x

[0]
0 + 2

) − (
2x

[0]
0 + 1

)
F2

]
ρ2

+ 1

48
t

[0]
3

[
2
(
x

[0]
3 + 2

) − (
2x

[0]
3 + 1

)
F2

]
ρ (α+2)

+ 9a2

64

[
8

15
C[2]F5/3 + 4

15
D[2]F8/3

]
ρ8/3

+ 9a4

128
C[4]

(
68

105
F7/3 + 4

15
δG7/3 + 4

15
H5/3

)
ρ10/3

+ 9a4

128

16

35
D[4]F10/3ρ

10/3

+ 9a6

64
C[6]

(
148

135
F3 + 4

5
δG3 + 4

5
H5/3F2/3

)
ρ4

+ 9a6

64

128

135
D[6]F4ρ

4, (21)

where a = ( 3π2

2 )1/3, m is nucleon rest mass in vacuum, and
Fx , Gx , and Hx are defined as

Fx = [(1 + δ)x + (1 − δ)x]/2,

Gx = [(1 + δ)x − (1 − δ)x]/2,

Hx = [(1 + δ)(1 − δ)]x.

The EOS of cold nuclear matter can be calculated through
dividing its Hamiltonian density by ρ, i.e., E(ρ, δ) =
E (ρ, δ)/ρ, and it can be expanded in the isospin asymmetry δ
as

E(ρ, δ) = E0(ρ) + Esym(ρ)δ2 + Esym,4(ρ)δ4 + O(δ6),

(22)

where E0(ρ) is the EOS of symmetric nuclear matter, and
the symmetry energy Esym(ρ) and the fourth-order symmetry
energy Esym,4(ρ) are expressed as

Esym(ρ) = 1

2!

∂2E(ρ, δ)

∂δ2

∣∣∣∣
δ=0

, (23)

Esym,4(ρ) = 1

4!

∂4E(ρ, δ)

∂δ4

∣∣∣∣
δ=0

. (24)

Conventionally, some characteristic parameters defined at
saturation density ρ0 are introduced to describe the EOS of
asymmetric nuclear matter. Commonly used are the bind-
ing energy per nucleon in symmetric nuclear matter E0(ρ0)
and the incompressibility coefficient K0, the symmetry en-
ergy magnitude Esym(ρ0), and its density slope parame-
ter L. In particular, K0 and L are conventionally defined
as

K0 = 9ρ2
0
d2E0(ρ)

dρ2

∣∣∣∣
ρ=ρ0

, L = 3ρ0
dEsym(ρ)

dρ

∣∣∣∣
ρ=ρ0

. (25)

In order to describe the suprasaturation density behaviors of
asymmetric nuclear matter, we usually introduce two higher-
order characteristic parameters, i.e., the density skewness
coefficient J0 of symmetric nuclear matter and the density
curvature parameter Ksym of the symmetry energy. They are
defined as [105]

J0 = 27ρ3
0
d3E0(ρ)

dρ3

∣∣∣∣
ρ=ρ0

, Ksym = 9ρ2
0

dE2
sym(ρ)

dρ2

∣∣∣∣
ρ=ρ0

.

(26)

D. Single-nucleon potential in cold nuclear matter

Similarly as in the case of the Hamiltonian density, for
static infinite cold nuclear matter at zero temperature, the
single-nucleon potential can be expressed analytically as a
function of the magnitude of nucleon momentum p = | �p|,
the nucleon density ρ, and isospin asymmetry δ, i.e.,

Uτ (p, ρ, δ) = 1

4
t0[2(x0 + 2) − (2x0 + 1)(1 + τδ)]ρ + 1

24
t3

[
(α + 2)(x3 + 2) − (2x3 + 1)

(
α

2
F2 + 1 + τδ

)]
ρα+1

+ 1

4
C[2]

[
1

3

k3
F

π2

(
p

h̄

)2

+ 1

5

k5
F

π2
F5/3

]
+ 1

8
D[2]

[
1

3

k3
F

π2

(
p

h̄

)2

(1 + τδ) + 1

5

k5
F

π2
(1 + τδ)5/3

]
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+ 1

8
C[4]

[
1

3

k3
F

π2

(
p

h̄

)4

+ 2

3

k5
F

π2

(
p

h̄

)2

F5/3 + 1

7

k7
F

π2
F7/3

]

