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Three-body correlations in direct reactions: Example of 6Be populated in the ( p, n) reaction
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The 6Be continuum states were populated in the charge-exchange reaction 1H(6Li, 6Be)n collecting very high
statistics data (∼5 × 106 events) on the three-body α + p + p correlations. The 6Be excitation energy region
below ∼3 MeV is considered, where the data are dominated by contributions from the 0+ and 2+ states. It is
demonstrated how the high-statistics few-body correlation data can be used to extract detailed information on the
reaction mechanism. Such a derivation is based on the fact that highly spin-aligned states are typically populated
in the direct reactions.
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I. INTRODUCTION

The nuclear driplines are defined by instability with respect
to particle emission, and therefore the entire spectra of the
systems beyond the driplines are continuous. The first emis-
sion threshold in the light even systems is often, due to pairing
interaction, the threshold for two-neutron or two-proton emis-
sion, and therefore one has to deal with three-body continuum.
In certain systems, just beyond the dripline, the continuum
of more fragments in the final state can be encountered (e.g.,
7H, 8C, 28O), so we should speak about few-body continuum.
Few-body continuum provides rich information about nuclear
structure of ground-state and continuum excitations, which
is, however, often tightly intertwined with contributions of
reaction mechanism. The way to extract this information
is to explore the world of various correlations in fragment
motions and to look for methods to disentangle contributions
of reaction mechanisms.

Nuclear reactions provide much broader opportunities to
study correlations in comparison with nuclear decays. Any
reaction has at least one selected direction—the direction
of a projectile momentum—and correlations of the reaction
products relative to this direction can be studied. This fact is
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the starting point for a widespread method of spin-parity (Jπ )
identification in the excitation spectrum: experimental angular
distribution of the reaction products is compared to Born-type
calculations. Such angular distributions can be qualitatively
described in terms of transferred momentum q and transferred
angular momentum �L by a simple analytical expression for
differential cross section

dσ�L

d�
∼ |j�L(qr0)|2, (1)

where j�L is spherical Bessel function and r0 is some typical
size of the reaction volume. In spite of quite qualitative
character of the dependence Eq. (1), in some cases, it could
be sufficient for complete Jπ identification. Applications of
such methods are limited by field of direct reactions, where
the Born-type approximations are robust.

Alternative method of spin-parity identification can be
used for a narrower class of the direct reactions populat-
ing states in the continuum. Namely, for direct reactions,
which can be well described by the pole mechanism [or
single diagram with transfer of one species, see Fig. 1(a)],
where one-step reaction gives dominating contribution. Such
a mechanism is widespread at intermediate (20–70 AMeV)
and high (>70 AMeV) energies, which are commonly used
in the modern radioactive ion beam (RIB) research. It selects
one exceptional direction in space defined by the vector of
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FIG. 1. Schematic presentation of 6Be population in charge-
exchange reaction and correlations available for particle-unstable
states. (a) Single-pole reaction mechanism. Complete kinematics
description for correlations following the (b) two-body and (c) three-
body decays. In (c), the center-of-mass angle θBe (green color)
describe scattering of 6Be as a whole, red color shows kinematical
variables associated with internal correlations, while blue ones are
responsible for external correlations describing orientation of system
as a whole.

the transferred momentum q. In the coordinate frame where
Z axis is parallel to q, only a zero projection �M = 0 of the
orbital angular momentum �L can be transferred.

{[�L × q] ≡ 0, Z ‖ q} → �M = 0. (2)

This simple result is obtained only in the case of spinless
particles transfer. In this case, for example, from initial state
with Ji = 0, the final state with magnetic quantum number
Mf = 0 only may be populated for whichever Jf . This is one
of extreme situations of spin alignment, characterized as polar
alignment. A situation with nonzero spin transfer alignment
should be more complicated. However, in many reaction sce-
narios the states with Jf > 1/2 are populated with high spin
alignment in the momentum transfer frame even in the case
of nonzero spin transfer. For highly aligned states, decaying
via particle emission, the angular distributions with respect to
the momentum transfer axis Z ‖ q could have very distinctive
shape, which can be used for spin-parity identification.

For continuum states of neutron-rich systems and for
proton-rich systems above the Coulomb barrier the situation
of broad overlapping states is quite common. Interference of
broad overlapping states in continuum may further enhance
correlation patterns and add features facilitating spin-parity
identification. For example, for the pole transfer mechanism
the correlation patterns for an isolated resonance observed
in the momentum transfer frame should be symmetric with
respect to π/2 polar angle. However, in the case of interfer-
ence of states with opposite parities an asymmetric correlation
patterns may arise. Thus, spin alignment induced by reaction
mechanism and interference of broad overlapping states in
continuum are the major physical phenomena defining the
proposed method.

This method was often used for spin-parity identification of
excited states decaying via emission of (mainly spinless) par-
ticles in the past ([1] and references therein). During the last
decade, such an approach was applied to exotic neutron- and
proton-rich systems beyond the driplines in the experiments at
the Flerov Laboratory of Nuclear Reactions at JINR (Dubna,
Russia). For example, the interference patterns for broad over-
lapping states with different Jπ were used for unambiguous
spin-parity identification of low-lying 9He continuous states
decaying via 8He + n channel [2]. An analogous method can
be used for three-body systems, however in a technically
much more complicated manner. The examples of such a Jπ

identification in three-body systems can be found for 5H [3,4]
and for 10He states [5].

The first results of the experiment studying the α + p + p
correlations in decays of the 6Be states populated in the
(p, n) charge-exchange reaction were published in Ref. [6].
The paper was focused on the proof that the observed 6Be
excitation spectrum above ∼3 MeV is dominated by the novel
phenomenon—isovector breed of the soft dipole mode built
on the 6Li ground state (g.s.). In this work we consider the
correlations in the decay of 6Be states with excitation energy
below ∼3 MeV, where the data are dominated by the contri-
butions of the known and well-understood 0+ and 2+ states
of 6Be. We pursue a sort of an opposite aim to Refs. [2–5].
We demonstrate that basing on the known level scheme it is
possible to extract from the three-body correlations the maxi-
mal possible quantum mechanical information about reaction
mechanism (e.g., the density-matrix parameters) thus paving
the way to its in-depth theoretical studies.

Unit system h̄ = c = 1 is used in this work. The paper is
structured in the following way. First, kinematics notations are
given for three-particle correlations detected in a reaction with
four particles in final state (Sec. II). Then a description of the
applied theoretical model is presented in Sec. III in detail. The
experimental setup and conditions are given in Sec. IV. The
data analysis is described in Sec. V, and the physics discussion
and conclusions are in Secs. VI and VII, respectively.

