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Pion production in a transport model based on mean fields from chiral effective field theory
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We develop a Boltzmann-Uehling-Uhlenbeck (BUU) transport model based on the Skχm∗ energy density
functional, which is constructed from fitting the nuclear equation of state and nucleon effective masses in
asymmetric nuclear matter predicted by the two- and three-body chiral interactions as well as the binding
energies of finite nuclei. This new χBUU transport model is then used to study how baryon mean-field potentials
affect the kinematics of a scattering or decay process and the equilibrium properties of a hot N -�-π system
in a box with periodic boundary conditions. We find that the inclusion of mean-field potentials in the energy
conservation condition for scattering and decay processes is necessary to maintain the equilibrium numbers
of N, �, and π . Although the baryon mean-field potentials have significant effects on the total � and π

numbers, they only slightly affect the ratio of effective negatively to positively charged pions. We also study pion
production in central 197Au + 197Au collisions at the incident energy of E/A = 400 MeV and compare the results
with the experimental data from the Four Pi (FOPI) Collaboration at the Gesellschaft für Schwerionenforschung
mbH (GSI) in Germany. We find that our model can well describe the experimental results and the threshold
effect due to baryon mean-field potentials does not affect much the charged pion ratio in this model. We
further make predictions on pion production for the ongoing experiments of 132Sn + 124Sn and 108Sn + 112Sn
at the incident energy of E/A = 270 MeV by the SAMURAI Pion-Reconstruction and Ion-Tracker (SπRIT)
Collaboration at the Institute of Physical and Chemical Research (RIKEN) in Japan.
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I. INTRODUCTION

Chiral effective field theory provides a systematic frame-
work for constructing the nucleon-nucleon interactions based
on the symmetries of QCD and their breakings [1,2]. The
resulting chiral nuclear interactions have been extensively
used in various many-body methods, such as the no-core shell
model [3], quantum Monte Carlo methods [4], coupled-cluster
method [5], and in-medium similarity renormalizaton group
theory [6] to study properties of light- and medium-mass
nuclei as well as infinite nuclear matter. Although significant
progress has been achieved in these ab initio calculations, it is
still a challenge to use chiral nuclear interactions for studying
more complicated nuclear systems, such as heavy nuclei and
neutron stars. Also, there has not been any attempt to imple-
ment the chiral nuclear interactions in the transport model to
study the dynamics of heavy-ion collisions. For these cases,
the most feasible approach is to use the nuclear energy density
functional constrained by chiral effective field theory [7–9].
Very recently, a new Skyrme energy density functional, called
Skχm∗, has been constructed from fitting the equation of state

*Present address: Sino-French Institute of Nuclear Engineering
and Technology, Sun Yat-Sen University, Zhuhai 519082, China;
zhangzh275@mail.sysu.edu.cn
†ko@comp.tamu.edu

of asymmetric nuclear matter and nucleon effective masses
from chiral two- and three-body forces [10,11] as well as the
binding energies of finite nuclei, and it has been successfully
used in studying the nuclear giant dipole resonance [8]. In
this work, we employ the Skχm∗ energy density functional
in a Boltzmann-Uehling-Uhlenbeck (BUU) transport model
to study pion production in intermediate-energy heavy-ion
collisions.

The study of pion production in heavy-ion collisions near
the threshold energy has recently attracted much attention
since the charged pion ratio from these collisions has been
proposed as a unique probe of the high-density behavior
of nuclear symmetry energy [12]. The latter is essential for
understanding the properties of neutron stars and the gravi-
tational waves from spiraling neutron star binary but is still
poorly known [13–17]. During the past decade, a lot of effort
has been devoted to studying and exploring the possibility of
determining from pion production in heavy-ion collisions the
properties of nuclear symmetry energy at high densities [18–
32]. With soon to be available systematic experimental mea-
surements of the pion yield from intermediate-energy heavy-
ion collisions, which are being carried out by the SPiRIT
Collaboration at RIKEN in Japan [33], theoretical studies of
pion production become even more important.

Before employing the Skχm∗ energy density functional
to study pion production in heavy-ion collisions, we first
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carry out a box calculation with periodic boundary con-
ditions to investigate the effect of energy conservation in
nucleon-� inelastic scattering, � decay, and pion absorption
in the presence of mean-field potentials on the equilibrium
properties of a hot N -�-π matter. We find that the inclusion
of baryon mean-field potentials in the energy conservation
condition is necessary to maintain the equilibrium numbers
and momentum distributions of N, �, and π . Without taking
into this account, the � and π equilibrium numbers would be
significantly affected, although the charged pion ratio is only
slightly modified. We then study pion production in central
197Au + 197Au collisions at the incident energy of E/A =
400 MeV. As in the case of box calculations, including baryon
mean-field potentials in the energy conservation condition
in nucleon-� inelastic scattering, � decay, and pion ab-
sorption has a significant effect on the total pion yield but
only slightly affects the charged pion ratio. By introducing
a density dependence in the δ production cross section, our
model can well reproduce the experimental data on both the
total pion yield and the charged pion ratio. Finally, we make
predictions on the double and subtracted charged pion ratio as
well as the isoscaling pion yield ratio in midcentral 132Sn +
124Sn and 108Sn + 112Sn collisions at the incident energy of
E/A = 270 MeV that are being studied in the ongoing exper-
iment by the SPiRIT Collaboration.

This paper is organized as follows. In Sec. II, we give an
introduction to our Boltzmann-Uehling-Uhlenbeck transport
model including the baryon mean-field potentials, the scat-
tering cross sections and the in-medium � decay width, and
the detailed balance relations for the NN ↔ N� and � ↔
Nπ processes in medium. Results from box calculations and
heavy-ion collisions using this transport model are shown in
Sec. III. Finally, we give a summary in Sec. IV.

