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We study the manifestation of the �++-�− component of the deuteron wave function in the exclusive reaction
p̄d → π−π−�++. Due to the large binding energy the internal motion in the �-� system is relativistic. We
take this into account within the light-cone (LC) wave function formalism and, indeed, found large differences
between calculations based on the LC and nonrelativistic (NR) wave functions. We demonstrate that the
consistent LC treatment of the �-� system plays the key role in the separation of the signal and background.
Within the LC approach, the characteristic shape of the momentum distribution of the �-� bound system
predicted by the meson-exchange model is well visible on the background of usual annihilations at beam
momenta between 10 and 15 GeV/c.
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I. INTRODUCTION

One of the hottest fields of the modern nuclear physics
is the study of non-nucleonic degrees-of-freedom in nuclei.
This issue is closely related to the mechanism of hadronic
interactions at short distances where the partonic structure
of hadrons becomes important. As the lightest nucleus, the
deuteron is an ideal object for testing theoretical models of
non-nucleonic degrees of freedom. In this case angular mo-
mentum and isospin conservation allow us to considerably re-
duce the space of possible exotic configurations and simplify
the physical picture. In particular, the lightest exotic baryonic
configuration is a mixture of �++-�− and �+-�0 states with
equal probabilities. There is a substantial difference in various
theoretical predictions on the �-� component of the deuteron.

In the meson-exchange calculations of the deuteron
[1–4], the short-range structure of the NN → �� transi-
tion potential has been effectively described by inserting the
cutoff (hard-core radius) in the pion-exchange potential and
adding ρ meson exchange [1] or using form factors [2–4] in
meson-nucleon-� vertices. In most calculations, the 7D1 state
dominates in the �-� wave function. The 3SNN

1 → 7D��
1

transition is driven by the tensor interaction due to π and
ρ exchanges, which contribute with opposite signs. Thus, at
short distances, the inclusion of ρ exchange has been shown to
be very important, as it stabilizes the cutoff dependence of the
results [1]. The meson-exchange calculations typically predict
that the deuteron has a �-� component with a probability
<1.5%.

*Corresponding author: larionov@fias.uni-frankfurt.de

The typical momenta in the �-� wave function are
∼400−500 MeV/c (see Fig. 2). This corresponds to the inter-
� distances ∼π/2k ∼ 0.6−0.8 fm, which are much smaller
than the root-mean-square radius of the ordinary deuteron
∼2 fm. Thus, the �-� wave function has a strong overlap with
other non-nucleonic configurations such as six quark states,
which one can try to model. For example, in the constituent
quark model calculations with oscillator basis [5,6] the main
contribution to the �-� wave function is due to the s6 quark
configuration. Thus, the �-� configuration is described by the
0s oscillator state. This model predicts the probability of the
�-� component to be ∼2–3%.

Experimentally, the �-� component has been already dis-
cussed in previous analyses of photon [7] and antiproton [8]
reactions on the deuteron. In Ref. [7], DESY data on backward
�++ production in the laboratory frame in the reaction γ d →
�++ + anything were analyzed deducing ∼3% �-� admix-
ture in the deuteron. In Ref. [8], nonannihilative channels of
p̄d interactions have been used for the search of the �-� com-
ponent. The high percentage of ∼16% of the �-� component
deduced in Ref. [8] strongly indicates that the background was
not fully excluded in the spectator � decays in the backward
hemisphere in the laboratory frame. An upper limit of 0.4% on
the �-� component has been obtained in ν(ν̄)d interaction
studies [9], where the neutrino (antineutrino) was supposed
to interact with the quark content of �−(�++) leaving the
�++(�−) as a low-momentum spectator.

In the OBELIX@LEAR experiment [10] the reaction

p̄d → 2π−π+p (1)

with stopped antiprotons was used to estimate an up-
per limit on the annihilation probability Yp̄(�−�++ )→2π−π+p
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due to the subprocess p̄�− → π−π−. The resulting
Yp̄(�−�++ )→2π−π+p � 6.5 × 10−5 corresponds to a �-� con-
figuration probability �1%. In Ref. [11] some enhancement in
the invariant mass distribution of π−π− pairs at 1.4–1.5 GeV
from reaction (1) visible in the OBELIX data [10] was inter-
preted by including the �−�++ component. However, due to
the lack of statistics it is difficult to make definite conclusions
on the existence of a �-� component from the OBELIX data.