II. THREE-BODY CORRELATIONS

Let us consider three-body correlations obtained in the
nuclear reaction 6Li + p → (p + p + α) + n. In general,
the spin-averaged cross section for a collision A + p → k1 +
k2 + k3 + kn of a projectile A and a proton target p, leading
to the four fragments in the final state, can be written in the
following way:

σ = (2π )4

vi

1

Ĵ 2
AĴ 2

p

∑ ∫
dk1 dk2 dk3 dkn

× δ(Ef − Ei ) δ(Pf − Pi ) |Tf i |2, (3)

where Ei = Ep + EA, Ef = E1 + E2 + E3 + En + Q, Pi =
kp + kA, Pf = k1 + k2 + k3 + kn are the total energies and
momenta of all particles before and after collisions, respec-
tively. Q = −3.70 MeV is the reaction Q value calculated in
respect to the three-body threshold in the final state, Ej is a
kinetic energy of particle j . The relative incident velocity and
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the reduced mass of the nuclei before collision are

vi = ki

μi

, μi = mpmA

mp + mA

.

Shortcut Ĵ = √
2J + 1 is used in (3), and the summation is

over spin projections of all particles before and after collision.
In the (p + A) center-of-mass (c.m.) coordinate frame Pi = 0,
kA = −kp = k, Ei = k2/2μi . Our prime interest is in studies
of nuclear systems consisting of the three particles k1, k2,
and k3. Then, the fragment relative motion in three-body
continuum can be described by two relative Jacobi momenta
kx and ky and the c.m. momentum k′ of the three particles

kx = μx

(
k1

m1
− k2

m2

)
, μx = m1m2

m1 + m2

ky = μy

(
k1 + k2

m1 + m2
− k3

m3

)
, μy = (m1 + m2)m3

m1 + m2 + m3

Pf = 0, k′ = k1 + k2 + k3 = −k4. (4)

For each three-body decay event, the Jacobi momenta kx

and ky define the decay plane. The internal correlations of
the fragments [shown by red color in Fig. 1(c)] are defined
within this plane while external correlations [blue colored in
Fig. 1(c)] defines orientation of this plane with respect to the
reaction plane [green colored in Fig. 1(c)], which is fixed by
the initial k and final k′ c.m. momenta.

Internal three-body correlations for the Jacobi momenta kx

and ky are conveniently described by two parameters {ε, θk}
in the following way:

ε = Ex/ET , cos(θk ) = (k̂x · k̂y )

ET = Ex + Ey = k2
x/2μx + k2

y/2μy. (5)

The three-body decay energy ET fixes only a total phase
volume accessible for the three fragments, and the fragment
kinetic energies have continuous distributions within this vol-
ume. In addition, two relative orbital angular momenta lx and
ly , corresponding to the kx and ky momenta, characterize their
motion. Since in the 6Be two fragments are identical protons,
only two different distinguishable Jacobi coordinate systems
exist. One, labeled “T”, corresponds to the case when particles
1 and 2 are protons with relative momentum kx , while particle
3 is the α particle. In the second case, called “Y”, the relative
momentum kx is defined by the proton with index 1 and α
particle with index 2, while the other proton has index 3.
The variables {ε, θk} depend on the Jacobi systems while the
energy ET is invariant, i.e., independent from this choice. The
representations “T” and “Y” are equivalent. In spite of this, we
use both systems, since certain aspects of correlation can be
better revealed in one of them. For example, in the “T” system
the parameter ε describes the energy correlation between two
protons, while in the “Y” it is connected with core-p energy
correlations in 6Be. It is convenient to distinguish parameters
{εT , θ

(T )
k } and {εY , θ

(Y )
k } in Jacobi “T” and “Y” systems,

respectively.
External correlations describe the orientation of the three-

body decay plane relative to the selected direction. We choose
this direction along the transferred momentum q = k′ − k

lying in the reaction plane. In this case the external correla-
tions are three Euler angles labeled as {α, β, γ } in Fig. 1(c).
This choice has an advantage over other possibilities in the
case of one-step reaction mechanism domination. In such a
case the particle transfer can be described in a single-pole
approximation and there should be rotational invariance with
respect to vector q. The decay dynamics will be independent
from the angle α. This is a manifestation of the so-called
Treiman-Yang criterion for the dominance of a single-pole
mechanism of direct reactions [7,8]. This criterion is an im-
portant and useful tool to check the assumption on a reaction
mechanism providing its necessary condition, and the exper-
imental data can be tested on agreement to it. Concerning
other external parameters, the dependence on the orientation
angle β for three-body decays is easy to interpret, as will be
shown below, while an interpretation of the γ parameter is not
straightforward.

In the end of this section we briefly summarize differences
between two- and three-body correlations observed in the
decays and in the reactions. On the one hand, the orientation
of the system as a whole is assumed to be isotropic in decays,
as far as the system has forgotten how it was populated. On the
other hand, reactions may have several selected directions in
the space. The one is the beam direction. For direct reactions
with single-pole mechanism there is, as mentioned above,
another important direction: the transferred momentum q. So,
two following features for the decays and reactions with sub-
sequent two-body and three-body decay can be emphasized:

(i) Two-body decay is characterized just by two parame-
ters: energy and width of the state. In contrast, for description
of three-body decays, except the energy and width of the state,
we need additional parameters, so-called internal correlation
parameters ε and cos(θk ).

(ii) Population of spin-aligned states is common for nuclear
reactions. Two additional parameters related to orientation
{θ, ϕ} are needed to describe the two-body decay of aligned
state. These are spherical angles for the decay momentum
in Fig. 1(b). In contrast, for description of three-body de-
cays, we need three external correlations parameters. Euler
angles {α, β, γ } connected with three-body decay plane are
convenient to use, see Fig. 1(c). The angle α is analogous
to the angle ϕ in two-body decay, and decay dynamics is
independent from it for direct reactions we are interested
in. The angle β describes an orientation of the decay plane
relative q and is analogous to the angle θ , which describes the
direction of decay in two-body case.