II. THE BOLTZMANN-UEHLING-UHLENBECK MODEL

In the present work, the time evolution of the single-
particle distribution functions fi (r, p; t ), where i denotes
N, �, and π in various charge states, in phase space is
described by the Boltzmann-Uehling-Uhlenbeck equation,
which can be written as

∂

∂t
fi + ∇ pEi · ∇rfi − ∇rEi · ∇ pfi = C. (1)

In the above, Ei is the single-particle energy and C denotes
the collision integral, which includes baryon-baryon elastic
scattering and inelastic scattering that produces or absorbs
a � resonance, � decay, and π absorption. Because of the
nonrelativistic nature of Skχm∗ interaction, we treat nucleons
and � resonances as nonrelativistic particles with their single-

particle energies given by Ei = mi + p2
i

2mi
+ Ui , where mi, pi ,

and Ui are the mass, momentum, and potential, respectively.
For pions, they are treated as relativistic particles due to their
small masses (138 MeV), and their single-particle energies are
taken to be Eπ = √

m2
π + p2

π by neglecting their potentials as
in most transport models.

A. Baryon mean-field potentials

We include only the mean-field potentials of baryons while
we treat pions as if they are in free space. The potentials for
nucleons and � resonances are taken from the nonrelativistic
Skχm∗ energy density functional, which is constructed from
fitting the nuclear equation of state and nucleon effective
masses from the chiral effective field theory and the binding
energies of finite nuclei [8]. In uniform nuclear matter, the
potential energy part of the Skχm∗ energy density functional
has the form [34]

εpot (r ) = A0ρ
2 − A1

(
ρ2

n + ρ2
p

) + B0ρ
α+2 − B1ρ

α
(
ρ2

n + ρ2
p

)
+C

∫
d3 pd3 p′f (r, p)f (r, p′)( p − p′)2

+D

∫
d3 pd3 p′[fn(r, p)fn(r, p′)( p − p′)2

+ fp(r, p)fp(r, p′)( p − p′)2], (2)

where f = fp + fn with fp(fn) being the phase-space dis-
tribution function of protons (neutrons) and ρ(r) = ρp(r) +
ρn(r ) with ρp(r ) = ∫

d3 pfp(r, p) [ρn(r ) = ∫
d3 pfn(r, p)]

being the proton (neutron) density at r . The coefficients
A0, A1, B0, B1, C, and D can be expressed in terms of the
parameters in the conventional Skyrme interaction,

v(r1, r2) = t0(1 + x0Pσ )δ(r1 − r2)

+ 1

2
t1(1 + x1Pσ )[ p′2δ(r1 − r2) + c.c.]

+ t2(1 + x2Pσ ) p′ · δ(r1 − r2) p

+ 1

6
t3(1 + x3Pσ )ρα

(
r1 + r2

2

)
δ(r1 − r2)

+ iW0(σ 1 + σ 2) · [ p′ × δ(r1 − r2) p], (3)

where σ i is the Pauli spin operator, Pσ = (1 + σ 1 · σ 2)/2
is the spin-exchange operator, p = −i(∇1 − ∇2)/2 is the
relative momentum operator, and p′ is the conjugate operator
of p acting on the left. Specifically, they are

A0 = 1
4 t0(2 + x0), A1 = 1

4 t0(1 + 2x0),

B0 = 1
24 t3(2 + x3), B1 = 1

24 t3(1 + 2x3),
(4)

C = 1
16 [t1(2 + x1) + t2(2 + x2)],

D = 1
16 [t2(2x2 + 1) − t1(2x1 + 1)].

Values of these Skyrme parameters can be found in Ref. [8].
The single-particle potential of a nucleon, which can be

calculated from ∂εpot/∂ρq or ∂εpot/∂fq

∂ρq/∂fq
, is then given by

Uq (r, p) = 2A0ρ − 2A1ρq + B0(α + 2)ρα+1

−B1αρα−1
(
ρ2

n + ρ2
p

) − 2B1ρ
αρq

+ 2C

∫
d3 p′( p − p′)2f (r, p′)

+ 2D

∫
d3 p′( p − p′)2fq (r, p′)

= aq p2 − bq · p + cq, (5)
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FIG. 1. Momentum dependence of the nucleon single-particle
potential in symmetric nuclear matter at saturation density from the
Skχm∗ interaction. Also shown are the optical potential predicted
by the chiral effective theory [35] and the empirical optical potential
from Hama et al. [36,37].

where q = p, n, and the coefficients aq, pq , and cq are given
by

aq = 2Cρ + 2Dρq,

bq = 4C

∫
d3 p′ p′f (r, p′) + 4D

∫
d3 p′

q p′
qfq (r, p′

q ),

cq = 2A0ρ − 2A1ρq + B0(α + 2)ρα+1

−B1αρα−1
(
ρ2

n + ρ2
p

) − 2B1ρ
αρq

+ 2C

∫
d3 p′ p′2f (r, p′) + 2D

∫
d3 p′

q p′2
q fq (r, p′

q ).

(6)

For the potentials of � resonances, they are determined
from those of nucleons according to the extensively used
relations in literatures based on isospin considerations [16],

U�++ = Up, U�+ = 2
3Up + 1

3Un,
(7)

U�0 = 1
3Up + 2

3Un, U�− = Un.

For example, we have the coefficients a�+ = 2ap/3 +
an/3, b�+ = 2bp/3 + bn/3, and c�+ = 2cp/3 + cn/3 for the
�+ resonance.