+ 1

16
D[4]

[
1

3

k3
F

π2

(
p

h̄

)4

(1 + τδ) + 2

3

k5
F

π2

(
p

h̄

)2

(1 + τδ)5/3 + 1

7

k7
F

π2
(1 + τδ)7/3

]

+ 1

4
C[6]

[
1

3

k3
F

π2

(
p

h̄

)6

+ 7

5

k5
F

π2

(
p

h̄

)4

F5/3 + k7
F

π2

(
p

h̄

)2

F7/3 + 1

9

k9
F

π2
F3

]

+ 1

8
D[6]

[
1

3

k3
F

π2

(
p

h̄

)6

(1 + τδ) + 7

5

k5
F

π2

(
p

h̄

)4

(1 + τδ)5/3 + k7
F

π2

(
p

h̄

)2

(1 + τδ)7/3 + 1

9

k9
F

π2
(1 + τδ)3

]
, (27)

where kF = (3π2ρ/2)1/3 is the Fermi momentum of symmet-
ric nuclear matter and τ equals 1 for neutrons and −1 for
protons.

The symmetry potential Usym,i (p, ρ) is usually introduced
to describe the isospin dependence of single-nucleon potential
in asymmetric nuclear matter and it is defined as

Usym,i (p, ρ) ≡ 1

i!

∂iUn(p, ρ, δ)

∂δi

∣∣∣∣
δ=0

= (−1)i

i!

∂iUp(p, ρ, δ)

∂δi

∣∣∣∣
δ=0

. (28)

Then the single-nucleon potential in asymmetric nuclear mat-
ter can be expressed as a Taylor expansion with respect to δ,
i.e.,

Uτ (p, ρ, δ) = U0(p, ρ) +
∑

i=1,2,···

1

i!
Usym,i (p, ρ)(τδ)i , (29)

where U0(p, ρ) is the single-nucleon potential in cold sym-
metric nuclear matter. Neglecting higher-order terms in
Eq. (29), and only keeping U0(p, ρ) and Usym,1(p, ρ) leads
to the well-known Lane potential [106], which has been
adopted extensively to approximate the isospin-dependent
single-particle potential Uτ (p, ρ, δ). For the extended Skyrme
interaction in Eq. (1), the (first-order) symmetry potential can
be expressed as

Usym,1(p, ρ) = −1

4
t0(2x0 + 1)ρ − 1

24
t3(2x3 + 1)ρα+1

+ D[2]

8

[
1

3

k3
F

π2

(
p

h̄

)2

+ 1

3

k5
F

π2

]

+ D[4]

16

[
1

3

k3
F

π2

(
p

h̄

)4

+ 10

9

k5
F

π2

(
p

h̄

)2

+ 1

3

k7
F

π2

]

+ D[6]

8

[
1

3

k3
F

π2

(
p

h̄

)6

+ 7

3

k5
F

π2

(
p

h̄

)4

+ 7

3

k7
F

π2

(
p

h̄

)2

+ 1

3

k9
F

π2

]
. (30)

From the single-nucleon potential, one can calculate the
nucleon effective mass in asymmetric nuclear matter, i.e.,

m∗
τ = m

[
1 + m

p

dUτ (p, ρ, δ)

dp

∣∣∣∣
p=pF

τ

]−1

. (31)

In addition, the isoscalar effective mass m∗
s and the isovector

effective mass m∗
v have been extensively used in nuclear

physics. The m∗
s is the nucleon effective mass in symmetric

nuclear matter, and m∗
v can be obtained through (see, e.g.,

Ref. [15] and references therein)

h̄2

2m∗
τ

= 2ρτ

ρ

h̄2

2m∗
s

+
(

1 − 2ρτ

ρ

)
h̄2

2m∗
v

. (32)

The m∗
s and m∗

v at saturation density ρ0 are denoted as m∗
s,0

and m∗
v,0, respectively.