III. THEORETICAL MODEL

The transition matrix element in Eq. (3) for the
1H(6Li, 6Be)n reaction includes all interaction dynamics and
is given in prior representation by

Tf i = 〈
�

(−)
Mp1 ,Mp2 ,Mn

(kx, ky, kf )
∣∣

×
∑

i

Vpi

∣∣�MA
, χMp

(ki )
〉
,

kf = μf

(
k′

m123
− k4

m4

)
, μf = m4 m123

m4 + m123
, (6)
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where m123 = m1 + m2 + m3 , kf is the relative momentum
between c.m. of the 6Be nucleus and neutron, Mi denotes the
spin projection of the ith particle, �MA

is the ground-state
wave function of the 6Li nucleus, χMp

(ki ) is a plane wave
describing relative motion of proton target and c.m. of the
6Li nucleus,

∑
i Vpi is composed of effective nucleon-nucleon

interaction Vpi between proton target and projectile valence
nucleons (marked as i). Charge-exchange interaction with α
core should not lead to a population of the three-body con-
tinuum. The �

(−)
Mp1 ,Mp2 ,Mn

(kx, ky, kf ) is the exact continuum
wave function describing relative motion of the four final
particles with ingoing-wave boundary conditions. To get � (−)

one has to solve equations of the Faddeev-Yakubovsky type,
taking into account the complex nature of the constituents. An
exact solution has not been feasible up to now, and therefore
approximate methods are required. We make approximations
at the level of the reaction mechanism but the three-body
structure of the involved nuclei is treated in a consistent way.

At low excitation energies of the 6Be nucleus, the relative
velocities of the 6Be fragments are small and are restricted
kinematically by the ET . This means that interactions between
these fragments have to be taken into account. But if collision
is relatively fast and one-step processes are dominated, then a
reasonable approximation for � (−) is the following factoriza-
tion: 〈

�
(−)
Mp1 ,Mp2 ,Mn

(kx, ky, kf )
∣∣

� 〈
χ

(−)
Mn

(kf ),� (−)
Mp1 ,Mp2

(kx, ky )
∣∣, (7)

where �
(−)
Mp1 ,Mp2

(kx, ky ) is a continuum three-body wave

function of the 6Be system with excitation energy ET .
χ

(−)
Mn

(kf ) is a distorted wave describing relative motion be-
tween c.m. of the 6Be and neutron, which depends on the
respective relative coordinate between their center of mass.

If fragments are detected in coincidence, a number of
various correlations can be obtained. The exclusive cross
section

d8σ/dk̂f dk̂x dk̂y dε dET ,

contains the maximum possible information about the nu-
clear structure and reaction dynamics that can be extracted
from a three-body breakup induced by the collision of two
unpolarized nuclei (projectile and target). Exploration of this
cross section is quite a challenge both experimentally (huge
statistics is demanded) and theoretically, because it involves
too many independent variables for transparent analysis. In-
tegrating out some unobserved degrees of freedom brings us
to less exclusive (increasingly inclusive) cross sections. Any
integration over a dynamical variable, within its full range of
variation, washes out the correlations defined by this degree
of freedom. Cross sections after integration become less and
less informative, but are simultaneously more suitable for
theoretical modeling. On the other hand, often not all the
particles produced by reaction are measured by detectors. De-
pending on the geometry of experimental installation and the
efficiency of particle registration, some fragments avoid the
measurements. Thus, for a proper comparison of theoretical
calculations with experimental data, the integration over some

unobserved degrees of freedom should be done not within a
full range of variation but taking into account response of the
experimental setup. A practical way to perform this task is to
use the Monte Carlo simulation of the reaction events. This
allows us to make an additional simplification in theoretical
treatment of the reaction dynamics, namely to substitute the
distorted wave χ

(−)
Mn

(kf ) by a plane wave. Then, the product
of two plane waves in the transition matrix element (6) is
reduced to the plane wave, which depends on the transferred
momentum q

χ
(−)�
Mn

(kf ) χMp
(ki ) � exp[−(q · R)] |1/2,Mp〉〈1/2,Mn|.

Finally, we treat the motion between c.m. of colliding systems
within the plane-wave approximation (PWA) but the three-
body decay dynamics is considered in a full complexity by
taking into account all interactions between fragments. The
disadvantage of such a treatment is that we can not calculate
absolute contributions to cross sections from excitations with
different values Jπ . However, relative contributions from
possible excitation modes leading to the excitation with the
fixed value of Jπ can be calculated. The absolute weights of
different Jπ excitations are restored by fitting to the exper-
imental data. Hereby we remedy our simplified plane-wave
treatment of the reaction dynamics.

The hyperspherical harmonics (HH) method is used for
calculations of the three-body continuum wave function. The
α + p + p wave function (WF) of 6Be with outgoing asymp-
totics with fixed total momentum J and its projection M is
obtained from solution of the Schrödinger equation with the
source term

(Ĥ3 − ET )�JM (+)
3 = Ô�J ′M ′

6Li ,

Ĥ3 = T̂3 + V12(r12) + V23(r23) + V31(r31).

(8)

The wave function �
JM (+)
3 is linked with the wave function

�
(−)
MP1 ,MP2

(kx, ky ) in Eq. (7) by the reversal of time, which
involves reversing the linear momenta (kx and ky) and direc-
tion of the spin rotation (Mi → −Mi). The effective charge-
exchange interaction between projectile and target nucleons
with Gaussian form factor is used

V̂ (r ) = V0[civs + civv (σ (1) · σ (2) )]

× (τ (1) · τ (2) ) exp
[−r2/r2

0

]
, (9)

where coefficients civs and civv define the strength of
isovector-scalar and isovector-vector couplings. For such an
interaction the transition operator in (8) is given in the PWA
by an analytical expression

Ô ∼
∑

i

fl (q, ri )
[
civs + civvσ

(i)
μ

]
τ

(i)
− Ylm(r̂i ),

(10)
fl (q, ri ) = V0 r3

0

√
2 π2 exp[−(qr0/2)2] jl (qri ),

where index i numbers the two valence nucleons. Such, rela-
tively simple, choice allowed us to reproduce well the angular
distributions of 6Be in Ref. [6].

The exclusive cross section of the direct reaction pop-
ulating three-body continuum is, in general, an eightfold
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differential. In our specific case, when an orientation of the
reaction plane does not play a role, we work with a sevenfold
differential cross sections and represent it by using the hyper-
spherical energy variables as follows:

d7σ

dq dET d��

=
∑
SMS

∑
JM,J ′M ′

ρJ ′M ′
JM (q,ET )A†

JMSMS

× (ET ,�� ) AJ ′M ′SMS
(ET ,�� ), (11)

where ρJ ′M ′
JM is a density matrix and AJMSMS

are three-body
amplitudes depending on the 6Be excitation energy ET and
the five-dimensional hyperspherical solid angle

�� = {θ�, k̂x, k̂y}.
Variable θ� is so-called hyperangle in the momentum space. It
is related to energy distribution between Jacobi subsystems

Ex = ET sin2(θ� ), Ey = ET cos2(θ� ).