Figure 1 shows the momentum dependence of the nucleon
single-particle potential in symmetric nuclear matter at satu-
ration density from the Skχm∗ interaction. For comparison,
we also show by filled circles the predictions from the chiral
effective field theory [35] and by filled squares the empirical
optical potential from Hama et al. [36,37]. It is seen that
the Skχm∗ interaction can reasonably describe these nucleon
single-particle potentials up to momentum p ∼ 700 MeV.

From Eq. (5), we find that baryons in the Skχm∗ interac-
tion can be treated like free particles with the effective mass
m∗

q , kinetic momentum p∗, and energy E∗ defined by

1

2m∗
q

= 1

2mq

+ aq, pq∗ = pq − �q,

(8)
E∗

q = Eq − �0
q ,

where �0
q = cq − m∗

qb2
q

2 + mq − m∗
q and �q = m∗

q bq . In terms
of these quantities, the kinetic and canonical energies of
a baryon can be expressed as E∗

q = m∗
q + p∗2

q /(2m∗
q ) and

Eq = m∗
q + p∗2

q /(2m∗
q ) + �0

q , respectively. It should be noted
that the total kinetic momentum p∗ and energy E∗ in an
inelastic collision, such as N + N ↔ N + �, are not nec-
essarily conserved due to the difference between initial and
final potentials, although the total canonical momentum p and
energy E are conserved.

B. Scattering cross sections and � decay width

Following the relativistic Valsov-Uehling-Uhlenbeck
(RVUU) model [38,39] used in Ref. [27], we use the
baryon-baryon elastic cross sections parameterized in
Ref. [40] and the � production cross section from the
one-boson exchange model [41]. As discussed in Ref. [27],
the baryon mean-field potentials modify the � production
threshold and also the total energy of two colliding nucleons,
leading to a change in the � production cross section called
the threshold effect [26,27]. For the N + N → N + �

reaction in the presence of mean-field potentials, the energy
in the final state is

Ef = m∗
3 + m∗

4 + p∗2
3

2m∗
3

+ p∗2
4

2m∗
4

+ �0
3 + �0

4

= m∗
3 + m∗

4 + ( p∗
3 + p∗

4 )2

2(m∗
3 + m∗

4 )
+ k∗2

2μ34
+ �0

3 + �0
4 , (9)

with m∗
3 and p∗

3 being the effective mass and kinetic momen-
tum of nucleon, and m∗

4 and p∗
4 being those of �. The sec-

ond line with the reduced effective mass μ34 = m∗
3m

∗
4/(m∗

3 +
m∗

4 ) follows after introducing the relative kinetic momentum
k∗ = p∗

3 − m∗
3

p∗
3+ p∗

4
(m∗

3+m∗
4 ) = −[ p∗

4 − m∗
4

p∗
3+ p∗

4
(m∗

3+m∗
4 ) ]. The threshold

energy can then be determined by taking p∗
3 + p∗

4 = 0 and
k∗ = 0 [27], leading to the following invariant threshold en-
ergy:

√
s th =

√(
m∗

3 + m∗
4 + �0

3 + �0
4

)2 − (�3 + �4)2. (10)

As an example, for a head-on collision in the local rest
frame, i.e., p3 + p4 � 0, one has b3,4 � 0. As a result, �3,4 =
0 and �0

3,4 = c3,4 + m3,4 − m∗
3,4, and the difference of the

total energy and the threshold energy in the frame p∗
3 + p∗

4 =
0 is

√
s in − √

s th � m1 + m2 − m3 − m4 + p2
1

2m∗
1

+ p2
2

2m∗
2

+ c1 + c2 − c3 − c4, (11)

where m1 and m2 denote the masses of initial two nucleons
in the reaction. For nuclear matter at zero temperature and
of density ρN = 1.5ρ0 and isospin asymmetry δ = 0.2, the
Skχm∗ interaction gives m∗

n = 687.7 MeV, m∗
p = 659.4 MeV,

cn = −64.10 MeV, and cp = −77.05 MeV. Because of the
c1 + c2 − c3 − c4 term in Eq. (11), the energy difference is
increased (reduced) by 12.95 MeV for the reaction n + n →
p + �−(p + p → n + �++) reactions. This would lead to
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enhanced and suppressed production cross sections for �−
and �++ in neutron-rich nuclear matter, respectively, if the
scattering amplitudes for these reactions are assumed to be
not affected by the medium. Since nucleon effective masses in
nuclear medium are less than their bare masses, the energy dif-
ference turns out to always increase, leading thus to enhanced
� production cross sections in nuclear medium. In particular,
for p1 = p2 ≈ 370 MeV, which is roughly the minimum
momentum that can produce a � resonance in a head-on
nucleon-nucleon collision in vacuum, the energy difference
increases by about 60 MeV due to the change of nucleon
effective masses, which can lead to a significant enhancement
of � production in all channels. Because of m∗

n > m∗
p, the

effective mass effect enhances �++ production more than
�− production. For the π−/π+ ratio in heavy-ion collisions,
there is therefore a competition between the effects of the
baryon effective masses and the momentum-independent part
of baryon mean-field potentials.