III. FITTING STRATEGY AND NEW SKYRME
INTERACTIONS

In the present work, the parameters of the extended
Skyrme interaction in Eq. (1) are determined by optimizing
the weighted sum of squared errors for various well-known
properties of cold nuclear matter. Since our main motiva-
tion is to develop new extended Skyrme interactions that
can be applied in the future into both one-body transport
model for heavy-ion collisions (with beam energy up to about
1 GeV/nucleon) and mean-field calculations for finite nuclei,
the extended Skyrme interactions obtained in the present work
are required to describe reasonably the well-known empirical
momentum dependence of single-particle potential U0(p, ρ0)
in symmetric nuclear matter at saturation density with nucleon
momentum up to 1.5 GeV/c (approximately corresponding
to nucleon kinetic energy of 1 GeV). Thus the real part of
nucleon optical potential (Schrödinger equivalent potential)
obtained by Hama et al. [78,79] from Dirac phenomenology
of the nucleon-nucleus scattering data is used in the opti-
mization. Furthermore, the new extended Skyrme interactions
are also required to give a prediction on the momentum
dependence of the first-order symmetry potential Usym,1(p, ρ)
at (and below) saturation density, consistent with that from mi-
croscopic calculations, for example, the Brueckner-Hartree-
Fock (BHF) calculation [107] and relativistic impulse ap-
proximation [108,109] (still for nucleon momentum up to
1.5 GeV/c). Since there are actually no practical errors for
the above two properties, we choose 3.16 MeV and 5 MeV as
the error bars for U0(p, ρ0) and Usym,1(p, ρ), respectively, in
the optimization procedure.

In addition, considering the large uncertainty of the
suprasaturation density behaviors of the symmetry energy,
three different extended Skyrme interactions with soft, mod-
erate, and hard high-density behaviors of the symmetry
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TABLE I. Parameters of the three new extended Skyrme inter-
actions, namely SP6s, SP6m, and SP6h. Here the recombination of
Skyrme parameters defined in Eqs. (12) and (13) are used.

SP6s SP6m SP6h

t0 (MeV fm3) −1814.64 −1956.75 −1675.52
x0 0.5400 0.2306 −0.0902
t3 (MeV fm3+3α) 10796.2 11402.9 9873.1
x3 0.8257 0.1996 −0.4990
α 0.2923 0.2523 0.3168
C[2] (MeV fm5) 597.877 637.195 677.884
D[2] (MeV fm5) −446.695 −524.373 −601.990
C[4] (MeV fm7) −26.2027 −28.5209 −31.2026
D[4] (MeV fm7) 23.2525 27.6873 32.4607
C[6] (MeV fm9) 0.0903 0.1000 0.1121
D[6] (MeV fm9) −0.0896 −0.1080 −0.1292

energy are constructed by adding constraints Esym(ρh) =
0.0 ± 1.0 MeV, 40.0 ± 1.0 MeV, and 80.0 ± 1.0 MeV, re-
spectively, with ρh = 0.5 fm−3 in the optimization.

Apart from U0(p, ρ0), Usym,1(p, ρ), and Esym(ρh) men-
tioned above, the following constraints are also included
in the optimization: (i) the pressure of symmetric nuclear
matter in the density region of 0.3 fm−3 to 0.7 fm−3 should
be consistent with the constraints obtained by analyzing the
flow data in HICs [2]; (ii) the EOS of pure neutron matter
at subsaturation density should be consistent with the ob-
tained constraints from electric dipole polarizability in 208Pb
[26]; (iii) the characteristic parameters for symmetric nuclear
matter, ρ0, E0, and K0, are taken to be 0.16 ± 0.01 fm−3,
−16 ± 1.0 MeV, and 240 ± 30 MeV, respectively; and
(iv) we choose an empirical value of 32.5 ± 3.2 MeV as the
constraint of Esym(ρ0) in the optimization.

Since the density gradient terms in the EOS and single-
nucleon potential vanish in nuclear matter, the coefficients
E[n] and F [n] are irrelevant in the present fitting with opti-
mization, and the number of the constrained parameters is thus
reduced from 17 to 11. To determine the six gradient coeffi-
cients E[n] and F [n] (n = 2, 4, 6), one can fit the properties of
finite nuclei, which is beyond the scope of the present work
and will be pursued in future. In Table I, we list the values
of the 11 Skyrme parameters for the obtained three extended
Skyrme interaction parameter sets, namely SP6s, SP6m, and
SP6h, with s, m, and h representing “soft,” “moderate,” and
“hard,” respectively, for the suprasaturation behaviors of the
symmetry energy.