In Eq. (11), the slow motion of fragments α + p + p at low
excitation energies is described by AJMSMS

amplitudes and
the state alignments are contained in the ρJ ′M ′

JM .
Note the dependence of the density matrix ρJ ′M ′

JM on the
energy ET and the absolute value of q. In general case there
should be a dependence on q, but the azimuthal angle of q
relative to the beam direction is defined by q and ET for trans-
fer reactions. Also note that the amplitudes AJMSMS

explicitly
depend on ET and �� , though it can be seen in Eq. (10) that
there is also implicit dependence on q. The expression (11) is
somewhat different from that stated in Ref. [9] as far as we
explicitly provide summation over spin variables {S,MS} of
the three-body channel, which are not measurable (at least in
foreseen realistic experimental scenarios).

IV. EXPERIMENT

The experiment was performed in the Flerov Laboratory
of Nuclear Reaction, Joint Institute for Nuclear Research with
the use of the ACCULINNA setup at U-400M cyclotron [6].
To carry out high-efficiency correlation measurements in the
charge-exchange reaction 1H(6Li, 6Be)n, maximal possible
statistics of three-particle α + p + p coincidences were de-
sired. This condition required the detection of at least two
particles by one of the telescopes (see Fig. 2) and the employ-
ment of a sophisticated experimental trigger and following
data analysis.

The 47 AMeV 6Li beam was produced by the cyclotron U-
400M and injected into ACCULINNA facility [10]. The beam
energy was reduced to 35 AMeV using a carbon degrader
and delivered to the well-shielded experimental room, located
behind a 2 m thick concrete wall, where the background
produced by cyclotron is considerably suppressed.

Experimental target and detectors setup were placed in
stainless steel vacuum reaction chamber pumped out to a
stationary pressure of ∼10−6 mbar. The beam was focused
on experimental target by means of lead collimator positioned
between two ionization chambers, which compare the beam
intensity before and after beam passage through the colli-
mator. After the best setting of the ACCULINNA facility

FIG. 2. Schematic view of the detector system employed for
registration of the 1H(6Li, 6Be)n reaction products. The origin of
the left-handed laboratory frame is in the center of the hydrogen gas
target (blue cylinder), each of two identical telescopes (T1 and T2)
consists of two position-sensitive Si detectors (red) and the array of
CsI(Tl) crystals (gray).

was found, the ionization chambers and the collimator were
removed from the reaction chamber. The beam with intensity
of about 3 × 107 s−1 was focused to a ∼3 mm (FWHM) spot
in the target plane and an energy spread better than 0.6% was
achieved.

The detector array used for registration of the reaction
products and a cryogenic hydrogen target are shown schemat-
ically in Fig. 2. The 4 mm thick target cell was equipped with
6 μm stainless steel entrance and exit windows. For the sake
of the heat shielding this cell was embedded in a protective
volume supplied with 2 μm windows of mylar coated with
aluminum. The target geometry allowed us to detect reaction
products emitted in downstream direction with full opening
angle of 90◦. The target cell was filled with hydrogen gas at
a pressure of 3 bar and cooled down to 35 K. The difference
between the pressure in target cell and the vacuum chamber
caused the inflation of steel windows to lenticular form and
resulting at maximal target thickness of 6 mm.

Reaction products were measured by two identical annular
telescopes T1 and T2, see Fig. 2. Each telescope consisted
of two position-sensitive silicon detectors and an array of
16 trapezoid CsI(Tl) crystals coupled with individual S8650
Si-photodiodes. The first double-sided silicon strip detector
(DSSD), 300 μm thick, had 32 sectors on the front side
and 32 rings on the back side. The second layer was made
of a single-sided silicon strip detector (SSSD) 1 mm thick,
segmented into 16 sectors. The inner and outer diameters
of the sensitive area of silicon detectors were 32 mm and
82 mm, respectively. The inner diameter of the silicon wafer
was 28 mm. The assembly of CsI(Tl) crystals, 19 mm thick,
had the inner and outer diameters of 37 mm and 97 mm,
respectively. Dead layers of Si detectors were measured using
α source, those of CsI(Tl) detectors were estimated by MC
simulations.

The overall thickness of each telescope was sufficient to
stop all products of the investigated process with well-defined
identification. DSSDs were intended to measure energy loss
�E of particles (with the threshold of ∼300 keV) and the
positions of their hits. SSSD and CsI(Tl) detectors served
for measurement of the remaining particle energy deposit.
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FIG. 3. Kinematic plot of the 1H(6Li, 6Be)n reaction and 6Be
decay obtained by MC simulation of the ground- and the first-
excited-state population. The beam direction coincides with Z axis
in laboratory frame. θlab is the polar angle in laboratory frame, Elab is
the kinetic energy of the 6Be c.m. (blue dots) and its decay products
(α particles are shown by green dots and protons by red dots.

Moreover, signals from SSSD were branched to a fast time
electronic circuit and used for formation of the trigger. The
telescopes T1 and T2 were placed 91 mm and 300 mm
downstream the target, respectively. Under an assumption that
the reaction occurred in the center of the target, the T1 and
T2 angular ranges in laboratory frame were 9.9◦–24.2◦ and
3.1◦–7.8◦, respectively, see Fig. 3.

V. DATA ANALYSIS

As a result of the experiment the 6Be energy spectra shown
in Figs. 4(a) and 4(b) were obtained. The spectrum presented
in Fig. 4(a) consists of two prominent peaks related to the
population of the ground 0+ and the first excited 2+ states
superimposed on the broad continuum. The width of the
ground-state peak demonstrates overall instrumental resolu-
tion. This is a typical picture, which has been seen in a number
of earlier observations (e.g., see Refs. [11–13]) where the
low-energy 6Be spectrum was populated in charge-exchange
reactions. Those results were based on the measurement of the
missing mass spectra, and their treatment was often related
to the analysis of the excitation spectrum and sometimes
its angular behavior. The detection of three 6Be products
α + p + p provides complete kinematics measurement, and
we can consider the population and the decay of the 6Be
system in detail. Bellow we will focus on the parameters of
the model related to the reaction mechanism and how they
affect on the measured spectra formation.