In the present paper, in view of the upcoming PANDA
experiment, we theoretically address the reaction channel
p̄d → π−π−�++ at plab = 10−15 GeV/c for the kinematics
with two energetic π− mesons in the forward laboratory
hemisphere and a slow �++. The signal reaction channel
is p̄�− → π−π− annihilation on the virtual �− leading to
a practically instantaneous (on nuclear scale) release of the
spectator �++. The possible background channels include at
least two steps and, thus, are expected to be moderate. We will
consider the following two possible background reactions:
(i) p̄n → π−π0 followed by the charge exchange (CEX)
reaction π0p → π−�++ and (ii) p̄n → π−π−π+ followed
by π+p → �++.

The other isospin component, i.e., �+�0, can be studied
in the p̄d → π−π+�0 channel. However, background of the
types (i) and (ii) will in this case include the annihilation
channels both on the proton and on the neutron, and thus pre-
sumably will be larger. Therefore, for simplicity, we restrict
ourselves in this work to the analysis of p̄ annihilation on the
�++�− component.

In calculations of the signal channel we use both NR
and LC descriptions of the �-� wave function and analyze
their influence on the results. Both NR and LC descriptions
are based on the same input �-� momentum distribution
provided by calculations based on the model of Ref. [4], but
differ in the physical meaning of the intrinsic �-� momen-
tum. The elementary two-pion annihilation amplitudes are
calculated in the framework of the nucleon- and �-exchange
model. The CEX π0p → π−�++ amplitude is described by
the Reggeized ρ exchange. We show that LC effects are strong
in case of a strongly bound �-� configuration and crucial for
the visibility of the signal, which is comparable in strength
with the three-pion annihilation background in the backward
laboratory hemisphere.

The structure of the paper is as follows. In Sec. II we
derive the signal cross section in the NR and LC descriptions.
In Sec. III, the wave function of the �-� state used in
the calculations is described briefly. Section IV includes the
formalism for the calculation of the background channels.
Section V contains numerical results. Finally, in Sec. VI we
summarize the results and try to draw conclusions on the
possibility to observe the �-� component of the deuteron
experimentally.

The Appendices contain some technical aspects. In Ap-
pendix A we derive the relation between the NR and
LC �-� wave functions based on the electromagnetic
form factor of the �-� state. In Appendix B we obtain
Eq. (B10) for the poles of the pion propagator used in
the calculation of the three-pion annihilation background
in Sec. IV B. The elementary amplitudes are described in
Appendix C.

p̄

d

Δ−

Δ++
R

π−
1

π−
2

FIG. 1. Impulse approximation graph showing the production of
a pion pair in antiproton annihilation on one of the �’s of a �-�
configuration in the deuteron.

II. ANTIPROTON INTERACTION WITH A DEUTERON
�-� CONFIGURATION

We will start from the detailed NR derivation and then
sketch the main steps of the LC derivation. In the latter case
more details can be found in Refs. [12,13].

The S matrix1 corresponding to the Feynman diagram of
Fig. 1 can be written as follows:

S (0) =
∫

d3r�R
d3r�

∑
λ�

φ
λd

�−�

(
r�R

, r�; λ�R
, λ�

) 1

V

×
∫

V d3p�

(2π )3
e−i p�R

r�R
−i p� r�Sπ1π2;p̄�, (2)

where

Sπ1π2;p̄� = (2π )4δ(4)(p1 + p2 − pp̄ − p�)

(2Ep̄V 2E�V 2E1V 2E2V )1/2
iMπ1π2;p̄� (3)

is the S matrix corresponding to the process p̄� → π1π2. V is
a normalization volume. φ

λd

�−�(r�R
, r�; λ�R

, λ�) is the wave
function of the �-� configuration normalized according to
the following condition:∑

λ�R
,λ�

∫
d3r�R

d3r�

∣∣φλd

�−�

(
r�R

, r�; λ�R
, λ�

)∣∣2 = P�−�,

(4)

where P�−� is the probability of a �-� configuration in the
deuteron. λd , λ�R

, and λ� are the third spin components of
the deuteron, residual, and struck �’s, respectively.

By using the center-of-mass (c.m.), R, and relative, r ,
coordinates,

R = m�r� + m�R
r�R

m� + m�R

, r = r� − r�R
, (5)

one can separate the c.m. motion and relative motion in the
wave function as follows:

φ
λd

�−�

(
r�R

, r�; λ�R
, λ�

) = 1√
V

ei pd Rφ�−�

(
r; λ�R

, λ�

)
.