IV. PROPERTIES OF COLD NUCLEAR MATTER WITH
THE NEW EXTENDED SKYRME INTERACTIONS

A. Equation of state

For the three new extended Skyrme parameter sets SP6s,
SP6m, and SP6h, the properties of cold nuclear matter can
be calculated from the expressions shown in Sec. II, and
the results on some macroscopic characteristic quantities of
asymmetric nuclear matter are shown in Table II. It is seen
from Table II that the new extended Skyrme interactions SP6s,
SP6m, and SP6h give quite reasonable predictions on the

TABLE II. Macroscopic characteristic parameters of asymmet-
ric nuclear matter with SP6s, SP6m, and SP6h. Note: ρsc =
0.11/0.16ρ0 and ρh = 0.5 fm−3.

SP6s SP6m SP6h

ρ0 (fm−3) 0.1614 0.1630 0.1647
E0 (MeV) −16.04 −15.94 −15.61
K0 (MeV) 240.9 233.4 240.8
J0 (MeV) −375.99 −384.16 −358.15
Esym(ρsc ) (MeV) 25.43 25.83 25.98
L(ρsc ) (MeV) 32.47 46.75 62.19
Esym(ρ0) (MeV) 28.84 31.93 34.97
L(ρ0) (MeV) 18.20 49.10 82.17
Ksym (MeV) −242.69 −157.98 −70.46
Esym(ρh ) (MeV) 0.03 41.317 79.82
m∗

s,0/m 0.759 0.758 0.755
m∗

v,0/m 0.678 0.663 0.648

macroscopic characteristic parameters of asymmetric nuclear
matter. In particular, we include in Table II the Esym(ρsc) and
L(ρsc) at ρsc = 0.11/0.16ρ0, which roughly corresponds to
the average density of the heavy nuclei. The Esym(ρsc) and
L(ρsc) are strongly correlated with the isovector properties of
finite nuclei and commonly used to characterize the subsatu-
ration properties of nuclear matter symmetry energy [23–26].

Shown in Fig. 1 is the density dependence of the pres-
sure of symmetric nuclear matter PSNM(ρ), the EOS of pure
neutron matter EPNM(ρ), as well as the symmetry energy
Esym(ρ) with SP6s, SP6m, and SP6h. Also included in Fig. 1
are the constraints on the PSNM(ρ) in the density region
from 2ρ0 to 4.6ρ0 obtained from analyzing the flow data
in relativistic heavy-ion collisions [2], the Esym(ρ) at sub-
saturation densities obtained from transport model analyses
of midperipheral heavy-ion collisions of Sn isotopes [31]
and from the SHF analyses of isobaric analog states with or
without the combination of neutron skin data [110], as well
as the constraints on EPNM(ρ) and Esym(ρ) at subsaturation
densities recently extracted from the analyses of the electric
dipole polarizability αD in 208Pb [26]. The result of EPNM(ρ)
at subsaturation density calculated in the framework of chiral
effective field theory using N3LO potential [111] is also
displayed in Fig. 1(b) for comparison.

It should be mentioned that due to the limitation of the
density functional form used in the present work, if one wants
to give a correct single-particle behaviors, it is difficult for
the parameter set with stiff suprasaturation symmetry energy,
namely SP6h, to give enough soft subsaturation symmetry
energy and thus shows small discrepancy compared to the
constraint from electric dipole polarizability αD in 208Pb in
Fig. 1(b) and Fig. 1(c). However, this small discrepancy
will not affect the study of suprasaturation behavior of the
symmetry energy.