The data analysis is performed by comparison of experi-
mental data with Monte Carlo (MC) simulations based on the
three-body decay model taking into account the population of
the 0+ and 2+ states only, see Sec. III. Observables relevant to
the 6Be decay will be treated in a specific 6Be center-of-mass
frame with Z axis directed along the transferred momentum
vector.

We have treated our data in the whole angular range
of θBe but we will make emphasis on the analysis of the

FIG. 4. Experimental data for 1H(6Li, 6Be)n reaction. (a) shows
the 6Be integral invariant mass spectrum measured in the whole
range of θBe angle. Red lines depict particular energy intervals to be
treated (explanation is provided in text below). (b) shows the same
data presented on the {ET , θBe} plane. (c) shows theoretical spectra
with different J π and their sum (black solid curve) fitting the data of
(a) and (b). (d) shows contour plot of the transferred momentum (in
MeV/c) on the {ET , θBe} plane. Red rectangle in (b) and (d) shows
the region of interest for this work.

region of θBe ∈ (45, 120)◦ and ET < 3.1 MeV [see rectan-
gle in Fig. 4(b)]. Both, the ground and first excited states,
are well pronounced and are measured with sufficient statis-
tics in this region. At smaller angles setup efficiency is
severely suppressed by the telescope acceptance, while at
larger angles population cross section is quite low. The model
calculations were passed through a virtual measuring setup
taking into account all major details of the experimental
setup.
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We will attempt to compare theoretical results with exper-
imental data by fitting the three aspects of the density matrix
related to investigated states:

(i) Population ratio of the 0+ ground state to the 2+ first
excited state;

(ii) Intensity of the spin alignment for population of the 2+
state;

(iii) Interference phase between of the 0+ and 2+ states.

A. Population rates for 0+ and 2+

Comparison of the simulated and experimental data in
different angular intervals is given in Fig. 5. Experimental and
simulated data are depicted by error bars and gray histograms,
respectively. We can see that MC simulations have slightly
better energy resolution than those of the experimental data.
For that reason the simulated data were fitted to experimental
ones by comparing the numbers of events corresponding to the
population of ground state ET < 2 MeV and those forming
the left slope of the 2+ state peak 2.5 < ET < 3.1 MeV.

In contrast with treatment of Ref. [6], here we do not
include in the MC simulations the contribution of the J− con-
tinuum (isovector soft dipole mode contribution). Instead, in
the bottom panels of Fig. 5 we show results of the subtraction
of simulated 0+ and 2+ contributions from the experimental
spectrum. We can see that the IVSDM contributions are
weakly dependent on the angular range. Another important
thing we realize from this illustration is a significant contribu-
tion of the IVSDM for the right wing of the 2+ resonance. This
message is confirmed by theoretical calculations of Ref. [6],
also shown in Fig. 4(c). We see that if we would like to study
the 0+/2+ mixing only we should restrict our analysis mainly
to the left wing of the 2+ resonance with ET < 3.1 MeV.

B. Spin-parity identification and density matrix
parametrization

Before we turn to the charge-exchange reaction, some
explanation how spin-parity identification based on density-
matrix formalism was realized in our previous works is
needed. The (t, p) reactions were used for population of three-
body continuum states in 5H and 10He in Refs. [4,5,14]. Such
two-neutron transfer reactions seem to be reliably described
by dineutron transfer (two nucleons are transferred in a state
with S = 0). Then suppositions about Eq. (2) are fully valid
and we get highly aligned density matrix in the transferred
momentum frame with practically complete polar alignment

ρJ ′M ′
JM ∼ δM,±1/2 δM ′,±1/2 or ρJ ′M ′

JM ∼ δM,0 δM ′,0, (12)

for half-integer and integer spin of the initial system, re-
spectively. Such strong alignment guarantee very expressed
interference patterns for broad overlapping continuum states,
which were used in the data analysis [4,5].

In general case the angular distribution of two-body decays
is expressed in terms of associated Legendre polynomials
P M

L (x). If a polar-aligned state with angular momentum
L decays via emission of particle with J = 0, the angular
distribution of the products may be expressed as

dσ

d cos θ
∼ ∣∣P 0

L(cos θ )
∣∣2

, (13)

for the selected alignment system, producing expressed and
easy-to-interpret angular distribution.

In the case of the three-body decay, there exist an evident
limit effectively reducing three-body motion to two-body
motion:

ε → 0. (14)

The relative motion of one pair of particles (e.g., two protons)
is fully suppressed and the three-body decay is determined
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FIG. 5. Comparison experimental data and simulations including
0+ and 2+ states in different intervals of θBe. In four top panels
the experimental and simulated data are depicted by error bars and
gray histogram, respectively. In four lower panels the subtraction of
experimental and simulated histograms with energy bin of 1 MeV
are shown for the same angular ranges. This subtraction shows the
expected contributions of J − states interpreted as isovector soft
dipole mode contribution.
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as two-body motion of α particle and diproton with zero
energy. In this limit we are getting for three-body decays
the same very expressed angular distributions, but now in the
corresponding β angle [see Fig. 1(c)].

We introduce the term quasibinary kinematic for three-
body decay when the condition (14) is replaced by ε < x
assuming a choice made for the upper limit of ε providing sat-
isfactory accuracy for the studied process. For high-statistics
measurements the value x can be gradually reduced to reveal
expressed and easy-to-interpret correlation patterns.

In our analysis we fix some ET and θBe ranges and con-
sider different correlation patterns within them. For internal
correlations we consider ε and θk distributions and for external
correlations the most interesting are angular distributions θα of
α particles in the momentum transfer system, θα = π − β.

Density matrix, for population of the 0+ and 2+ states of
6Be, in the momentum transfer frame has relatively simple
structure with the following nonzero terms:

ρJ ′M ′
JM =

⎛
⎜⎜⎜⎜⎜⎜⎝

ρ00
00 ρ00

20
ρ22

22
ρ21

21
ρ20

00 ρ20
20

ρ2−1
2−1

ρ2−2
2−2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (15)

Formally, the terms of the density matrix ρJ ′M ′
JM (q,ET ) for the

pole reaction mechanism in Eq. (11) depend on two parame-
ters: q and ET . Looking in Fig. 4(d) it is easy to find that for
energy and angular range of our interest momentum transfer
depends only on angle, not on energy in a very good approx-
imation. Thus it is reliable to consider the ρJ ′M ′

JM dependence
on ET and θBe in a factorized form. So, we presume that:

(i) The energy profile of the 0+ and 2+ states individually
is defined by the energy dependence of the three-body ampli-
tudes AJMSMS

(ET ,�� ) as provided by three-body theoretical
calculations.

