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We investigate the nonlocal structure of optical model potentials for nucleon-nucleus scattering based on
microscopic approaches. To this purpose, in medium folding optical potentials are calculated in momentum space
and their corresponding coordinate-space counterpart are examined, paying special attention to their nonlocal
shape. The nucleon-nucleon effective interaction consists of the actual full off-shell g matrix in Brueckner-
Hartree-Fock approximation. The nonlocality of effective interactions is preserved throughout all stages in the
calculation. Argonne v18 bare potential and chiral next-to-next-to-next-to-leading order bare interaction are used
as starting point. The study is focused on proton elastic scattering off 40Ca at beam energies between 30 and
800 MeV. We find that the gradual suppression of high-momentum contributions of the optical potential results
in quite different-looking coordinate-space counterparts. Despite this nonuniqueness in their nonlocal structure,
the implied scattering observables remain unchanged for momentum cutoff above a critical one, which depends
on incident energy of the projectile. We find that coordinate-space potentials with momentum cutoffs at the
critical value yield the least structured nonlocal behavior. Implications of these findings are discussed.
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I. INTRODUCTION

The inclusion of nonlocalities in phenomenological optical
model potentials for nucleon-nucleus (NA) scattering, pio-
neered in the early 1960s by Perey and Buck [1], made pos-
sible simple and robust phenomenological accounts of elastic
scattering data for targets with nuclear masses in the range
27 � A � 208, and nucleon energies of up to 30 MeV. From
a microscopic point of view, considering that the in medium
density-dependent nucleon-nucleon (NN) effective interaction
is intrinsically nonlocal, it is natural to expect that the optical
potential itself would turn a nonlocal operator. Moreover, even
under the simplifying assumption that effective interaction
between nucleons was local, nonlocal contributions to the
optical potential would arise from the exchange term after
the antisymmetrization of the interaction. As we will demon-
strate, for a given optical potential in momentum space, there
is a whole class of potentials in coordinate space with different
nonlocal structure leading to the same scattering observables.
The question that comes out is up to what extent the nonlocal
features exhibited by microscopic NA optical model potentials
are unique so as to be inferred from ab initio approaches.

Microscopic models for the optical potential provide us
with a direct link between the elementary NN bare inter-
action and the many-body physics involved in NA scatter-
ing phenomena [2–5]. The fermionic character of all A+1
constituents together with the nonlocal structure of the

*arellano@dfi.uchile.cl

internucleon effective interaction result into a nonlocal cou-
pling between single nucleons with the remaining A nucleons.
Several efforts have been made in the past decades aimed to
construct these potentials using realistic NN bare interactions
to model effective interactions. Such is the case of folding
models, where a convolution takes place between an effective
interaction (off-shell g or free t matrix, depending on the en-
ergy of application) and the ground-state mixed density of the
target [4,6–8]. Along this line, momentum- and coordinate-
space approaches adopted by different groups have evolved
on parallel tracks, resulting on comparable description of
available scattering data. In practice, however, specific con-
siderations in the construction and treatment of the effective
interaction make different momentum-space from coordinate-
space approaches. The main difference among them lies in
the fact that in the former the actual fully off-shell g (or t)
matrix is folded with the target mixed density, whereas in
the latter the g matrix is first localized and then folded. By
suppressing nonlocalities in the NN effective interaction (such
as in Melbourne [6] or Hamburg [9] approaches) nonlocalities
in the optical potential arise exclusively from the exchange
contribution. This feature contrasts with folding models in
momentum space [8,10–13], where both direct and exchange
terms are nonlocal.

Another well-established microscopic approach for the
NA optical model, particularly at low energies, is the one
developed by Mahaux and collaborators [3], coined as local
density approximation for the optical potential. Here the
optical potential for nucleon scattering from a finite nucleus
becomes local by construction, where at each coordinate r
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of the projectile in the nucleus is mapped the on-shell mass
operator from infinite nuclear matter, evaluated at a density
equal to that of the target at coordinate r , namely ρ(r ). The
energy at which the mass operator is evaluated corresponds
to that of the beam. Besides the fact that the resulting optical
potential is local, its spin-orbit part becomes undefined. This
last limitation is fixed with the introduction of a phenomeno-
logical spin-orbit coupling.

In this work we study the nonlocal structure of microscopic
optical model potentials considering proton scattering off
40Ca at beam energies between 30 and 800 MeV. The poten-
tials are calculated in momentum space making use of the
density-dependent Brueckner-Hartree-Fock g matrix [7,13]
where its exact nonlocal and off-shell structure are retained.
Once these potentials are transformed into coordinate space
with the use of different cutoffs at high momenta, we assess
their nonlocal structure as well as their equivalence regarding
scattering observables.

