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Pauli rearrangement potential for a scattering state with the nucleon-nucleon interaction
in chiral effective field theory
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The Pauli rearrangement potential given by the second-order diagram is evaluated for a nucleon optical model
potential (OMP) with G matrices of the nucleon-nucleon interaction in chiral effective field theory. The results
obtained in nuclear matter are applied for 40Ca in a local-density approximation. The repulsive effect is of the
order of 5–10 MeV at the normal density. The density dependence indicates that the real part of the microscopic
OMP becomes shallower in a central region, but is barely affected in a surface area. This improves the overall
resemblance of the microscopic OMP to the empirical one.
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I. INTRODUCTION

An optical model potential (OMP) embodies a basic char-
acter of describing the nucleon elastic scattering on nuclei.
The success of the global parametrization of the phenomeno-
logical OMP with certain geometric parameters and a mod-
erately energy-dependent strength suggests that a mean field
picture holds for scattering states as for bound nucleons. The
OMP consists of the real and imaginary components. The for-
mer is regarded as a mean field similar to a single-particle
(s.p.) potential of the ground state, as a consequence of the
interaction between the incoming nucleon and the nucleons in
a target nucleus. The imaginary part takes care of the escaping
of an incident flux to inelastic channels.

Microscopic understanding and an explicit evaluation of
the OMP, starting from bare nucleon-nucleon (NN) interac-
tions, have been one of the basic problems in nuclear physics.
Jeukenne, Lejeune, and Mahaux [1–3] developed a nuclear
matter approach. The properties of the s.p. potential eval-
uated in nuclear matter were discussed and a local-density
approximation was used for finite nuclei. Brieva and Rook
[4,5] offered a somewhat different method. A density- and
energy-dependent complex effective NN interaction was pre-
pared based on G matrices in nuclear matter and was applied
to construct a folding potential for finite nuclei, using their
localization method of exchange terms. This study is the
prototype of the subsequent G-matrix folding model of the
microscopic OMP.

Recent microscopic calculations by several groups [6–8]
with various realistic NN forces are remarkably successful
in accounting for nucleon-nucleus scattering data. The OMP
by Amos et al. [6], the Melbourne group, with the Paris [9]
or Bonn-B [10] potentials worked well, in spite of the fact
that those interactions fail to reproduce proper nuclear satura-
tion properties. This implies that the description of nucleon-
nucleus scattering is not sensitive to the saturation properties.
Nevertheless, it is appropriate to employ the framework in
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which the saturation properties are realized. Furumoto et al.
[7] were concerned with the saturation properties by adding
the effects of phenomenological three-nucleon forces (3NFs)
to the Nijmegen extended soft-core NN potential [11,12].
The Kyushu group [8] employed the next-to-next-to-next-
to-leading (N3LO) interaction in chiral effective field theory
(ChEFT) [13] with including the effect of the next-to-next-to-
leading (N2LO) 3NFs [14] in the normal-ordering prescription
[15]. These calculations remain in the lowest-order in the
Brueckner expansion for the OMP. The next-order contribu-
tion was discussed in the early stage of microscopic studies
[2]. It was recognized that the contribution of the second-order
rearrangement process becomes smaller with increasing the
incident energy, and therefore the actual incorporation of this
contribution has been left out in the recent microscopic OMPs
[6–8]. For a deeper understanding of the microscopic OMP,
however, it is worthwhile to revisit the issue of the Pauli
rearrangement for the OMP.

The concept of the rearrangement energy was presented
by Brueckner and Goldman [16] in the development of the
Brueckner theory [17]. Its important role stems from the
strong correlations with the NN forces having short-range
singularities and Pauli blocking effects. The rearrangement
potential plays a decisive role to reproduce ground state prop-
erties of nuclei, which has been popularized as the potential
generated through the derivative of the density-dependent
terms of effective NN interactions in a density-dependent
Hartree-Fock description of nuclei. The density dependence
originates partly from the Pauli effects in the Brueckner
theory. Another source of the density dependence is the
contribution of the 3NFs. The main effect of the 3NFs itself
can be regarded as the rearrangement effect due to the Pauli
principle acting in the process which includes the excitation
of non-nucleonic degrees of freedom [15].