(ii) The global population rate for the 0+ and 2+ states as
fitted to experiment is defined by the parameter ρ00

00/
∑

M ρ2M
2M .

(iii) The following items are considered separately for
each {ET , θBe} bin: the alignment for the 2+ state (ρ2M

2M

dependence on M) and the interference angle ϕ02 between 0+
and 2+ states, which define off-diagonal density matrix term
parameterized as

ρ00
20 = ρ20

00 =
√

ρ00
00 ρ20

20 cos(ϕ02). (16)

The expected alignment pattern for the 6Be 2+ state
populated in the charge-exchange reaction induced by the
potential Eq. (9) is illustrated in Fig. 6(a). Actually, more
expressed alignment parametrizations were used for the MC
simulations. Expressions

ρ2M ∼ δM0, (17)

ρ2M ∼ 1/5, (18)

correspond to population of fully polar-aligned (17) and
nonaligned (isotropic) (18) 2+ state, respectively. If we
consider the angular distribution of α-particle fragment in the
momentum transfer frame, then the isotropic density matrix

FIG. 6. The density matrix (15) spin structure for the 2+ state.
(a) Model approximations of isotropic and polar alignments actually
used for MC simulations. (b) Isovector-scalar (constant civs) and
isovector-vector (constant civv) couplings for potential (9).

should provide isotropic angular distribution for the isolated
2+ state. Note that in the case of significant interference with
other states an anisotropic distribution can be obtained even
for isotropically populated state. With increase of the align-
ment more and more distinctive form of angular distribution
should be obtained for the 2+ state, tending to |P 0

2 (cos θα )|2
in the limit of polar alignment and under the condition (14).

Three extreme cases of interference between 0+/2+, de-
scribed by angle ϕ02, are considered. We simulated the
constructive interference (ϕ02 = 0◦), destructive interference
(ϕ02 = 180◦) and situation when amplitudes of 0+ and 2+
states are summed incoherently (ϕ02 = 90◦) for both cases
determined by Eqs. (17) and (18). So, within this paper, six
special cases are systematically illustrated, those given by two
extreme cases of 2+ alignment and three distinct cases of
0+/2+ interference, see, e.g., Fig. 7.

C. Ground-state correlations

We start our analysis from the part of the 6Be excitation
spectrum where the 0+ ground state is only present. To
eliminate the possible effects caused by the interference with
the 2+ state we restricted analysis here to excitation energy
ET � 1.4 MeV, where contribution of the left wing of the
first excited state can be reliably neglected [see Fig. 4(c)].
So, we have no free model parameters related to the reaction
mechanism (0+ state by itself is isotropic by definition) there
and internal correlations of 6Be decay products should be the
same for the whole range of angle θBe.

We can see in Fig. 7 that observed εT distributions are
qualitatively different for different θBe bins. The forms of
theoretical distributions used as input for MC simulations are
depicted by red lines. Events count presented on Y axis is
related to simulated (gray histograms) and experimental data
(crosses) only. Red line is drawn in different count range,
which is not shown in figures. Theoretical input is introduced
for illustration and convenience of comparison how are the
observed forms affected by experimental setup. The main
feature of theoretical input is that external correlations may
vary with θBe whereas internal ones (related to decay only)
does not depend on reaction angle and their forms are the
same for all panels of Fig. 7. In spite of this fact the simulated
energy distributions (gray histograms) affected by virtual
experimental setup are in a nice agreement with experimental
data.
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FIG. 7. Energy distributions εT for 6Be decay with ET <

1.4 MeV for different θBe bins. Experimental and MC simulated data
are depicted by crosses and gray histograms, respectively. Theoreti-
cal input (generated distributions used as input for MC simulations)
is depicted by red line. Red line is depicted in different range to that
used for experimental and simulated data (see Sec. V C for details).

The effect of the response of the experimental setup is
much smaller for εY distribution in the Y system and cos θ

(T )
k

in the T system. It also very weakly depends on the kinemat-
ical range of θBe. In Fig. 8 we show a typical picture of these
distributions. Corrections induced by detection efficiency are
noticeable, but not large.

Analysis of internal correlations for the ground state given
here may be seen as a benchmark in two ways. On the one
hand, it provides a confirmation of the theoretically predicted
correlations, which were already tested against highly detailed
experimental data of works [15,16]. Thus, the full consistency
of our experiment with previous high-precision experiments
[15,16] is demonstrated. On the other hand, the nice agree-
ment in Figs. 7 and 8 means that the MC simulation is

FIG. 8. (a) shows energy distributions εY in the Jacobi Y system.
(b) shows angular distribution cos θ

(T )
k in the Jacobi T system.

Kinematical ranges are ET < 1.4 MeV and 75◦ < θBe < 90◦.

FIG. 9. Energy distribution εT for 6Be decay with 1.4 < ET <

1.9 MeV (right slope of 0+) for different θBe bins. The simulation
model settings are isotropic 2+ state (NA) and no 0+/2+ interference
(ϕ02 = 90◦).

working reliably in the whole considered θBe range and well
represents the response of the experimental setup. This is an
important prerequisite for the next more complicated steps of
our analysis.

D. Correlations at the right slope of the 0+ state

Effects of 0+/2+ interference become important already on
the right slope of the ground 0+ state. Let us have a look at the
energy range 1.4 < ET < 1.9 MeV. If we look in theoretical
predictions shown in Fig. 4(c), we can find that the relative
probability of the 2+ state population expected in this energy
range is just around 1% of the 0+ one. Nevertheless, it is
sufficient to produce a significant modification in the correla-
tions. This is the important motivation for use of correlations
as a tool for studies: they are sensitive to amplitudes, not
to probabilities. Therefore, the effects of even small-weight
configurations can be drastically amplified.

First, we consider the evolution of energy εT distributions
with angle θBe. It is illustrated in Fig. 9 for the trivial case of
isotropic and not interfering 2+ state. The calculated distribu-
tions (red lines) are not much different from the ones shown in
Fig. 7 and evidently do not depend on the angle θBe. However,
observable εT distributions are strongly sensitive to the angle
θBe and we can see that MC simulations are reliably taking the
experimental efficiency into account in this range as well.