For a � resonance of mass m� and in isospin state mT , we
take its decay width to have the following form [42]:

� =
∑
mt

0.47Cq3

m2
π + 0.6q2

, (12)

where mt is the isospin state of the emitted pion; C =
|〈 3

2 ,mT |1,mt ; 1
2 ,mT − mt 〉|2 is the square of the Clebsch-

Gordan coefficient from the isospin coupling; and q is the
magnitude of the momentum of pion or nucleon in the rest
frame of � and is given by

q =
√[

m′2
� − (m′

N + mπ )2
][

m′2
� − (m′

N − mπ )2
]

2m′
�

. (13)

Here the in-medium mass m′
q is defined as Eq (pq = 0) to

include the effect of mean-field potentials on the � decay
width. The spectral function of � resonance is then given by

A(m′) = 1

N
4m′2

0 �(m′)(
m′2 − m′2

0

)2 + m′2
0 �2(m′)

, (14)

where m′
0 is the pole mass (1.232 GeV) of the � resonance

shifted by the mean-field potential and N is the normalization
factor determined by

∫
dm
2π

A(m) = 1.

C. Detailed balance relations in nuclear medium

In the last section, we have introduced the � production
cross section and decay width in nuclear medium. For the
inverse processes, they can be determined by the detailed
balance relations.

Considering the reaction N + N → N + � of nucleons
and � in certain isospin states and labeling the initial two
nucleons by 1 and 2 and the final nucleon and � by 3 and
4, respectively, the total cross section in the nonrelativistic
approximation can be expressed as

σNN→N� =
∫

dm4

2π
A(m4)

∫
d3 p∗

3

(2π )3

d3 p∗
4

(2π )3

|MNN→N�|2
|v1 − v2|

× (2π )4δ4(p1 + p2 − p3 − p4), (15)

where |M|2 is the squared invariant scattering amplitude after
averaging over the spins of initial particles and summing
over the spins of final particles, m4 is the mass of �, pi (p∗

i )
is the canonical (kinetic) four-momentum of particle i (i =
1, 2, 3, 4), and |v1 − v2| = | p∗

1/m∗
1 − p∗

2/m∗
2| is the relative

velocity of particles 1 and 2. In terms of their relative kinetic
momentum,

k∗
i = p∗

1

m∗
1

− m∗
1

p∗
1 + p∗

2

m∗
1 + m∗

2

= −
(

p∗
2

m∗
2

− m∗
2

p∗
1 + p∗

2

m∗
1 + m∗

2

)
, (16)

and evaluating the integral in the center-of-mass frame, the
cross section becomes

σNN→N� = 1

(2π )3

∫
dm4A(m4)

∫
4πk∗2

f dk∗
f

× |MNN→N�|2
k∗
i /μi

δ

(
E′

f − k∗2
f

2μf

)

= 1

2π2

μi

k∗
i

∫
dm4A(m4)k∗

f μf |MNN→N�|2,

(17)

where μi = m∗
1m

∗
2/(m∗

1 + m∗
2 ) is the reduced effective mass

of initial particles and μf = m∗
3m

∗
4/(m∗

3 + m∗
4 ) and k∗

f are,
respectively, the reduced effective mass of final particles and
their relative momentum introduced below Eq. (9), which can
be determined from energy and momentum conservations.
The mass of � resonance produced in the reaction N + N →
N + � can have various values with their distribution given
by its spectral function A(m�) [Eq. (14)] and is determined
according to the probability

P (m�) = A(m�)k∗
f μf∫

dm�A(m�)k∗
f μf

. (18)

For a � resonance of mass m�, its absorption cross section
by a nucleon in nucleon medium via the inverse reaction N +
� → N + N is given by

σN�→NN = 1

π

k∗
i

k∗
f

μiμf |MN�→NN |2. (19)

By comparing Eq. (17) and (19) and using the relation

|MNN→N�|2 = 2|MN�→NN |2, we obtain the detailed bal-
ance relation as

σN�→NN = σ12

2(1 + δ12)

k∗2
i

k∗
f

μf∫
dm′
2π

k∗′
f μ′

fA(m′)
. (20)

For the total decay width of a � in nuclear medium, it
is already given in Eq. (12) as the sum of its partial widths.
As to the cross section of the inverse process π + N → �

in a particular isospin channel, we can obtain it from the
partial decay width of the � in this isospin channel by using
the detailed balance relation as described in the following.
Since the N + π center-of-mass frame cannot be trivially
defined when nucleons and pions are treated differently with
nucleons as nonrelativistic particles and pions as relativistic
particles, we therefore treat both � decay and pion absorption
in the nuclear matter frame and express the decay width
of � in terms of the squared invariant scattering amplitude
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|M�→Nπ |2 averaged over the spin of � and summed over the
spin of nucleon, that is,

� =
∫

d3 p∗
N

(2π )3

d3 pπ

(2π )3

|M�→Nπ |2
2ω

(2π )4δ4(pN + pπ − p�),

(21)

with ω(p) = √
m2

π + p2 being the pion energy. Taking the
direction of P∗ = p∗

N + pπ = p� − �N as the z axis, the
decay width can be rewritten as

� = 1

8π2

∫
d3 pπ

|M�→Nπ |2
ω

×δ

(
E� − m∗

N − ( P∗ − pπ )2

2m∗
N

− �0
N − ω

)

= 1

4π

∫
p2

πdpπ

|M�→Nπ |2
ω

m∗
N

P ∗pπ

= m∗
N |M�→Nπ |2

4πP ∗

∫
pπ

ω
dpπ

= m∗
N |M�→Nπ |2

4πP ∗ [ω(pmax) − ω(pmin)], (22)

where pmin and pmax are the allowed minimum and maximum
pion momenta and can be analytically determined from the
energy conservation in � decay and the condition of −1 �
cosθ � 1, with θ being the angle between the pion momentum
and the z axis. In the above, we have assumed that the squared
invariant transition matrix element |M�→Nπ |2 is independent
of the pion momentum pπ . The decay width of � of a certain
charge state can be obtained from Eq. (22) by taking into
consideration of appropriate isospin factors.