In the present article, the contribution of the second-order
Pauli rearrangement diagram for a nucleon scattering state is
calculated first in symmetric nuclear matter and then its impli-
cation in finite nuclei is discussed in a local-density approx-
imation. The treatment is intended to extend the microscopic
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derivation of the OMP [8,18,19] starting with the NN and
3NF forces parametrized in ChEFT [13,14]. As is shown in
this article, the inclusion of the Pauli rearrangement potential
improves the correspondence between the microscopic OMP
and the empirical one.

Holt et al. [20] reported a microscopic calculation of
the OMP in symmetric nuclear matter, at second order in
perturbation theory. Their choice of ChEFT N3LO NN and
N2LO 3NF interactions with the cutoff scale of � � 2.5 fm−1

allows the use of the perturbative framework. The G-matrix
calculation in the present article should give quantitatively
similar results to theirs. Here, the results with the larger cutoff
scale are also shown.

In Sec. II, basic expressions are given to the Pauli rear-
rangement potential in the second order. Numerical results
in symmetric nuclear matter using ChEFT interactions are
presented in Sec. III A. The implication of the result in finite
nuclei is discussed in Sec. III B, using a simple local-density
approximation. The conclusions follow in Sec. IV.

II. REARRANGEMENT POTENTIAL

Ladder correlation is essential for the NN interaction in
nuclei to regularize short-range singularities of the bare NN
force. The correlation naturally depends on the nuclear struc-
ture through Pauli effects and the change of the nucleon
propagator. The G-matrix equation in the framework of the
Brueckner theory [17] properly takes care of these effects,
which is written as

G(ω)|ij 〉 = v|ij 〉 + v
Q

ω − H0
G(ω)|ij 〉, (1)

where v is a bare NN force, |ij 〉 specifies a two-nucleon state,
ω is a sum of s.p. energies ω = ei + ej , and the Hamiltonian
H0 is given by the sum of the kinetic energies and the nucleon
s.p. potentials, H0 = ti + Ui + tj + Uj . Once the short-range
repulsive part is regularized, the resulting interaction, the G
matrix, qualifies for a mean-field description of low energy
nuclear properties. The interaction between an incoming nu-
cleon and a nucleon in a target nucleus is also considered in
the similar framework.

The microscopic OMP is assigned in the lowest order to the
folding potential of the G matrices with respect to the target
wave functions. The method commonly used [5] is to prepare
density- and energy-dependent complex effective interactions
on the basis of nuclear matter calculations, and to apply them
in the folding procedure to finite nuclei.

The next-order contribution, the second-order process in
terms of the G matrix, is shown in Fig. 1(a). This arises as
Pauli blocking of the ground state energy of the target nucleus
due to the incoming nucleon, Fig. 1(b). The degree of the
importance of this Pauli blocking effect reflects the impor-
tance of the ladder correlation in the ground state. Taking spin
and isospin average for the particle state p, the rearrangement
potential from the diagram Fig. 1(a) is evaluated as

Urear ( p) = −1

8

∑
σp,τp

∑
σp′ ,τp′

∑
σh′ ,τh′

∑
σh,τh

∑
p′

∑
h,h′

× |〈 p p′|G|hh′〉A|2
eh + eh′ − e p − e p′

, (2)
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FIG. 1. (a) Pauli rearrangement diagram in the second order. (b)
Illustration of the Pauli blocking in a ground-state ladder correlation.