Much more fine effect of the alignment/interference on the
energy distribution εT is illustrated in Fig. 10. We can see in
this plot that there is weak dependence of the observed shape
of the distribution on the alignment/interference settings. We
recall that from the theoretical point of view there is no
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FIG. 10. Comparison of experimental energy distributions εT

for 6Be decay with 1.4 < ET < 1.9 MeV (right slope of 0+) for
75◦ < θBe < 90◦ with different alignment/interference settings in
theoretical model. The left column, compares data with theoretical
model describing fully polar-aligned (AL) 2+ state. The right col-
umn, corresponds to the isotropic (nonaligned, NA) 2+ state. Top,
middle, and bottom rows correspond to interference phase ϕ02 equal
to 0◦, 180◦, and 90◦, respectively.

dependence of the εT distributions on the reaction mechanism.
However, such a sensitivity of observable distributions arise
in the experimental conditions, when isotropic efficiency for
registration of decay fragments is not available. This effect has
been already pointed out in Ref. [17] (see Fig. 6 of this work)
for the 6Be 2+ data from experiment [16].

The dependence of Fig. 10 is quite curious, but too weak
for practical application and deriving definite conclusions.
To distinguish clearly the effects of alignment/interference it
is better to consider external correlations in the momentum
transfer frame. Angular distributions for α-particle emission
in the momentum transfer frame are illustrated in Fig. 11. We
analyzed the 6Be decay in quasibinary approximation under
the condition

εT < 0.2, (19)

which ensured high enough statistics for the considered
{ET , θBe} windows. It can be seen in Fig. 11 that already

FIG. 11. Angular distributions for the α-particle emission in the
momentum transfer frame in the range 1.4 < ET < 1.9 MeV and
75◦ < θBe < 90◦. Alignment/interference settings are the same as in
Fig. 10. Normalized χ 2 is indicated for comparison of experimental
data with different theoretical model settings.

theoretical angular distributions are very sensitive to align-
ment/interference conditions. This sensitivity is further en-
hanced by imperfect experimental efficiency. It is clear that
these distributions can be used to fix alignment/interference
parameters with reasonable confidence. The analysis analo-
gous to that of Fig. 11 was performed in the whole θBe range
and the results are summarized in Table I. Note, that such
a strong sensitivity of the observed angular distributions is
obtained just for ∼1% of the 2+ state relative weight in the
considered ET energy window.

E. Correlations at the left slope of the 2+ state

We may expect that effects of alignment/interference will
be more pronounced in the region with higher probability
of population of the 2+ state. As illustration we provide
here some details for the range 2.5 < ET < 3.1 MeV. This
corresponds to the left (rising) slope of the first excited 2+
state of 6Be. It can be expected from Fig. 4(c) ∼20% of 0+
contribution in this range making strong interference highly
probable. Certain contamination of the correlations in this
range by J− contributions can be expected, but analysis shows
that in reality it appears to be not of importance. Thus, the
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TABLE I. The best fits to experimental data of density matrix parameters for different {ET , θBe} ranges. The fits were found using the
figures with θα distribution for all six configurations of the theoretical model. Typical χ2 values are not strongly different than those shown in
Fig. 16 and all of them are equal or lower than 2.5.

ET (MeV) θBe ∈ (45, 60)◦ θBe ∈ (60, 75)◦ θBe ∈ (75, 90)◦ θBe ∈ (90, 120)◦

1.4–1.9 AL; ϕ02 = 135◦ AL + 50% NA; ϕ02 = 180◦ AL; ϕ02 = 180◦ AL + 20% NA; ϕ02 = 180◦

1.9–2.5 NA + 10%AL; ϕ02 = 135◦ NA + 10% AL; ϕ02 = 180◦ NA; ϕ02 = 180◦ NA + 10%AL; ϕ02 = 180◦

2.5–3.1 NA + 10% AL; ϕ02 = 180◦ NA + 30% AL; ϕ02 = 180◦ NA + 20% AL; ϕ02 = 180◦ NA; ϕ02 = 135◦

analysis scheme here is quite stereotypical with that of the
previous section.

Our first test is energy distribution εT , which gives minimal
validation of the MC procedure quality, see Fig. 12. This
energy distribution for the 2+ state is qualitatively different
from that for the 0+ state. More fine effects of the align-
ment/interference on the observable distributions are illus-
trated for the selected θBe range in Fig. 13.

All other distributions related to internal correlations, θk in
both Y and T systems and εY show the same good agreement
between experiment and theory. As a result of these studies
we can declare two observations:

(i) The internal correlations do not seem to demonstrate
noticeable dependence on the population conditions. This is
a quite expected result for the narrow 0+ state (� ≈ 90 keV),
however, for much broader 2+ state (� ∼ 1 MeV) this is not
evident in advance. Thus, the internal motion of the three-
body system seems to be really disentangled from the motion
of the three-body system as a whole as it is presumed in the
density matrix formalism.

FIG. 12. Energy distribution εT for the 6Be decay with 2.5 <

ET < 3.1 MeV (left slope of 2+) for different θBe bins. The sim-
ulation model settings are isotropic 2+ state (NA) and no 0+/2+

interference (ϕ02 = 90◦).

(ii) The same theoretical input for the 2+ state correlations
was used for MC simulations in Ref. [16]. As far as the
agreement between theory and experiment was also very good
in this work, it means that there is a complete agreement
between this experiment and the experiment [16]. The 6Be
states were populated in a high-energy (Ebeam ∼ 70 AMeV)
knockout from 7Be beam in experiment [16]. This is very
different reaction mechanism, so the internal correlations in
the decay of relatively broad 2+ state seem to be not sensitive
also to this aspect of the reaction mechanism.

The analysis of external correlations is illustrated by
Figs. 14 and 15 for two selected θBe ranges. Again, the

FIG. 13. Energy distribution εT for 6Be decay with 2.5 < ET <

3.1 MeV (left slope of 2+) for 75◦ < θBe < 90◦ and different
alignment/interference settings, see also caption of the Fig. 10 for
details.
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FIG. 14. Comparison of experimental and simulated angular
distributions for the α-particle emission in the momentum trans-
fer frame in the range 2.5 < ET < 3.1 MeV and 75◦ < θBe < 90◦.
Alignment/interference settings are the same as in Fig. 10.

sensitivity of the θα angular distributions to the alignment and
interference conditions is very high (see χ2 values in both
figures) and, moreover, we can find the density matrix param-
eters for which near-perfect description of the distribution is
provided. The results of our fits are summarized in the Table I
and an example of best fits found for energy interval 2.5 <
ET < 3.1 MeV is shown together with obtained χ2 values in
Fig. 16. Part of the spectrum characterized by pure ground
state (ET < 1 MeV) does not depend on the density-matrix
parameters and it is not shown in the Table. We remark that
typical values of χ2 test are very similar to those shown in
Fig. 16 and all of them are in the range 0.9 < χ2 < 2.5.