This paper is organized as follows. In Sec. II we describe
our framework and analyze the case of p + 40Ca elastic
scattering at 200 MeV. We evaluate the potential in momen-
tum space and investigate its structure in coordinate space
when the high-momentum components are suppressed, with
focus on its nonlocal structure. In Sec. III we discuss the
existence of a minimum cutoff applied to optical potentials
in momentum space, above which all scattering observables
remain the same. We compare their nonlocality with those of
Perey-Buck type [14] as well as with the microscopic optical
potential obtained with the nuclear structure method [15]
based on Green’s function formalism in the random-phase
approximation using Gogny effective interaction. In Sec. IV
we summarize and discuss the main results of this work.

II. PROTON-NUCLEUS SCATTERING: A STUDY CASE

Consider the scattering of protons off 40Ca at beam energy
E. The optical model potential in momentum space can be
expressed as the sum of its central and spin-orbit contributions
in the form

Ũ (k′, k; E) = Ũc(k′, k; E) + iσ · n̂ Ũso(k′, k; E), (1)

where σ denotes the spin of the projectile and n̂ the unit
vector perpendicular to the scattering plane defined by n̂ =
(k′ × k)/||k′ × k||. This same operator is often denoted as
�̃(k′, k; E) or M̃ (k′, k; E) in the literature [2,16]. The optical
potential is evaluated in momentum representation following
procedures outlined in Ref. [7], where an in medium effective
interaction is folded with the target full mixed density. The
(nonlocal) density-dependent NN effective interaction is taken
as the actual off-shell g matrix, solution of the Brueckner-
Bethe-Goldstone equation in the Brueckner-Hartree-Fock ap-
proximation. In the absence of medium effects the g matrix
becomes the free t matrix, resulting in the impulse approxi-
mation for the optical model potential in multiple-scattering
expansion [10]. An appealing attribute of the momentum-
space folding approach we pursue is that it enables, within
a single framework, parameter-free descriptions of nucleon
scattering off nuclei at energies ranging from few tens of MeV
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FIG. 1. (a) Real and (b) imaginary parts of the s-wave central
optical potential as functions of the relative momenta k and k′.
Potential corresponding to p + 40Ca scattering at 200 MeV. Results
based on AV18 bare interaction. Color code in units of MeV fm.

up to 1 GeV [7,13,17], a feature not shared by any other
reported approach.

To obtain the g matrix we use the traditional Argonne v18

[18] (AV18) bare potentia, which has been fitted to NN phase-
shift data at beam energies below pion production threshold,
together with static properties of the deuteron. We also include
results obtained from chiral effective-field-theory interaction,
based on chiral perturbation theory. The resulting bare in-
teraction is constructed with nucleons and pions as degrees
of freedom, with the two-nucleon part (2N) fit to NN data.
We consider the chiral 2N force up to next-to-next-to-next-
to-leading order (N3LO) given by Entem and Machleidt [19].
For each of these interactions we have calculated the corre-
sponding infinite nuclear matter self-consistent single-particle
fields following Refs. [20–22], to subsequently be used to
obtain fully off-shell g matrices. Radial proton and neutron
densities for the 40Ca target are obtained from Hartree-Fock-
Bogoliubov calculations based on the finite-range, density-
dependent Gogny D1S interaction [23].

A. Momentum- vs coordinate-space structure

Typically, momentum-space NA potentials are evaluated at
relative momenta of up to about 10–15 fm−1, depending on
the beam energy, choosing an angular mesh k̂ · k̂′ suitable for
reliable partial wave expansions. Once the central and spin-
orbit components of Ũ (k′, k; E) are obtained we extract their
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FIG. 2. The same as Fig. 1, but for N3LO interaction.

corresponding partial wave components Ũl (k′, k), with l the
orbital angular momentum.

Let us first consider p + 40Ca elastic scattering with proton
beam energy of 200 MeV. In Figs. 1 and 2 we show surface
plots of the real [Figs. 1(a), 2(a)] and imaginary [Figs. 1(b),
2(b)] s-wave components of the (central) optical potential,
k′Ũc(k′, k)k, as functions of the relative momenta k and
k′. Figures 1 and 2 are based on AV18 and N3LO bare
potentials, respectively. The short segments on each sheet
denote the on-shell momentum. As observed, both real and
imaginary components exhibit their dominant contributions
along a diagonal band. In the case of the real component
based on AV18, a change of sign takes place in the vicinity of
k = k′ ≈ 4 fm−1. This feature contrasts with that in Fig. 2(a),
where the real part of the potential based on N3LO becomes
weaker at high momenta, without change of sign. In the case
of the imaginary component, both bare interactions yield an
s-wave potential mostly negative maintaining its negative sign
along the diagonal. In coordinate space the central part of the
potential reads