To see more clearly the high-density behaviors of the sym-
metry energy from the three new extended Skyrme interac-
tions, we show in Fig. 2 the same as in Fig. 1(c) but extended
to the high-density region. One can see from Fig. 2 that
the symmetry energy from these three new extended Skyrme
interactions exhibit quite different suprasaturation behaviors,
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FIG. 1. Nuclear matter properties with SP6s, SP6m, and SP6h, namely the density dependence of (a) the pressure of symmetric nuclear
matter PSNM(ρ ) and (b) the EOS of pure neutron matter EPNM(ρ ) and (c) symmetry energy Esym(ρ ). Also displayed are various constraints on
PSNM(ρ ), EPNM(ρ ), and Esym(ρ ) obtained in previous studies. See text for details.

which allows us to extract information on the suprasaturation
density behaviors of the symmetry energy by transport model
simulations of heavy-ion collision at intermediate and high
energies, e.g., with beam energy up to about 1 GeV/nucleon,
where the maximum baryon density of about 3ρ0 can be
reached [82].

B. Single-nucleon potential

One important improvement of the present extended
Skyrme interactions is about the momentum/energy depen-
dence of the single-nucleon potential in nuclear matter. Shown
in Fig. 3 is the single-nucleon potential U0(p, ρ) in cold sym-
metric nuclear matter at ρ = ρ0, 0.5ρ0, and 2ρ0, as a function
of nucleon kinetic energy ε − m =

√
p2 + m2 + U0(p, ρ) −

m with SP6s, SP6m, and SP6h. Also included in Fig. 3(a)
is the real part of nucleon optical potential (Schrodinger
equivalent potential) in symmetric nuclear matter at satura-
tion density ρ0 obtained by Hama et al. [78,79] from Dirac
phenomenology of the nucleon-nucleus scattering data. In
addition, for comparison, we also include in Fig. 3(a) the
corresponding results from three conventional Skyrme inter-
actions SLy4 [75], SKM∗ [112], and MSL1 [23], as well as

FIG. 2. Same as Fig. 1(c) but extended to suprasaturation density.

the existing N3LO Skyrme pseudopotentials, namely VLyB33
and VLyB63 [90] and LYVA1 [91].

From Fig. 3(a), one can see that at nuclear saturation den-
sity, the new extended Skyrme interactions SP6s, SP6m, and
SP6h give a nice description on the empirical nucleon optical
potential obtained by Hama et al. [78,79] for nucleon kinetic
energy up to 1 GeV. Previous studies on the N3LO Skyrme
pseudopotential did not take the single-nucleon potential into
consideration, and thus the single-particle potential from the
existing N3LO Skyrme pseudopotentials VLyB63, VLyB33
[90], and LYVA1 [91] show a large discrepancy compared
to the empirical nucleon optical potential, especially at nu-
cleon kinetic energies above about 200 MeV. For the three
conventional Skyrme interactions SLy4 [75], SKM∗ [112],
and MSL1 [23], due to their simple parabolic momentum
dependence of the single-particle potential, they can only give
rise to a reasonable single-nucleon potential at lower energies
region (less than about 300 MeV). In addition, it is seen that
SP6s, SP6m, and SP6h predict very similar single-nucleon po-
tential in symmetric nuclear matter at ρ = 0.5ρ0 and ρ = 2ρ0,
as shown in Figs. 3(b) and 3(c), which means their isospin
independent (isoscalar) single-particle behaviors are similar

FIG. 3. The predicted single-nucleon potentials in cold symmet-
ric nuclear matter as a function of nucleon kinetic energy with
SP6s, SP6m, and SP6h. The result from three conventional Skyrme
interactions, and three N3LO Skyrme pseudopotentials obtained
in the previous literature, as well as the nucleon optical potential
(Schrodinger equivalent potential) in symmetric nuclear matter at
saturation density ρ0 obtained by Hama et al. [78,79], are also
included for comparison. See the text for details.
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FIG. 4. The predicted first-order symmetry potential as a function of nucleon momentum with SP6s, SP6m, and SP6h. The corresponding
results from three conventional Skyrme interactions and three existing N3LO Skyrme pseudopotentials, as well as microscopic results from
relativistic impulse approximation and BHF method are also included for comparison.