F. Correlations at the right slope of the 2+ state

Let us consider now the energy range 3.1 < ET <
3.7 MeV. It has been discussed above in the Sec. V A that
important contribution IVSDM is expected here. Inclusive
contribution of J− states here can be theoretically evaluated as
∼25% from Fig. 4(c). We investigate how this fact is reflected
in the correlations.

The typical picture of comparison of theoretical data with
experimental ones for energy above the peak corresponding to
the 2+ state is shown in Fig. 17. It is obvious that experimental
data cannot be fitted using 0+ and 2+ contributions only

FIG. 15. Comparison of experimental and simulated angular dis-
tributions for the α-particle emission in the momentum transfer
frame in the range 2.5 < ET < 3.1 MeV and 90◦ < θBe < 120◦.
Alignment/interference settings are the same as in Fig. 10.

because of the simulated events excess for all model inter-
ference/alignment settings at θα → π/2. Moreover, it is clear
that forward/backward asymmetry in the data is much higher
than in the simulations. Such a forward/backward asymmetry
is not possible for isolated states or for interference of states
with the same parity. This means that asymmetry obtained
from simulations based on the treated model can be related
only to the response of the experimental setup. Simulations
show that this effect is not sufficient to explain the observed
forward/backward asymmetry. It means that additional inter-
ference of 0+ and 2+ with some J− states is needed for expla-
nation of the data. This can be seen as additional independent
proof of the IVSDM contribution at ET > 3 MeV.

VI. DISCUSSION

Studies of the three-body correlations for decays [18–20]
or particle emission from states populated in reactions
[3–5,21,22] are quite active in the recent years. In such studies
the experimental question arises, which should be resolved
to make theoretical interpretation possible: How much are
the observed correlation patterns different from the actual?
In this work we provide extensive illustration of this issue:
even for the 6Be ground-state case, the observed three-body
correlation patterns demonstrate strong variation depending
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FIG. 16. Best fits of MC to experimental data obtained for energy
interval 2.5 < ET < 3.1 MeV. Notice that obtained normalized χ2

values are than better those presented in Figs. 11, 14, and 15. See
Table I for other treated energy interval.

on the specific region of the kinematical space. The influence
of the experimental efficiency is especially harmful for studies
of the external correlations. In this work we disentangle the
effects related to response of the experimental setup from
the effects of alignment/interference for energy range with
overlapping 0+ and 2+ states of 6Be.

A general quantum-mechanical formal issue and important
practical task of data interpretation is the extraction of the
most complete quantum-mechanical information from the
accessible observables. An important but very rare case when
extraction of the complete quantum-mechanical information
from data is possible is elastic scattering: from angular dis-
tributions one can, in principle, extract a set of phase shifts,
which contains all possible information about this process.
For other classes of experimental data extraction of complete
quantum-mechanical information from observables suffers
from different types of continuous and discrete ambiguities.
For certain classes of reactions the most complete quantum-
mechanical information that can be extracted is contained in
the density matrix. Because of internal symmetries the density
matrix could provide a very compact form of data representa-
tion depending just on very few parameters. In the case of the
pole approximation considered for the 1H(6Li, 6Be)n reaction
there are just four parameters for specific kinematical point:
the 0+/2+ ratio, the 0+/2+ relative phase, and two parameters
describing 2+ state alignment. The density-matrix approxi-
mation may be questioned for such complicated process as
charge-exchange reaction. Despite this issue we demonstrate
in this work principal ability to describe very complex and
detailed multidimensional correlation patterns by applying
this compact formalism.
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FIG. 17. Angular distribution of α particles in the momentum
transfer frame for the range 3.1 < ET < 3.7 MeV and 75◦ < θBe <

90◦. Alignment and interference conditions are the same as in
Fig. 10.

In the mentioned recent three-body correlation studies, the
detailed correlation data allowed us to resolve the following
intriguing issues.

(i) It was possible to check consistency of the long-
range aspect of the three-body problem in continuum
[19,21].

(ii) We were able to figure out fine details of the decay
dynamics for democratic decays by examples of 6Be
and 16Ne ground and first excited states [15,21,22].

(iii) Possibility to uncover weakly populated states due
to interference with background states was demon-
strated in Refs. [3,4].

In this work we add one more point to this list of scientific
tasks, which can be resolved by correlation studies. The basic
point here is that correlation data are very detailed to make
possible investigation in different regions of the kinematical
space. Such detailed information is not easily accessible in
exotic dripline systems where secondary beams typically have
low or modest intensities. Our work provides additional moti-
vation for this type of reaction study.
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VII. CONCLUSIONS

The correlation data for three-body α + p + p decay of
the 6Be continuum with overlapping states populated in the
1H(6Li, 6Be)n charge-exchange reaction were analyzed. The
energy region ET < 3 MeV, where low-lying 0+ and 2+
states are populated, has been considered. Experimental data
of high statistics (∼5 × 106 reconstructed events) allowed
us to investigate correlations with reasonable resolution both
in the 6Be excitation energy and in the reaction center-
of-mass angle. Data analysis was carried out by using the
comparison of experimental data with MC simulations taking
into account the population of 0+ and 2+ states in the 6Be
continuum and neglecting the population of J− continuum.
Our treatment showed that internal structure of three-body
system with broad overlapping states may be revealed in
correlations. While internal correlations are weakly sensitive
to the investigated parameters (interference between the 0+
and 2+ states and alignment of 2+ state), we observed strong
sensitivity to those parameters in external correlations.

The principal opportunity to extract the density-matrix
parameters, characterizing the reaction mechanism of pop-
ulation of the 6Be states, was demonstrated. The suggested

method of analysis allows for identification of such fine
effects such as the ratio of the populated states, interference
between them, and alignment of the states with J > 1/2 for
other nuclei, and it may be regarded as a general tool for
similar tasks.

Nice examples of the employment of the three-body
correlations for spin-parity identification are high-statistics
experimental file 5H [3,4], low-statistics set 10He [5],
and high-precision treatment of the three-body Coulomb
continuum effects in 16Ne [21]. The results obtained
in this work provide exemplary demonstration how the
high-statistics few-body correlation data can be used for
determination of the fine effects of the reaction mechanism.
This work underline the importance of the high-statistics
studies of the few-body correlations as important point of
experimental agenda of RIB facilities.
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