Ul (r
′, r ) = 2

π

∫ ∞

0
k′2dk′

∫ ∞

0
k2dk jl (k

′r ′)Ũl (k
′, k)jl (kr ),

(2)

resulting in a nonlocal function in the general case (we omit
subscript c for simplicity). A similar expression holds for the
spin-orbit term. Actual evaluations of the above integrals are
performed up to some upper momenta chosen to guarantee
convergence of the evaluated scattering observables. To select
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FIG. 3. Contour plots for the real (left) and imaginary (right)
s-wave central optical potential as functions of the relative distance
r and r ′. Potential for p + 40Ca scattering at 200 MeV. Results
based on AV18 bare interaction. (a), (b), and (c) represent NA
potentials with cutoffs at � = 12, 7 and 4 fm−1, respectively. All
three potentials yield the same scattering observables. Color bar in
units of MeV fm−1.

the momentum up to which integrals over k are done we
introduce a cutoff function f�(k) such that

Ũ (k′, k) → Ũ�(k′, k) = f�(k′)Ũ (k′, k)f�(k), (3)

where

f�(k) = 1

2

[
1 − tanh

(
k − �

δ

)]
. (4)

When δ is sufficiently small this function takes the form of
the Heaviside step function �(� − k). Hence, � defines the
momentum above which momenta in Ũ (k′, k) are suppressed.
Under this definition δ represents the width of the cutoff,
which in this work we have chosen equal to 0.2 fm−1. This
cutoff function plays an analogous role to momentum-space
regulators in renormalization group transformations applied
to NN interactions [24].

For a given beam energy E we have performed scattering
calculations in coordinate representation considering various
values of �, obtaining practically the same observables when
� lies above certain critical cutoff momentum. At the same
time, however, different choices of � above this critical
momentum lead to potentials with quite different nonlocal
structure, a feature we address in more detail next.

On each of Figs. 3 and 4 we show six contour plots in the
(r, r ′) plane for the calculated r ′U (r ′, r )r , with three choices
of � at and above 4 fm−1. These choices lead to the same
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FIG. 4. The same as Fig. 3, but for N3LO bare interaction.

scattering observables, as will be discussed later. Figures 3
and 4 are based on AV18 and N3LO bare interactions, re-
spectively. Figures 3(a)–3(c) and 4(a)–4(c) on the left-hand
side (l.h.s.) correspond to the real component of the potential,
while the prime-labeled panels on the right-hand side (r.h.s.)
represent the imaginary part. Figures 3(a), 3(a′) and 4(a), 4(a′)
show results for � = 12 fm−1, 3(b), 3(b′) and 4(b), 4(b′) for
� = 7 fm−1, and 3(c), 3(c′) and 4(c), 4(c′) for � = 4 fm−1.
What is evidenced in Fig. 3(a) is how strong and rugged
appears the real part of the AV18-based potential in coordinate
space, as inferred from the narrow diagonal bands of opposite
signs (note the −300 : 200 scale for this panel). Observe also
the narrow oscillatory pattern taking place along transverse
lines, i.e., those where (r + r ′) is constant. The corresponding
imaginary component shown in Fig. 3(a′) is less intense, with
its sharp dominant contributions located near the diagonal
r = r ′. It is worth stating that if the potential were local,
its plot on any of the panels would result in a narrow band
along the diagonal r = r ′. As the cutoff � diminishes, the
potential in coordinate space becomes less structured, though
it retains its nonlocal nature. This general feature is evidenced
in Figs. 3(c), 3(c′) and 4(c), 4(c′), for � = 4 fm−1.

Clearly the momentum cutoff � has an incidence on the
shape of the potential in coordinate space, particularly with
regard to its nonlocality. For a closer scrutiny of this feature,
in Figs. 5 (for AV18) and 6 (for N3LO) we plot r ′U (r ′, r )r
as functions of the difference (r ′ − r ) along transverse lines
where r + r ′ is kept constant. Solid, dashed, and dotted curves
correspond to � equal to 12, 7, and 4 fm−1, respectively.
Figures 5(a), 5(b) on the l.h.s. represent r ′U (r ′, r )r in the
case (r + r ′)/2 ≡ RA, with RA = 2 fm. When r ≈ r ′, this
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FIG. 5. Nonlocal behavior of the s-wave r ′U (r ′, r )r as function
of (r ′ − r ), satisfying r + r ′ = constant. Solid, dashed and dotted
curves correspond to results for � = 12, 7, and 4 fm−1, respectively.
See text for descriptions of each panel.

choice of RA represents a region near the bulk of the nucleus.
Figures 5(c) and 5(d) on the r.h.s. correspond to case RA = 4
fm, near the surface of the nucleus. Top (bottom) panels show
the real (imaginary) part of the potential. We observe that the
real part oscillates as a function of r ′ − r , being stronger for
r = r ′, and decreasing as |r ′ − r| increases. The imaginary
part behaves similarly to the real part, but featuring more
damped oscillations. When comparing l.h.s, with r.h.s., we
observe that the potential weakens at the surface.