where h and h′ stand for occupied states (in nuclear matter
|h| � kF and |h′| � kF with kF being the Fermi momentum)
and p′ represents an unoccupied state (in nuclear matter
| p′| > kF ). The suffix A of the matrix element denotes an-
tisymmetrization. The summation over p′ is redundant be-
cause of the momentum conservation p + p′ = h + h′. The
potential Urear ( p) is apparently real and positive. Partial wave
expansion is introduced in evaluating G matrices in nuclear
matter, and an angle average is commonly used for the Pauli
operator Q and the propagator in Eq. (1). The angle average is
also used in the present calculation of Eq. (2). If the G matri-
ces are parametrized as a local interaction in a functional form,
such as Gaussian, the partial wave expansion is not necessary.
The comparison of the calculations with and without the angle
average for such a parameterized effective interaction shows
that the angle average works very well.

As the Pauli effect, the rearrangement potential is similar
to the contribution of 3NFs, e.g., the process including �-
isobar excitation typically. The excitation of non-nucleonic
degrees of freedom that is usually implicit in the NN potential
should be Pauli-blocked in the nuclear medium, Fig. 2(a).
Repulsive effects of this suppression plays an important role
to quantitatively reproduce nuclear saturation properties [15].
The contributions of the 3NFs for describing nucleon-nucleus
and nucleus-nucleus scattering problems have been discussed
in recent years [8], using the N2LO 3NFs in ChEFT. The
process is illustrated in Fig. 2(b). However, the estimation of
the analogous contributions of the diagram of Fig. 1(a) has not
been considered. The comparison between the contributions
of Figs. 1(a) and 2(b) is discussed in Sec. III B.

p

h

p

h’Δ

(a)
p

h

p

h’

(b)

FIG. 2. Example of the Pauli blocking process of the 2π ex-
change 3BF: (a) Fujita-Miyazawa type and (b) ChEFT contact term.
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FIG. 3. Momentum dependence of the Pauli rearrangement po-
tential in symmetric nuclear matter with various Fermi momenta
from 0.8 to 1.5 fm−1. ChEFT interactions [13] including 3NF ef-
fects are employed with three different cutoff scales: 450, 550, and
600 MeV, respectively.

III. NUMERICAL RESULTS

A. Results in nuclear matter

The NN interaction in ChEFT parametrized by Epelbaum
et al. [13] is used as the bare force. The effects of 3NFs [14]
are included in a normal-ordering prescription. The G-matrix
calculations in nuclear matter in the lowest-order Bruckner
theory are reported in Ref. [15], in which the parameters
of the contact 3NFs, cD and cE , are adjusted so as to re-
produce reasonably well nuclear matter saturation properties.
The application of these G matrices to describing nucleon-
nucleus and nucleus-nucleus scattering processes is presented
in Refs. [8,19].

Figure 3 shows calculated results of the Pauli rearrange-
ment potential in symmetric nuclear matter as a function of the
nucleon momentum p for five cases of the Fermi momentum;
0.8, 1.07, 1.2, 1.35, and 1.5 fm−1 which correspond to the
nucleon density as 0.21ρ0, 0.5ρ0, 0.70ρ0, ρ0, and 1.37ρ0, re-
spectively, with the normal density being ρ0 = 2

3π2 (1.35)3 =
0.166 fm−3.

The Pauli rearrangement potential decreases fast as the
momentum p increases. Instead of the momentum p, the
s.p. energy E of the nucleon is more adequate to specify
the nucleon state in the nuclear medium to describe nucleon-
nucleus scattering, which is related to the momentum p by the
relation including a s.p. potential ULO(p, kF ):

E = h̄2

2m
p2 + ULO(p, kF ), (3)
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FIG. 4. Relation between the energy E and the momentum p in
symmetric nuclear matter specified by Eq. (3).

where the suffix LO means the lowest-order s.p. potential in
nuclear matter. As explained in Ref. [15], the following pre-
scription is adopted for ULO(p) when the effective two-body
interactions V12(3) deduced from 3NFs by a normal-ordering
prescription are incorporated:

ULO(p, kF ) =
∑

| p′|�.kF

〈 p p′|G

+ 1

6
V12(3)

(
1 + Q

ω − H

)
G| p p′〉A. (4)

The relation between p and E in nuclear matter with the
present ChEFT interaction is shown in Fig. 4. The Pauli
rearrangement potential as a function of the energy E is
presented in Fig. 5. The energy dependence is gentle. Though
some cutoff scale dependence is seen, the strength is not
negligible as far as the density is larger than half the normal
density.