in the relevant density regions interested in the present work.
Such an improvement for the extended Skyrme interactions
SP6s, SP6m, and SP6h obtained in this work allows us to
simulate heavy-ion collisions in one-body transport models
for incident energy up to about 1 GeV/nucleon based on
the Skyrme interaction. It should be pointed out that the
empirical nucleon optical potential obtained by Hama et al.
[78,79] exhibits a clear saturation behavior at higher nucleon
kinetic energies (i.e., above about 800 MeV), as shown in
Fig. 3(a). Since the momentum dependence of the extended
Skyrme interactions in the present work follows polynomial
behavior, these interactions may give unsaturated high-energy
mean-field potential and thus are only suitable for describing
nuclear mean-field potentials in the energy region of less than
about 1 GeV. For the higher-energy region, careful treatments
are necessary in dealing with the real part of nucleon optical
potential, because in the realistic heavy-ion collisions, the
nucleon energy could be higher than the beam energy due to
nucleon-nucleon collisions and Fermi motion.

Shown in Fig. 4 is the momentum dependence of the first-
order symmetry potential Usym,1(p, ρ) in cold nuclear matter
at ρ = 0.5ρ0, ρ0, and 2ρ0, respectively, with SP6s, SP6m, and
SP6h. Also included for comparison are the corresponding
results from several microscopic calculations, namely, the
nonrelativistic BHF theory with and without rearrangement
contribution from the three-body force [113], the relativistic
Dirac-BHF theory [107], and the relativistic impulse approx-
imation [108,109] using the empirical nucleon-nucleon scat-
tering amplitude determined in Refs. [114,115] with isospin-
dependent and isospin-independent Pauli blocking correc-
tions. The corresponding results from three conventional
Skyrme interactions SLy4 [75], SKM∗ [112], and MSL1 [23],
as well as three existing N3LO Skyrme pseudopotentials,
VLyB33, VLyB63 [90], and LYVA1 [91], are also included.

It is seen from Fig. 4 that due to the limitation of the
parabolic momentum dependence, the results from three

conventional Skyrme interactions SLy4, SKM∗, and MSL1
are not satisfactory, especially at high momenta. The re-
sults with previous N3LO Skyrme pseudopotentials, VLyB33,
VLyB63, and LYVA1, are inconsistent with microscopic cal-
culations as well. Furthermore, at ρ = 0.5ρ0 and ρ = ρ0, the
new extended Skyrme interactions SP6s, SP6m, and SP6h
predict quite similar Usym,1(p, ρ), and they are in good agree-
ment with the results of microscopic calculations. At suprasat-
uration density of ρ = 2ρ0, the predictions on Usym,1(p, ρ)
from various theoretical approaches display large discrepancy.

Based on the results shown in Fig. 3 and Fig. 4, we
conclude that the new extended Skyrme interactions SP6s,
SP6m, and SP6h exhibit quite similar single-particle be-
haviors in asymmetric nuclear matter, except the isospin-
dependent (isovector) properties in the high-density region,
where the microscopic calculations also show large uncertain-
ties, as shown in Fig. 4(c). Such differences on the isovec-
tor properties of SP6s, SP6m, and SP6h at suprasaturation
densities are actually related to their different suprasaturation
behaviors of the symmetry energy depicted in Fig. 2 via the
Hugenholtz-Van Hove theorem [116–118].

V. SUMMARY AND OUTLOOK

Based on an extended Skyrme interaction with extra
derivative terms corresponding to the N3LO Skyrme pseu-
dopotential, we have derived the expressions of Hamiltonian
density and single-nucleon potentials for one-body transport
models of heavy-ion collisions within the framework of HF
approximation. We have also obtained three parameter sets
of the extended N3LO Skyrme interaction by fitting the
empirical properties of cold asymmetric nuclear matter and
the single-nucleon optical potential up to energy of 1 GeV)
while giving soft, moderate, and stiff suprasaturation density
behaviors of the symmetry energy, respectively. Using these
extended N3LO Skyrme interactions in one-body transport
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models to analyze the experimental data in heavy-ion colli-
sions induced by neutron-rich nuclei at intermediate and high
energies may help to extract information on the suprasatura-
tion density behavior of nuclear matter EOS, especially the
symmetry energy.