Any near local potential would resemble some finite-width
representation of the Dirac δ function along transversal lines.
The curvature at r ′ = r , would serve to gauge the nonlocality
at RA = r . From the plots shown in Figs. 5 and 6 we observe
a clear sensitivity of the curvature of the potential at r = r ′,
under the three values of �, evidencing different nonlocalities
among them. What emerges as an interesting property is that
as � diminishes, the coordinate-space optical potential based
on AV18 and N3LO become similar, a feature we illustrate
more closely in Fig. 7 for the s-wave component. Here
black and gray curves represent results based on AV18 and
N3LO bare interactions, respectively. Solid (dotted) curves
correspond to the real (imaginary) component of the potential.
Figures 7(a), 7(b) show results near the bulk (RA = 2 fm) and
surface (RA = 4 fm) of the nucleus, respectively. Observe that
the real component of the potential is slightly more intense for
N3LO than for AV18, whereas their corresponding absorptive
parts are very similar. Note also that all components feature
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FIG. 6. The same as Fig. 5, but for N3LO.

damped oscillations as |r − r ′| increases. The question that
arises at this stage is whether differences in the nonlocal
structure of these potentials, as driven by the cutoff �, have
any incidence on the calculated scattering observables.

B. Invariability of scattering observables

A test of the equivalence of U� in coordinate space, for
� above its critical value, comes from the actual calculation
of scattering observables. In this case we solve the integral
equation for the scattering wave function

ujl (r ) = 1

k
Fl (kr ) +

(
2m

h̄2

) ∫∫
dr ′dr ′′

×G
(+)
l (r, r ′; k) r ′U [s]

j l (r ′, r ′′)r ′′ ujl (r
′′), (5)

leading to exact solutions for the scattering waves in the
presence of Coulomb interaction [25,26]. Here Fl denotes the
regular Coulomb function for orbital angular momentum l,
while j is the total angular momentum, and k the momentum
of the projectile in the NA center of momentum reference
frame. The propagator G

(+)
l (r, r ′; k) represents the Green’s

function associated to the Coulomb interaction of point par-
ticles of charge Ze (nucleus) and e (incident proton) [25].
Furthermore, U [s] consists of the (nonlocal) optical potential
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FIG. 7. Nonlocal behavior of the s-wave optical potential near
(a) bulk and (b) surface for cutoff � = 4 fm−1. Potential for p +
40Ca elastic scattering at 200 MeV beam energy. Solid and dotted
curves represent results for the real and imaginary components,
respectively. Black and gray curves denote results based on AV18
and N3LO bare interactions, respectively.

superposed to the Coulomb-screened interaction, namely,

r ′U [s]
j l (r ′, r )r = r ′Ujl (r

′, r )r +
[
VC (r ) − Ze2

r

]
δ(r ′ − r ),

(6)

resulting in a nonlocal finite-range interaction. Here VC (r )
represents the electrostatic interaction between the charge
distribution of the nucleus and the charge of the projectile.
The hadronic component itself is composed by its central and
spin-orbit contributions as

Ujl = U
(c)
l + 〈σ · � 〉j l U

(so)
l , (7)

with 〈σ · � 〉j l = [j (j + 1) − l(l + 1) − 3/4]. An alternative
method to obtain solutions for the wave functions is by means
of the integrodifferential equation, such as those reported in
Refs. [27,28].

In Fig. 8 we show the calculated differential cross sec-
tion (dσ/d�) and analyzing power (Ay) for proton elastic
scattering from 40Ca at 200 MeV beam energy. Black and
gray curves denote results based on AV18 and N3LO, respec-
tively. Observables are calculated in coordinate space using
four values for �. Three of these correspond to � = 12, 7,
and 4 fm−1, whose corresponding scattering observables are
all plotted with solid curves, becoming indistinguishable to
the eye. The case � = 3.5 fm−1 (dashed curves) has been
deliberately chosen below the critical one in order to contrast
its results with the other three values. As observed, all results
with � � 4 fm−1 yield practically identical dσ/d� and Ay .
Such is not the case for � = 3.5 fm−1, leading to weaker
differential cross section and more structured Ay . Regarding
the reaction cross section, all three cases with � � 4 fm−1

for AV18 (N3LO) yield σR = 540.0 (524.9) mb, whereas for
� = 3.5 fm−1, we obtain σR = 505.0 (490.8) mb. Differences
of about 35 mb are consistent with the trend observed for
dσ/d� in Fig. 8.
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C. Volume integrals