It is instructive to carry out similar calculations with other
modern NN interactions; AV18 [21], NSC97 [22], and CD-
Bonn [23] potentials. Results are shown in Fig. 6. The AV18
potential provides the largest rearrangement potential among
them, the strength of which is comparable to that of the
ChEFT interactions with the cutoff scale of � = 550 and
600 MeV.

B. Optical model potential in 40Ca

It is worthwhile to consider the rearrangement potential in
finite nuclei. Because the rearrangement potential obtained
in nuclear matter is a one-body quantity, it does not apply
in a standard procedure of constructing a folding potential
of effective two-body interactions. In order to estimate the
contribution of the rearrangement potential in a finite nucleus
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FIG. 5. Energy dependence of the Pauli rearrangement potential
in symmetric nuclear matter with various Fermi momenta from 0.8
to 1.5 fm−1. ChEFT interactions [13] including 3NF effects are
employed with three different cutoff scales: 450, 550, and 600 MeV,
respectively.

from the result of the nuclear matter calculation, a simple
local-density approximation is employed.

In symmetric nuclear matter, the nucleon density ρ is
related to the Fermi momentum kF as ρ = 2

3π2 k
3
F . A naive
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FIG. 6. Momentum dependence of the Pauli rearrangement po-
tential in symmetric nuclear matter calculated with AV18 [21],
NSC97 [22], and CD-Bonn [23] NN potentials.
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FIG. 7. Radial dependence of the real part of the optical model
potential for the nucleon incident energy EN = 65 MeV evaluated
by a simple local-density approximation prescription for 40Ca. The
lowest-order potential U real

LO , Pauli rearrangement potential Urear., and
the sum of them are plotted for three cases of the cutoff scale of the
ChEFT interactions. The thin solid curve labeled “folding” repre-
sents a localized folding potential [25] obtained with the density-
dependent effective two-body interaction parametrized on the basis
of G matrices in nuclear matter [8]. The thin solid curve labeled
“K-D W-S” is a Woods-Saxon potential by Koning and
Delaroche [26].

prescription to obtain a potential in a finite nucleus suggested
by the potential U (p, kF ) calculated in nuclear matter is
to replace the Fermi momentum kF by a local quantity of
(3π2ρ(r )/2)1/3. The momentum p is connected with the
incident energy E by solving Eq. (3).

The results for 40Ca obtained in this prescription are shown
in Figs. 7 and 8 for the incident energy of 65 MeV and
100 MeV, respectively. The density distribution of 40Ca is
provided by Hartree-Fock wave functions with the Gogny
D1S effective force [24]. The curves marked by U real

LO in these
figures represent the lowest-order potential before incorporat-
ing the Pauli rearrangement contribution. It is noteworthy that
the shape and the strength of this U real

LO corresponds well to
that of the folding potential [25] calculated with the density-
dependent effective two-body interaction parametrized on the
basis of G matrices of ChEFT interactions [8] which is shown
by a thin solid curve labeled “folding”, although the surface
thickness is smaller because of the lack of finite-range effects
in the local-density approximation. This good correspondence
assures the usefulness of the local-density approximation for
estimating the contribution of the Pauli rearrangement effect
in finite nuclei.

The Pauli rearrangement effect makes the OMP shallower
in a central region by 5–10 MeV, which leads to better
correspondence to the depth of the phenomenological OMP.
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FIG. 8. Same as Fig. 7, but for EN = 100 MeV.