The spin-averaged cross section for the process N + π →
� is given by

σNπ→� =
∫

dm

2π
A(m)

∫
d3 p∗

�

(2π )3

|MNπ→�|2
2ω|vN − vπ |

×(2π )4δ4(pN + pπ − p�),

= A(m)|MNπ→�|2
2ω|vN − vπ |

1∣∣1 − p�

m�

∣∣ , (23)

where vN = p∗
N/m∗

N and vπ = pπ/ω. Using the relation
2|M�→Nπ |2 = |MNπ→�|2, we then have

σNπ→� = 4πP ∗

m∗
N |vN − vπ |∣∣1− p�

m�

∣∣ A(m�)�(m�)

ω(pπ )[ω(pmax)−ω(pmin)]
,

(24)

where the � mass is determined by m� = P 2/2(E − a�P 2 +
b� · P − c�) with E and P being, respectively, the total
energy and momentum of the colliding nucleon and pion. We
note again that both σNπ→� and �(m�) refer to the same
isospin channel of the processes � ↔ Nπ , while the � width
in A(m�) given in Eq. (14) refers to its total width.

III. RESULTS AND DISCUSSION

In this section, we present results obtained from calcula-
tions using the χBUU transport model for pion production in
a hot neutron-rich nuclear matter in a box and from heavy-ion
collisions. They are obtained by solving the BUU equation
using the test particle method [40,43]. In this method, the time
evolution of baryon phase-space distribution functions is de-
scribed by the following equations of motion for test baryons:

ṙ = p∗

m∗ ,

ṗ = ∇
(

m∗ + p∗2

2m∗ + �0

)
, (25)

with the baryon mean-field potentials calculated self-
consistently according to the local nucleon and � distributions
determined from corresponding test particles. The same is
for the phase-space distribution functions of pions except
that the test pions move freely with the constant velocity
p/

√
m2

π + p2 as we have neglected the pion potentials in the
present study.

For particle collisions, they are treated using the standard
geometric method described in Ref. [40]. However, instead
of using the parallel ensemble method, in which only phys-
ical particles in each event can collide although particles
from many parallel events are used as the test particles for
calculating the mean-field potentials, we adopt the partition
method [44] by using in addition NT test particles for a
physical particle in an event and reducing accordingly all
scattering cross sections by NT. As to the � decay probability
in each time step dt , it is determined by its width according to

P = 1 − exp(−�dt ). (26)

For both box and heavy-ion collisions calculations dis-
cussed in the following, we use NT = 10 and dt = 0.1 fm/c.

A. Pion production in a box

As in Ref. [45], we first study the role of baryon mean-field
potentials in the energy conservation condition of collision
and decay processes and their effect on pion production in
a hot neutron-rich matter. Specifically, we study the final
equilibrium numbers of N, �, and π for the two cases of
with and without baryon mean-field potentials in the energy
conservation condition.

For a static and uniform hadronic matter in a box, the
baryon vector potentials bi due to the flow effect are absent.
For simplicity, we ignore the quantum nature of N, �, and
π , and take their momentum distributions at thermal equi-
librium to be Boltzmann-like. For pions and nucleons, their
momentum distributions at temperature T are then given by

fi ( pi ) = gi

(2π )3
exp

[
−Ei − μi

T

]
, (27)

where i = n, p, π+, π0, π−, gi = 1(2) is the spin degener-
acy of pion (nucleon), μi is the chemical potential of particle i,
and Ei is its energy. For � resonances with mass distributions,
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TABLE I. Temperature T , chemical potentials of neutron μn and proton μp , multiplicities of nucleons, �s, and pions, pionlike particle
multiplicity πlike, and effective charged pion ratio (π−/π+)like in initial and final states in the “free” case (see text for details) from thermal
model calculations.

T (MeV) μn(MeV) μp (MeV) N Z �++ �+ �0 �− π+ π 0 π− πlike (π−/π+)like

Initial 60 891.7 865.6 134.1 96.9 1.12 1.67 2.49 3.72 0.79 1.22 1.88 12.9 2.61
Final (free) 47.2 934.6 916.7 140.6 96.2 0.42 0.61 0.89 1.30 0.28 0.40 0.59 4.48 2.44

their momentum distributions are

fi ( pi ) = 4
∫

dm

(2π )4
A(m)exp

[
−Ei − μi

T

]
, (28)

where i = �++,�+,�0,�−, and the factor 4 is due to the
spin degeneracy of �.

For N, �, and π in chemical equilibrium, their chemical
potentials satisfy following relations:

μ�++ = 2μp − μn, μ�+ = μp,

μ�0 = μn, μ�− = 2μn − μp,
(29)

μπ+ = μp − μn, μπ0 = 0,

μπ− = μn − μp.

Given the temperature T , baryon density ρB , and isovector
density ρI = ρp − ρn + ρ�++ + ρ�+/3 − ρ�0/3 − ρ�− , the
mean-field potentials of baryons and their numbers can be
obtained by solving above questions iteratively.