As a means to check the consistency of the results, we have
calculated volume integrals of the central part of the optical
potential in the two representations under study. In coordinate
space we evaluate explicitly

J =
∫

d r d r ′Uc(r ′, r; E), (8)

with Uc the central component of the optical potential. Con-
sidering that

Ũc(k′, k; E) = 1

(2π )3

∫
d r d r ′e−ik′ ·r ′

Uc(r ′, r; E)eik·r , (9)

it becomes evident that

J = 8π3 Ũc(k′, k; E)|k′=k=0. (10)

Thus, in momentum space the volume integral J can be
obtained from the potential matrix element at k′ = k = 0,
unaffected by any finite cutoff with narrow width. In Table I
we summarize results for J/A calculated in momentum (q-
space) and coordinate (r-space) representations, considering
optical potentials based on AV18 and N3LO bare interactions.
Results obtained in coordinate space have been evaluated for

TABLE I. Volume integral per nucleon evaluated in two repre-
sentations for p + 40Ca scattering at 200 MeV.

q space r space

	e J/A 
m J/A 	e J/A 
m J/A

(MeV fm3) (MeV fm3) (MeV fm3) (MeV fm3)

AV18 −536.2 −225.9 −536.7 −226.1
N3LO −571.6 −199.8 −572.2 −200.0

cutoffs � = 12, 7, and 4 fm−1, coming out identical within
four significant figures. The largest differences between the
two representations, of the order of 0.6 MeV fm3, take place
for the real component of J/A. The observed differences
(of up to ∼0.1%) between the two representations can be
attained to the various numerical procedures involved such as
multipole evaluations, interpolations, and quadratures.

III. NONREDUCIBLE k DOMAIN

We have calculated momentum-space optical model po-
tentials for proton elastic scattering off 40Ca at several beam
energies E between 30 and 800 MeV. The procedures we
follow are the same as the ones applied in the previous section.
Considering that realistic NN interactions are designed for
nucleon beam energies of up to ∼300 MeV, applications
for E � 400 MeV are based on procedures described in
Ref. [17], where minimal relativity corrections are included
in the evaluation of the optical potential. The same reference
describes the inclusion of a separable term added to the
bare interaction, in order to reproduce exactly empirical NN
scattering amplitudes above pion production threshold. Apart
from these considerations, the folding structure of the optical
potential at these energies are the same as described in Sec. II.
For consistency, we have excluded the N3LO bare potential
from applications at these high energies.

Once the NA potentials are evaluated we proceed to the
calculation of their scattering observables considering differ-
ent cutoffs �, aiming to identify domains that yield the same
results within a given accuracy. In Fig. 9 we plot reaction
cross sections σR for p + 40Ca elastic scattering as functions
of �. Numerical labels indicate the beam energy in MeV
units, while black and gray curves denote results based on
AV18 and N3LO bare interactions, respectively. We observe
that all curves for σR as functions of � reach a plateau
above a critical value, which we denote �A. The subscript
A is intended to distinguish this cutoff, applied to NA optical
potentials, from those used in renormalization group transfor-
mations applied to NN potentials. Thus, for a given energy,
if we apply a cutoff to the momentum-space potential at or
above its corresponding �A, the scattering observables remain
unaffected. We shall refer to the complement of that interval
as nonreducible k domain. Cutoffs within the nonreducible
k domain alter the scattering observables associated to the
optical potential under consideration. As we have seen in
the previous section, different choices of � above �A yield
different coordinate-space structure, with the case � = �A,
resulting in the least structured potential. This feature hints
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FIG. 9. Reaction cross section as a function of the cutoff �

applied to the optical model potential for p + 40Ca elastic scattering.
Black and gray curves represent results based on AV18 and N3LO
bare interactions. Labels on each curve refer to the beam energy.
Squares denote the critical cutoff.

at a means to compare on an equivalent footing nonlocal
structures of different potentials. Henceforth, potential with
cutoff at �A will be referred to as reduced potentials, with its
implied nonlocal behavior identified as reduced nonlocality.