For comparison, the standard OMP potential in a Woods-
Saxon form by Koning and Delaroche [26] is included in
Figs. 7 and 8 by a thin solid curve labeled “K-D W-S”.
In a low-density surface area, the rearrangement effect is
small.

The lowest-order s.p. potential U real
LO (p) contains the con-

tribution of the 3NFs. The chief source of this repulsive con-
tribution is understood [15] as through Pauli blocking for an
excitation process of nucleon-excited states implicitly present
in NN correlations, as is depicted in Fig. 2. It is interesting to
compare the quantitative contribution of the 3NF with that of
the Pauli rearrangement effect. Figure 9 shows the potential
U real

LO (p) − U3NF in which the contribution of the 3NFs is
subtracted from U real

LO (p). The 3NF effect makes the potential
shallower by about 10 MeV. The Pauli rearrangement effect
provides an additional repulsive potential in a comparable
magnitude. Then the resulting strength of the microscopic
OMP in the inner region becomes closer to the empirical
value. Two thin solid curves both in Figs. 7 and 8 indicate
that if the effect of the Pauli rearrangement is incorporated,
the microscopic folding potential essentially agrees with the
phenomenological OMP in the whole region.

Differential cross sections and analyzing powers of proton
elastic scattering on 40Ca, 58Ni, and 208Pb at 65 MeV are
evaluated in Ref. [18], using the microscopic OMP by the
density-dependent effective interaction parametrized on the
basis of nuclear matter G-matrix calculation with ChEFT NN
and 3N interactions. The results in Fig. 3 of Ref. [18] show
that the microscopic OMP explains well experimental data
and the 3NF effects are small in spite of the sizable repulsive
contribution in a central region as is presented in Fig. 9.
This is because the nucleon elastic scattering on nuclei is
governed almost by the potential in a low-density surface area.
The same situation applies to the Pauli rearrangement effect.
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FIG. 9. The OMP in which the 3NF contribution is separated
is shown for 40Ca at EN = 65 MeV with the cutoff scale of � =
550 MeV.

The successful description of the microscopic OMP in the
literature [6–8] without the rearrangement effect is scarcely
altered by the inclusion of it.

IV. CONCLUSIONS

A second-order microscopic OMP, a Pauli rearrangement
potential, for a nucleon scattering state is calculated, using
ChEFT NN and 3N interactions [13,14]. The second-order
potential for a scattering state is real and positive. The strength
of the rearrangement potential in nuclear matter is 5–10 MeV
at the normal density. Because the rearrangement potential
is obtained as a one-body potential, it is not straightforward
to include this effect in the standard folding procedure of
constructing an OMP for finite nuclei from effective two-
body interactions. In this article, a simple local-density ap-
proximation is used to see qualitatively the possible contri-
bution of the rearrangement potential in finite nuclei. It is
also demonstrated that the repulsive contribution of the Pauli
rearrangement effect is similar in size with the 3NF repulsive
contribution.

The density dependence of the rearrangement potential
indicates that the OMP becomes shallower in a central region,
but is barely affected in a surface area of low density. Because
the nucleon elastic scattering on nuclei is mainly determined
by the peripheral region, the elastic cross section changes only
slightly by the inclusion of the Pauli rearrangement effect.
This explains the success of the recent microscopic OMP on
the basis of realistic NN potentials [6–8], in spite of taking
just the leading order G-matrix folding. However, it is mean-
ingful to observe that the repulsive contribution improves the
overall resemblance of the microscopic OMP to the empirical
one.
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Nucleus-nucleus scattering has also been described by the
G-matrix folding prescription. In this case, higher-density
regions participate in the scattering process. In previous mi-
croscopic studies of the nucleus-nucleus elastic scattering
[19], the scattering cross section is still overestimated at larger
angles in spite of the improvement by repulsive and absorptive
effects of 3NFs. Then the additional repulsive rearrangement
effect should help to further improve the description, though

the actual implementation of the result in the one-body poten-
tial to the nucleus-nucleus case may not be straightforward.
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