In our box calculation, all particles are confined in a cubic
box of volume 10 × 10 × 10 fm3 with periodic boundary
conditions, and both the Coulomb interaction and the Pauli
blocking effect are neglected. Initially, the temperature,
baryon, and isovector densities are taken to be T = 60
MeV, ρ = 0.24 fm−3, and ρI = 0.096 fm−3, respectively,
which resemble the conditions of the dense matter in
intermediate-energy heavy-ion collisions where most pions
are produced [22]. The resulting parameters in Eq. (6) for
nucleon mean-field potentials are ap = 0.2617 GeV−1, cp =
−59.87 MeV, an = 0.2360 GeV−1, and cn = −50.34 MeV.
The initial numbers of N, �, and π of various charges are
shown in the first row of Table I. For the initial momentum

spectra, which are determined by Eqs. (27) and (28), they are
shown by solid lines in Figs. 2(a), 2(b) and 2(c) for neutron,
�−, and π−, respectively.

Evaluating baryon mean fields using test particles from 20
parallel events and averaging results from 20 such parallel
ensemble calculations, we have studied the time evolutions of
� and π numbers for the two cases of with and without baryon
mean-field potentials in the energy conservation condition of
scattering and decay processes. As shown in Figs. 3 and 4,
the numbers of � and π in the Skχm∗ case remain almost
unchanged except for small statistical fluctuations due to the
finite numbers of test particles and events used in the calcula-
tions. In the free case, without including the baryon mean-field
potentials in the energy conservation conditions of scattering
and decay processes, the numbers of � and π decrease with
time. The final equilibrium numbers in the system for the free
case can also be determined by thermal model calculations
using the conditions of energy, baryon density, and isospin
density conservations. These results are given in the second
rows of Table I and are also shown in Figs. 3 and 4 by open
circles. It is seen that the box calculations well reproduce
the thermal model results with a deviation less than ∼2%.
The momentum distributions of neutron, �−, and π− in the
box at t = 50 fm/c for the two cases are shown by solid
and open circles in Figs. 2(a), 2(b) and 2(c), respectively,
while corresponding momentum spectra from the thermal
model are exhibited as curves. It is seen that in both cases
the N -�-π system is at the expected thermal equilibrium
states.

We note that including mean-field potentials in the energy
conservation condition in elementary reactions is also needed
to guarantee the conservation of the total energy of the system,

FIG. 2. Momentum distributions of neutron (left panel), �− (middle panel), and π− (right panel) in a box at t = 50 fm/c. Solid lines are
theoretical momentum distributions from the thermal model with the inclusion of baryon potentials at T = 60 MeV, and dashed lines are those
in the final state of the “free” case (see text for details). Solid circles are results from the χBUU model including the effect of baryon potentials
in the energy conservation condition in elementary reactions (Skχm∗), and open circles are those without including this effect (free).
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FIG. 3. Time evolutions of � numbers in box calculations for the two cases of with and without mean-field potentials in the energy
conservation condition of scattering and decay processes. For comparison, results from the thermal model are shown as open cycles.

which can be evaluated according to

E =
∑

i

(
mi + p2

i

2mi

+ 1

2
Ui

)
+

∑
j

√
m2

π + p2
j + Er, (30)

with i = n, p,�++,�+,�0,�−, and j = π+, π0, π−. Here
the rearrangement energy Er is given by

Er = −α

2

∫
d3rρα

[
B0ρ

2 − B1
(
ρ2

p + ρ2
n

)]
(31)

with the integration over the volume of the box. It is found
that with an initial total energy of 237.2 GeV, the total energy
increases by only 120 MeV after 50 fm/c for the Skχm∗ case
but by 1.02 GeV for the free case.

It is known in heavy-ion collisions that the effective pion
number, which includes all pionlike particles, changes very
little after the colliding nuclear matter reaches maximum
compression [46,47]. In our case, the effective pion number
is given by the sum of � resonance and pion numbers, i.e.,
πlike = π− + π0 + π+ + �++ + �+ + �0 + �−, as shown
in Table I. Also shown in Table I is the effective charged pion
ratio (π−/π+)like defined as

(π−/π+)like = π− + �− + �0/3

π+ + �++ + �+/3
. (32)

Comparing results with and without baryon potentials, we
find that omitting the baryon potentials in the energy con-
servation condition significantly decreases the effective pion
number by a factor of 3 but decreases the effective charged
pion ratio by only about 6.5%. The reduction of total pion

number by baryon mean-field potentials can be understood
from the nucleon momentum distribution

f (p) ∝ exp

(
− p2

2m∗T

)
exp

(
μ − m − c

T

)
. (33)

It shows that removing baryon potentials increases the ef-
fective mass of baryons and thus decreases the temperature
of the system compared to the Skχm∗ case as shown in
Table I, leading to a significant reduction of effective pion
numbers. The small decrease of the effective pion ratio can
be understood from the following relation based on thermal
and chemical equilibrium,

π−

π+ = exp

[
2(μn − μp )

T

]

= N2

Z2

(
m∗

p

m∗
n

)3

exp

[
2(cn − cp )

T

]
, (34)

where N and Z are the neutron and proton numbers, respec-
tively. For the Skχm∗ energy density functional, m∗

n (cn) is
larger than m∗

p (cp) in neutron-rich nuclear matter. Compared
with the case without baryon potentials, (m∗

p/m∗
n)3 increases

but exp[ 2(cn−cp )
T

] decreases after including the potentials. The
cancellation of the two contributions then leads to a smaller
decrease of effective pion ratio.

We note that the decrease of the effective pion ratio after
removing baryon potentials is much smaller than that based
on the RVUU model, where the effective pion ratio is reduced
by 26.7% [45]. As discussed in Sec. II B, the baryon mean-

FIG. 4. Same as Fig. 3 for π numbers.