Examining more closely Fig. 9 for σR we observe that the
position of �A increases monotonically with the energy. To
obtain �A at the edge of the plateau we look for the smallest
�, which satisfies ∣∣∣∣∂σR

∂�

∣∣∣∣ � ε, (11)

with ε = 0.01 mb fm. In Fig. 10 we plot with filled squares
the obtained values of �A. We have found that this behavior
can be characterized by means of the formula

�A(E) =
√

�2
0 + k2

E, (12)

 0
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 0  200  400  600  800

borderline

Λ
   

[ f
m

-1
 ]
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Invariant sector

Non-reducible sector

FIG. 10. Critical cutoff �A for the nonreducible k domain as
function of the beam energy E in the case of proton elastic scattering
from 40Ca.

which is plotted with solid curve (borderline). In this case
�0 = 2.4 fm−1, with kE the relative momentum in the cen-
ter of momentum reference frame associated to the beam
energy E. The region below the borderline corresponds to
the nonreducible k domain, while the region above it repre-
sents the sector where scattering observables remain invariant.
Equation (12) for �A has to be taken as an estimate of the
borderline since it depends on the criteria set for ε, width δ
of the cutoff as well as numerical accuracy. This borderline
may also depend on the optical model as well as nature of
the NN effective interaction under use. Furthermore, it is also
expected that �A depends smoothly on the size of the target,
as given by the mass number A. The extension of Eq. (12) to
proton collisions from targets other than 40Ca goes beyond the
scope of this study.

A. p +40 Ca scattering at 30.3 MeV

We now study proton scattering from 40Ca at 30.3 MeV,
an energy, which allows us to extend the previous discussion
to other documented nonlocal optical potentials developed for
p + 40Ca elastic scattering [14,15]. Apart from the AV18- and
N3LO-based optical potentials, we include results based on
the microscopic optical model of Ref. [15] within the NSM
based on Green’s function formalism in the random-phase
approximation using Gogny effective interaction. Here we
also consider the Perey-Buck-type parametrization reported
by Tian et al. [14], phenomenological approach of common
use.

The last two potentials are calculated in coordinate space,
with their equivalent central and spin-orbit counterparts in
momentum space obtained from

Ũl (k
′, k) = 2

π

∫ ∞

0
r ′2dr ′

∫ ∞

0
r2dr jl (k

′r ′)Ul (r
′, r )jl (kr ).

(13)

In order to compare NA potentials on a same footing we look
for their reduced form. Hence, starting with a potential in
coordinate space we transform it to momentum space using
Eq. (13), to then apply a momentum cutoff and transform it
back to coordinate space. The transformed potential U� is
then used to obtain its scattering observables solving Eq. (5).

The presence of local contributions Vl (r ) in the hadronic
part of the NA potential deserves special attention in the
procedure outlined above. This feature takes place in the
NSM approach, where the Hartree term is local. This also
occurs for the direct term in coordinate-space folding models
based on local effective interactions [6]. In such cases their
momentum-space representation becomes

Ṽl (k
′, k) = 2

π

∫ ∞

0
r2dr jl (k

′r )Vl (r )jl (kr ). (14)

What is interesting in this case is that its transformation back
to coordinate space, after the application of a cutoff at �, re-
sult into a nonlocal potential V�(r ′, r ). This trend is somewhat
observed in Figs. 3(a′) and 4(a′), where the sharp diagonal
structure for the imaginary part of the potential (resembling
locality) loses its sharpness as the cutoff is diminished. For
� = 4 fm−1 the equivalent potential is clearly nonlocal.
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FIG. 11. (a) Differential cross section and (b) analyzing power as
functions of the center-of-mass scattering angle for 40Ca(p, p) scat-
tering at 30.3 MeV. Overlapping curves in the cases AV18, N3LO,
and PB correspond to results based on � = 6, 4, and 2.6 fm−1. Data
from Refs. [29,30].

In Fig. 11 we plot calculated differential cross section
dσ/d� [Fig. 11(a)] and analyzing power Ay [Fig. 11(b)]
as functions of the center-of-mass scattering angle θc.m., for
proton scattering off 40Ca at 30.3 MeV beam energy. The
data are taken from Refs. [29,30], included here in order to
visualize the level of agreement of each approach. Black solid
and dashed curves denote results based on AV18 and N3LO
bare interactions, respectively. Gray solid curves represent
results based on the NSM microscopic approach using Gogny
effective interaction. Gray dashed curves correspond to results
based on the Perey-Buck-type nonlocal parametrization of
Ref. [14]. In this figure we plot results with cutoffs at � = 7,
4, and 2.6 fm−1, resulting in nearly full overlap among curves
in the cases AV18, N3LO, and PB. Differences in the case
of NSM can be attributed to the structure of the spin-orbit
potential in coordinate space, involving symmetric gradients.
These results illustrate the level at which different cutoffs
above �A lead to the same observables. The differences
among the four approaches indicate the extent to which their
corresponding reduced potentials differ from each other.