The extended N3LO Skyrme interactions can be use-
ful in the study of both finite nuclei and heavy-ion colli-
sions. It is interesting to check whether the same Skyrme
interaction can give similar result for nuclear giant reso-
nances within the SHF with random-phase approximation
and the BUU equation and whether there exist Skyrme in-
teractions that are able to simultaneously describe the ex-
perimental observables of both finite nuclei and heavy-ion

collision. Such studies are in progress and will be reported
elsewhere.
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APPENDIX: HAMILTONIAN DENSITY WITH EXTENDED SKYRME INTERACTION IN ONE-BODY TRANSPORT MODEL
OF HEAVY-ION COLLISIONS

In this Appendix, we show some details about the derivation of Hamiltonian density, i.e., Eq. (5), with the extended Skyrme
interaction in Eq. (1).

In quantum mechanics, the Wigner function f (�r, �p) is defined as the Fourier transform of the density matrix and can be
thought as the quantum analogy of classical phase-space distribution function in the Boltzmann equation. In coordinate and
momentum configurations, f (�r, �p) can be expressed, respectively, as

f (�r, �p) = 1

(2πh̄)3

∫
exp

(
− i

�p
h̄

· �s
)

ρ(�r + �s/2, �r − �s/2)d3s, (A1)

f (�r, �p) = 1

(2πh̄)3

∫
exp

(
i
�q
h̄

· �r
)

g( �p + �q/2, �p − �q/2)d3q, (A2)

where ρ(�r + �s/2, �r − �s/2) and g( �p + �q/2, �p − �q/2) are the density matrix in coordinate and momentum representations,
respectively, and they can be obtained in HF approximation as the matrix elements of one-body density operator ρ̂ =∑

i |φi〉〈φi |. Specifically, we have

ρ(�r + �s/2, �r − �s/2) = 〈�r + �s/2|ρ̂|�r − �s/2〉 =
∑

i

φ∗
i (�r + �s/2)φi (�r − �s/2), (A3)

in coordinate space and

g( �p + �q/2, �p − �q/2) = 〈 �p + �q/2|ρ̂| �p − �q/2〉 =
∑

i

φ∗
i ( �p + �q/2)φi ( �p − �q/2), (A4)

in momentum space, with φi (�r ) and φi ( �p) being the wave functions in coordinate and momentum configuration, respectively.
Here for simplicity we ignore the spin index s and isospin index τ . It can be easily restored by considering the summation of
specific state |φi〉 with given s and τ .

In the following, we take the t
[2]
1 term in Eq. (2) as a detailed example. The Hamiltonian density can be calculated through

Eq. (4), and the contribution from the t
[2]
1 term is

V
[2]

1 = 1

2

∑
i,j

〈ij |t [2]
1

(
1 + x

[2]
1 P̂σ

)1

2
( �̂k′2δ̂(�r1 − �r2) + δ̂(�r1 − �r2)�̂k2)(1 − P̂σ P̂τ P̂M )|ij 〉. (A5)

The parity of this term is positive and thus the Majorana operator P̂M can be replaced by 1̂ (P̂M = −1̂ for negative-parity
terms). Assuming that there is no isospin mixing of the HF states, the effect of isospin exchange operator P̂τ is just to introduce a
Kronecker delta function δτiτj

with τi represents the isospin of the ith state. We assume the collision system is spin saturate since
we only focus on the spin-averaged quantities. For a spin saturation system, the spin exchange operator P̂σ is simply replaced
by a factor of 1

2 . Therefore, V
[2]

1 can be reduced to

V
[2]

1 = 1

2
t

[2]
1

(
1 + 1

2
x

[2]
1

) ∑
i,j

〈ij |1

2
( �̂k′2δ̂(�r1 − �r2) + δ̂(�r1 − �r2)�̂k2)|ij 〉

− 1

2
t

[2]
1

(
x

[2]
1 + 1

2

)
δτiτj

∑
i,j

〈ij |1

2
( �̂k′2δ̂(�r1 − �r2) + δ̂(�r1 − �r2)�̂k2)|ij 〉. (A6)
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The calculation of the sum of the bracket is quite straightforward. It is very convenient if we treat the derivative operator ∇ in �̂k′

and �̂k as the momentum operator acting on the momentum eigenstate, and the isospin symmetric part (similar for the asymmetric
part) can be calculated as

v
[2]
1 ≡ sumi,j 〈ij |1

2
( �̂k′2δ̂(�r1 − �r2) + δ̂(�r1 − �r2)�̂k2)|ij 〉

= 1

4h̄2

∑
i,j

∫
d3r

∫
d3p1d

3p2d
3p3d

3p4
1

2
[( �p1 − �p2)2 + ( �p3 − �p4)2]exp

[
− i( �p1 + �p2 − �p3 − �p4) · �r

h̄

]