054614-7



ZHEN ZHANG AND CHE MING KO PHYSICAL REVIEW C 98, 054614 (2018)

field potentials can lead to a change in the energy difference
between the center-of-mass energy of two colliding nucleons
and the threshold energy for � production and thus affect the
� production cross sections in nuclear medium. For a system
confined in a box as in the present study, changing these cross
sections only influences the time for the system to reach a
new equilibrium after neglecting the potentials but does not
affect the final equilibrium particle numbers. However, in
nuclear collisions, where thermal and chemical equilibriums
may not be completely reached, the change of cross sections
could have a large effect on the final pion number and the
charged pion ratio [27]. In next section, we further study such
nonequilibrium effects in heavy-ion collisions.

B. Heavy-ion collisions

In this section, we employ the transport model to study
pion production in heavy-ion collisions. For the initial posi-
tions of nucleons inside in each nucleus, they are distributed
according to the density distribution obtained from the self-
consistent Hartree-Fock calculation using the Skχm∗ interac-
tion. As to their momentum-space distributions, we use the
Fermi gas model with the Fermi momentum determined by
the local density. Unlike the box calculation, the effect of
electromagnetic fields and Pauli blocking are both included.
The electric and magnetic fields acting on a charged particle i
are evaluated according to

E(r i ) = e

4πNtest

∑
j �=i

qj

r ij

r3
ij

,

B(r i ) = e

4πNtest

∑
j �=i

qj

vj × r ij

r3
ij

, (35)

where e2/(4π ) = 1/137, r ij = r i − rj , vj is the velocity of
particle j, qj is its electric charge in units of e, and Ntest is
the number of test particles used for representing a physical
particle in the calculation. Here the index j runs over all
test particles. In all collision (or decay) processes, the Pauli
blocking for final-state baryons is included via the same
method used in the RVUU model [27,40,48,49], except that
the phase-space radii �r and �p are taken to be 1.5 fm and
150 MeV, respectively.

In the following, we show results obtained with mean-
field potentials calculated using test particles from 20 par-
allel events as in the box calculations and from averaging
20 and 300 such parallel ensemble calculations for 197Au +
197Au collisions at E/A = 400 MeV and Sn+Sn collisions at
E/A = 270 MeV, respectively.

1. 197Au + 197Au collisions at E/A = 400 MeV

We first study central 197Au + 197Au collisions at incident
energy of E/A = 400 MeV and compare the results with
experimental data measured by the FOPI Collaboration [50].
Figure 5 shows the time evolutions of the effective π−
and π+ numbers, namely (π−)like = π− + �− + �0/3 and
(π+)like = π+ + �++ + �+/3, in collisions at the impact
parameter of 1 fm for the free case without including the effect
of baryon mean-field potentials in treating their collisions and

FIG. 5. Time evolutions of the central density ρc and effective
π− and π+ numbers in Au + Au collisions at impact parameters
of 1 fm and incident energy of E/A = 400 MeV. The mean-field
potential effects in the collision terms are not included.

decays, although it is included in their propagations. The cen-
tral nucleon density ρc divided by the saturation density in the
dinuclear system is also shown as the black dash-dotted line. It
is seen that pionlike particles are mostly produced during the
high-density stage and their numbers change very little during
later expansion of the system. The final charged pion numbers
and ratio π−/π+ are listed in the second column (free/A = 0)
of Table II together with their experimental values measured
by the FOPI Collaboration shown in the first column [50]. The
theoretical results in this case are seen to well reproduce the
charged pion ratio but underestimate the total charged pion
yield by about 13%.

We further include mean-field potentials of baryons in
determining the collision kinematics and list the results in
the third column (Skχm∗/A = 0) in Table II. Similar to the
case of box calculations, the inclusion of mean-field potential
effects on the collision kinematics increases both π− and π+
numbers by a factor of about 3, although the charged pion ratio
remains almost unchanged. To reproduce the experimental
data, we follow Ref. [27] by taking into account the medium
modification of � production cross section and introduce the

TABLE II. π− and π+ yields in 197Au + 197Au collisions at
the impact parameter of 1 fm and the incident energy of E/A =
400 MeV. Experimental data from the FOPI Collaboration [50] are
also listed for comparison.

FOPI [50] Free Skχm∗

A = 0 A = 0 A = 1.9

π− 2.80(14) 2.70(3) 7.84(4) 2.96(2)
π+ 0.95(8) 0.90(2) 2.57(2) 0.92(1)
π− + π+ 3.75(22) 3.60(5) 10.41(6) 3.88(3)
π−/π+ 2.95(29) 3.02(6) 3.05(3) 3.2(5)
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following density dependence:

σNN→N�(ρ) = σNN→N�(0)exp(−AρN/ρ0), (36)

where the ρN is the nucleon density and A is a fitting param-
eter. Cross sections for the inverse reactions are accordingly
modified through the detailed balance relation introduced in
Sec. II C. We find that taking A = 1.9 in the Skχm∗ case,
our model can well reproduce the experimentally measured
total charged pion yield. With the density-dependent cross
sections, the resulting charged pion ratio is sightly increased
by about 5% and becomes 3.2, which is consistent with the
experimental value within the error bar [50]. These results
thus provide an empirical validation of the behavior of nuclear
symmetry energy at high density predicted by the Skχm∗
energy density functional.

The significant increase of the pion yield due to the
threshold effect is consistent with previous results from
the RVUU model based on the relativistic NLρ mean-field
model [27]. In both studies, this is because the smaller
baryon effective masses in nuclear medium increase the
difference between the collision energy of two nucleons and
the threshold energy for � production. The small change
in the charged pion ratio is, however, in stark contrast with
the RVUU model calculations, which shows a much larger
change, and this is due to the fact that in neutron-rich nuclear
matter, one has m∗

n > m∗
p in the Skχm∗ energy density

functional but m∗
n = m∗

p in the NLρ model. As discussed in
Sec. II B, a positive neuron-proton effective mass splitting
would lead to a smaller charged pion ratio.