In Figs. 12–15 we show contour plots in the (r, r ′) plane
for the calculated s-wave r ′U (r ′, r )r . Panels (a), (b), and
(c) correspond to � = 6, 4, and 2.6 fm−1, respectively. All
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FIG. 12. Contour plots for the real (l.h.s.) and imaginary (r.h.s.)
s-wave central optical potential as functions of the relative distance r

and r ′. Potential for p + 40Ca scattering at 30.3 MeV. Results based
on AV18 bare interaction. (a), (b), and (c) represent results based on
� = 6, 4, and 2.6 fm−1, respectively. All three potentials yield the
same scattering observables. Color bar in units of MeV fm−1.

cases meet the criteria � � �A, resulting in different nonlocal
structure but sharing the same scattering observables. On each
figure, panels on the l.h.s. (r.h.s.) correspond to their real
(imaginary) parts. Plots in Figs. 12 and 13 are based on AV18
and N3LO bare potentials, respectively. Plots in Fig. 14 are
based on NSM microscopic approach, while Fig. 15 is based
on Perey-Buck-type parametrization of Ref. [14]. In order to
make comparable these figures all corresponding panels use
the same scale. Panels (c) show the reduced potential since
the cutoff applied in all these cases corresponds to �A given
by Eq. (12). We observe the following:

Panel (a). All upper frames (a) and (a′) show the nonlocal
behavior of the potential closest to its original form. By closest
we mean they all have been already affected by a cutoff,
though relatively large with respect to the critical one. Observ-
ing panel (a) for AV18 we identify a rather flat diagonal band
of about ∼1 fm width, with strength nearing −70 MeV fm−1.
This band, which does not appear in the other cases, weakens
near the surface, namely for r ≈ r ′ ≈ 4 fm. Frames (a) for
N3LO and NSM exhibit sharper potentials along the diagonal,
vanishing around 4 fm. The corresponding panel for PB shows
a weaker and smooth potential with an elongated oval shape.
With the exception of Fig. 15 for PB, all potentials exhibit fine
structures in the form of regular spots away from the diagonal.

Panel (b). As the cutoff � diminishes, the coordinate-space
potential becomes less structured. This is observed in all four
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FIG. 13. The same as Fig. 12, but for N3LO bare interaction.

cases. In this regard note how similar is the reduced potential
based on AV18 with that based on the N3LO bare interaction.
In the case of NSM in Fig. 14, the real part of the reduced
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FIG. 14. The same as Fig. 12, but based on NSM approach.
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FIG. 15. The same as Fig. 12, but based on Perey-Buck-type
nonlocal parametrization of Ref. [14].

potential is more shallow at the center than in the previous
ones, also weakening as the surface is reached at r ∼ r ′ ≈
4 fm. In the case of PB, the real part resembles very much the
ones based on NSM.

Panel (c). The imaginary part of the potentials shown at
the r.h.s. of each figure based on AV18 and N3LO exhibits
minor differences, both in their raw and reduced forms. The
other two cases, namely NSM and PB, are much different.
The former starts at frame a’ with a narrow band and end
up in panel (c′) with a less structured absorptive component
confined to radii below 2 fm. The opposite occurs for PB,
where the absorptive part takes place above radii of 3 fm,
remaining in frame (c′) away from the bulk of the nucleus.

Panel (d). As a means to supplement our previous results,
in Table II we show results for volume integrals per nucleon
as obtained in momentum and coordinate space. Results cor-
respond to potentials for p + 40Ca scattering at 30.3 MeV

TABLE II. Volume integral per nucleon evaluated in two repre-
sentations for p + 40Ca scattering at 30.3 MeV.

q space r space

	e J/A 
m J/A 	e J/A 
m J/A

(MeV fm3) (MeV fm3) (MeV fm3) (MeV fm3)

AV18 −699.8 −261.8 −700.5 −262.1
N3LO −695.3 −235.3 −696.1 −235.6
NSM −629.6 −172.4 −629.9 −172.6
PB −746.5 −237.7 −746.8 −237.8
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based on AV18 and N3LO bare interactions as well as NSM
approach and PB parametrization. We note that differences
between the two representations are smaller than 0.5%. The
evaluation of volume integrals in coordinate space consider
cutoffs of � = 6, 4m and 2.6 fm−1, leading to the same results
for J/A within 0.2%.

B. Reduced potentials in coordinate space

As discussed in the previous section, the critical cutoff �A

leads to optical potentials with least structure in coordinate
space. This characteristic is observed in all partial waves as
well as energies. In order to illustrate this feature in three-
dimensional (3D) surface plots, we consider s-wave potentials
(central part) for p + 40Ca elastic scattering at 800, 200, and
30.3 MeV. In Fig. 16 we show surface plots of the real (l.h.s.
graphs) and imaginary (r.h.s. graphs) s-wave reduced central
optical potential rU (r, r ′)r ′, as functions of r and r ′. These
results are based on AV18 bare interaction. The critical cutoffs
for each case are 8, 4, and 2.6 fm−1, respectively. Color bars
and vertical axes are in units of MeV fm−1. As observed,
all potentials exhibit pronounced structures in both real and
imaginary components. The case of 30.3 MeV appears the
most smooth of all. As the energy increases, the potential
features strong oscillating patterns near and away from the di-
agonal. We have to stress that all these potentials are the least
structured in coordinate space, consistent with the scattering
observables they have in their original form.
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FIG. 17. (a) Differential cross section and (b) analyzing power
as functions of the momentum transfer for 40Ca(p, p) scattering at
800 MeV. Overlapping solid curves correspond to results based on
� = 12, 10, and 8 fm−1. Dashed curves correspond to � = 7.5 fm−1.
Data taken from Refs. [31,32].