× 1

(2πh̄)6
φ∗

i ( �p1)φ∗
j ( �p2)φi ( �p3)φj ( �p4)

= 1

4h̄2

∫
d3r

∫
d3pd3p′d3qd3q ′

[
( �p − �p′)2 +

( �q − �q ′

2

)2]
exp

(
i �q · �r

h̄

)
exp

(
i �q ′ · �r

h̄

)
1

(2πh̄)6
g �p+�q/2, �p−�q/2 · g �p′+�q ′/2, �p′−�q ′/2.

(A7)

To obtain the second line in the above equation we have inserted several unit operators (i.e., four in coordinate space
∫

dr|r〉〈r|
and six in momentum space

∫
dp|p〉〈p|), and in the last line we have changed the integral variables to �p = �p1+ �p3

2 , �p′ = �p2+ �p4

2 ,
�q = �p3 − �p1, and �q ′ = �p4 − �p2. We have also replaced, as defined in Eq. (A4),

∑
i φ

∗
i ( �p1)φi ( �p3) and

∑
i φ

∗
i ( �p2)φi ( �p4) by

g �p+�q/2, �p−�q/2 and g �p′+�q ′/2, �p′−�q ′/2, respectively.
The integration of the ( �p − �p′)2 term in Eq. (A7) can be reduced, through the definition of Wigner function in Eq. (A2), to

1

4h̄2

∫
d3r

∫
d3pd3p′( �p − �p′)2f (�r, �p)f (�r, �p′), (A8)

while the integration of the ( �q−�q ′
2 )2 term in Eq. (A7) is recognized as the derivatives of density ρ(�r ) through the relation

∇nρ(�r ) = ∇n

∫
f (�r, �p)d3p = ∇n

∫
d3p

1

(2πh̄)3

∫
exp

(
i
�q
h̄

· �r
)

g �p+�q/2, �p−�q/2d
3q

=
∫

d3pd3q
1

(2πh̄)3

(
i
�q
h̄

)n

exp

(
i
�q
h̄

· �r
)

g �p+�q/2, �p−�q/2. (A9)

In general, derivative terms ∇nρ(�r ) will contribute to the Hamiltonian density and the single-nucleon potential and affect the
motion of the nucleons underneath the mean-field potentials, and thus they cannot be omitted in one-body transport models.

Finally, for the t
[2]
1 term in Eq. (2), one can obtain its contribution to the Hamiltonian density as

V
[2]

1 = 1

16h̄2 t
[2]
1

(
2 + x

[2]
1

) ∫
d3pd3p′( �p − �p′)2f (�r, �p)f (�r, �p′)

− 1

16h̄2 t
[2]
1

(
2x

[2]
1 + 1

) ∑
τ=n,p

∫
d3pd3p′( �p − �p′)2fτ (�r, �p)fτ (�r, �p′) − 1

64
t

[2]
1

(
2 + x

[2]
1

){2ρ(�r )∇2ρ(�r ) − 2[∇ρ(�r )]2}

+ 1

64
t

[2]
1

(
2x

[2]
1 + 1

) ∑
τ=n,p

{2ρτ (�r )∇2ρτ (�r ) − 2[∇ρτ (�r )]2}. (A10)

The contributions to the Hamiltonian density from other terms in Eqs. (2) and (3) can be derived similarly. After changing the
Skyrme parameters t

[n]
1 , t

[n]
2 , x

[n]
1 , and x

[n]
2 to the parameters in Eqs. (12)–(15), one can then obtain the Hamiltonian density

[Eq. (5)] of the system with the extended Skyrme interaction as well as the relevant expressions in Eqs. (6)–(11) and Eq. (16).
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