2. 132Sn + 124Sn and 108Sn + 112Sn collisions at E/A = 270 MeV

Including both the effect of baryon mean-field potentials
on scattering and decay processes and the medium modi-
fication of � production cross sections, we further study
pion production in 132Sn + 124Sn and 108Sn + 112Sn collisions
at the incident energy of E/A = 270 MeV and the impact
parameter of 3 fm, which is being studied experimentally by
the SPiRIT Collaboration at the Radioactive Isotope Beam
Facility (RIBF) at RIKEN in Japan. As in Au+Au collisions
at E/A = 400 MeV studied in the previous subsection, pions
are mostly produced during the compression stage of the
reactions, which can lead to a maximum central density of
0.27/fm3 (1.7 ρ0), and their effective numbers remain es-
sentially constant during the expansion of the system. The
obtained total π− and π+ numbers and the charged pion ratio
π−/π+ are, respectively, 0.273, 0.136, and 2.01 for 108Sn +
112Sn collisions and 0.508, 0.109, and 4.68 for 132Sn + 124Sn
collisions. The charged pion ratio π−/π+ in the neutron-
richer system (132Sn + 124Sn) is thus larger as a result of
more neutron-neutron collisions. As in Ref. [31], we select
charged pions with the polar angles θcm of their momenta
relative to the incident beam direction lying in the range of
60◦ < θcm < 120◦ and shows their kinetic energy spectra in
Fig. 6. In both collisions, the charged pion ratio decreases
with pion kinetic energy. The very large π−/π+ ratio at low
kinetic energy is mainly due to the Coulomb potential, which
is repulsive for π+ but attractive for π− [32].

FIG. 6. π−/π+ ratios as functions of pion kinetic energy from
central (b = 3 fm) collisions of 132Sn + 124Sn and 108Sn + 112Sn at
the incident energy of E/A = 270 MeV. θcm is the polar angle of
pion momentum relative to the incident beam direction.

To reduce the Coulomb effect as well as other
isospin-independent effects, the double [(π−/π+)132+124/
(π−/π+)108+112] [51] and subtracted [(π−/π+)132+124 −
(π−/π+)108+112] [31] π−/π+ ratios of the two reaction
systems have been proposed as better probes of nuclear sym-
metry energy. In Fig. 7, we show the double and subtracted
π−/π+ ratios as functions of the pion kinetic energy. We find
that the double ratio is flat with respect to the pion kinetic
energy, while the subtracted ratio decreases with increasing
pion kinetic energy. Because of its negative charge, π− should
be easier to detect than π+. Therefore, the isoscaling ratio
π132+124/π108+112 of π− from these two reactions may be a

FIG. 7. Same as Fig. 6 for double [(π−/π+)132+124/(π−/

π+)108+112] and subtracted [(π−/π+)132+124 − (π−/π+)108+112]
π−/π+ ratios.
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FIG. 8. Same as Fig. 6 for isoscaling [π132+124/π108+112] ratios of
π− and π+.

more sensitive observable for probing the nuclear symmetry
energy at high density [31]. Figure 8 shows the isoscaling
ratio of π− and π+ for these two reactions, and it indicates
that both are flat with respect to the pion kinetic energy with
the isoscaling ratio of π− larger than that of π+.

We note that if the effect of mean-field potentials is not
included in collisions and decays, the total π− and π+ num-
bers and the charged pion ratio π−/π+ would, respectively,
be 0.126, 0.063, and 2.01 for 108Sn + 112Sn collisions and
0.233, 0.053, and 4.40 for 132Sn + 124Sn collisions. As in
Au+Au collisions at E/A = 400 MeV, the charged pion ratio
is only slightly affected by the effect of baryon mean-field
potentials in treating their collisions and decays. Although
this is also the case for the kinetic energy spectra of double,
subtracted, and isoscaling ratios, the total pion number is,
however, reduced by about a factor of 2 without includ-

ing the baryon mean-field potentials in their collisions and
decays.

IV. SUMMARY

We have developed a BUU transport model based on
the Skχm∗ interaction, which is constructed from fitting the
equation of state and nuclear effective masses predicted by the
chiral effective theory as well as the binding energies of finite
nuclei. This χBUU model is then used to study the effect of
energy conservation in the collision (or decay) kinematics due
to baryon mean-field potentials on the equilibrium properties
of a N -�-π system in a box with periodic conditions. We have
found that the inclusion of baryon mean-field potentials in the
energy conservation is necessary to maintain the equilibrium
state of the N -�-π system, and neglecting this effect would
significantly decrease the number of pionlike particles but
only slightly decrease the effective charged pion ratio.

We have also used the χBUU transport model to study pion
production in central 197Au + 197Au collisions at the incident
energy of E/A = 400 MeV. It is found that the χBUU model
can well reproduce the experimental measurement by the
FOPI Collaboration, thus providing an empirical validation
of the behavior of nuclear symmetry energy at high density
predicted by the Skχm∗ energy density functional. We have
further predicted the pion kinetic energy dependence of the
double and subtract π−/π+ ratio as well as the isoscaling
pion ratio in central collisions (b = 3 fm) of 132Sn + 124Sn
and 108Sn + 112Sn at the incident energy of E/A = 270 MeV.
Comparing our predictions with future experimental data from
the ongoing experiments at RIKEN in Japan by the SPiRIT
Collaboration will provide further check on the validity of the
Skχm∗ energy density functional at high density.
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