For completeness in this discussion, in Fig. 17 we plot the
differential cross section [Fig. 17(a)] and analyzing power
[Fig. 17(b)] as functions of the momentum transfer for
40Ca(p, p) scattering at 800 MeV. Here overlapping solid
curves correspond to results based on � = 12, 10, and 8 fm−1.
Dashed curves correspond to � = 7.5 fm−1, below the critical
value. The data are taken from Refs. [31,32]. As observed, this
case exhibits the same features as the ones discussed in the
previous sections, namely, there is range of cutoffs above �A,
which does not alter the implied scattering observables. The
case � = 7.5 fm−1, below �A, shows clearly its differences
with the actual observables. The specific issue on the level
of agreement of the model with the data requires a more
dedicated study, which is beyond the scope of this work.
Regardless of any change at the level of the microscopic
description at this energy, it is safe to state that the nonlocal
structure of the calculated potential will remain essentially the
same as the one shown in Fig. 16.

IV. SUMMARY AND CONCLUSIONS

We have investigated the nonlocal structure of optical
model potentials for NA scattering based on microscopic
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approaches. To this purpose, in medium folding optical poten-
tials have been calculated in momentum space and their corre-
sponding coordinate-space counterparts have been examined,
focusing our attention on their nonlocal shape. The NN effec-
tive interaction consists of the actual full off-shell g matrix
in Brueckner-Hartree-Fock approximation. The nonlocality
of effective interactions is retained throughout all the stages
of the calculation. The bare interactions under consideration
are Argonne v18 potential and chiral next-to-next-to-next-to-
leading-order bare interaction. The study has been focused
on proton elastic scattering off 40Ca at beam energies be-
tween 30 and 800 MeV. Applications at 30.3 MeV have been
made considering microscopic NSM optical potential as well
as phenomenological Perey-Buck potential. We have found
that the gradual suppression of high-momentum contribu-
tions of the optical potential results in quite different-looking
coordinate-space counterparts. Despite this nonuniqueness
in their nonlocal structure, the implied scattering observ-
ables remain unchanged for momentum cutoff above a
critical one, which depends on incident energy of the
projectile.

Folding optical model potentials based on any realistic NN
interaction, as the one used in this work, offer the possibility
to explore in a systematic way nucleon collisions at energies
ranging from tens of MeV up to near GeV energies. A crucial
point in the choice of this framework is the fact that all
sources of nonlocalities are preserved throughout, namely the
determination of the effective NN interaction and also the
evaluation of the potential itself. Thus, momentum-space in
medium folding potentials constitute a general microscopic
starting point to investigate the optical model and its nonlo-
cal features. In this framework the potential is evaluated in
momentum space representation, which enables the treatment
of nonlocalities in a natural way. In this regard the model is
not a particular one, but instead a general one to account for

these features. We would like to mention other studies aiming
to assess the importance of off-shell contributions, by means
of off-shell cutoffs, but applied to the NN effective interaction
level [33,34].

The identification of an energy-dependent critical cutoff
that guarantees invariability in the scattering observables is
an important finding in this work, particularly due to its
implications on the coordinate-space structure of equivalent
potentials. We have demonstrated that the nonlocal shape
of the potential becomes less structured as the cutoff is de-
creased until a critical value, which guarantees that scattering
observables remain unchanged. An immediate implication
of this result is that any attempt to quantify the degree of
nonlocality of a given potential is meaningless. Despite this
limitation, we have found that potentials constructed in any
representation, even local ones in coordinate space, can be
subject to momentum cutoff, which render the same scattering
observables. The resulting potential in coordinate space is
always nonlocal, although less structured when the cutoff is at
�A. This feature may shed light in works aiming to generate
phenomenological nonlocal optical potentials.

From a practical point of view, the identification of the
energy dependence of the critical cutoff �A allows us to set
beforehand the range of momenta relevant in the evaluation
of an optical potential in momentum space. From the present
study we can safely state that momentum components of the
optical potential above �A are irrelevant. The generalization
of this empirical law for �A to any mass number A in the
nuclear chart constitutes a natural extension of this work.
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