(6)

1We use the conventions of Ref. [14] throughout the paper.
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Substituting Eqs. (3), (6) in Eq. (2) and integrating out the
c.m. motion we have:

S (0) =
∫

d3r
∑
λ�

1√
V

φ
λd

�−�

(
r; λ�R

, λ�

)

×
∫

d3p�δ(3)
(

pd − p�R
− p�

)
× ei( p�R

m�− p�m�R
)r/(m�+m�R

)

× (2π )4δ(4)(p1 + p2 − pp̄ − p�)

(2Ep̄V 2E�V 2E1V 2E2V )1/2
iMπ1π2;p̄�. (7)

If one defines the energy of the struck � as

E� = Ed − E�R
, (8)

then, integrating out the first δ function in Eq. (7), we can
finally express the S matrix in the standard form,

S (0) = (2π )4δ(4)(p1 + p2 + p�R
− pp̄ − pd )(

2Ep̄V 2EdV 2E�R
V 2E1V 2E2V

)1/2 iM
(0)
π1π2�R ;p̄d ,

(9)

where the invariant matrix element is given by the following
expression:

M
(0)
π1π2�R ;p̄d =

(
2E�R

Ed

E�

)1/2

(2π )3/2

×
∑
λ�

φ
λd

�−�

(
k; λ�R

, λ�

)
Mπ1π2;p̄�, (10)

where

k = − p�R
+ m�R

pd

m� + m�R

(11)

is the momentum of the struck �.2 The wave function in
momentum space is defined as follows:

φ
λd

�−�

(
k; λ�R

, λ�

) = 1

(2π )3/2

∫
d3re−ikrφ

λd

�−�

(
r; λ�R

, λ�

)
.

(12)

The normalization condition for this wave function is∑
λ�R

,λ�

∫
d3k

∣∣φλd

�-�

(
k; λ�R

, λ�

)∣∣2 = P�-�. (13)

Note that based on Eq. (10) one can obtain the relation
between the deuteron vertex function d → �� and the wave
function of the �-� state (cf. Ref. [15]):

i�d→��

(
pd, p�R

; λd, λ�R
, λ�

)
p2

� − m2
� + iε

=
(

2E�R
Ed

E�

)1/2

(2π )3/2φ
λd

�−�

(
k; λ�R

, λ�

)
. (14)

2Thus in the deuteron rest frame k = − p�R
, which is the nonrela-

tivistic definition. See Eq. (41) below for the light-cone definition.

In the deuteron rest frame (laboratory frame) the differen-
tial cross section of the process shown in Fig. 1 is

dσ = (2π )4δ(4)(p1 + p2 + p�R
− pp̄ − pd )

4mdplab

∣∣M (0)
π1π2�R ;p̄d

∣∣2

× d3p�R

(2π )32E�R

d3p1

(2π )32E1

d3p2

(2π )32E2
, (15)

where |M (0)
π1π2�R ;p̄d |2 is the modulus squared of the invariant

matrix element, Eq. (10), summed over final spins and aver-
aged over initial spins.

For the modulus squared of the invariant matrix element in
the laboratory frame we have:

∣∣M (0)
π1π2�R ;p̄d

∣∣2

= 1

6

∑
λp̄,λd ,λ�R

∣∣M (0)
π1π2�R ;p̄d

∣∣2

= 2E�R
md

E�

(2π )3

6

∑
λp̄,λd ,λ�R

∑
λ�,λ′

�

φ
λd

�−�

(
k; λ�R

, λ�

)

×φ
λd

�−�

∗(
k; λ�R

, λ′
�

)
Mπ1π2;p̄�M∗

π1π2;p̄�′

= 2E�R
md

E�

(2π )3

6

∑
λp̄,λd ,λ�R

,λ�

∣∣φλd

�−�

(
k; λ�R

, λ�

)∣∣2

× ∣∣Mπ1π2;p̄�

∣∣2
, (16)

where in the last step we neglected the interference terms
between transitions with different spin projections of the
struck �. Neglecting the spin dependence of the transition
probability p̄� → π1π2, we can replace |Mπ1π2;p̄�|2 by its
averaged value over the third spin components of p̄ and
�, |Mπ1π2;p̄�|2. This allows us to simplify Eq. (16) to the
following form:

∣∣M (0)
π1π2�R ;p̄d

∣∣2 = 2E�R
md

E�

(2π )3|φ�−�(k)|2 ∣∣Mπ1π2;p̄�

∣∣2
,

(17)

where the deuteron-spin-averaged modulus squared of the
�-� wave function,

|φ�−�(k)|2 ≡ 1

3

∑
λd ,λ�R

,λ�

∣∣φλd

�−�

(
k; λ�R

, λ�

)∣∣2
, (18)

describes the momentum distribution of �R in the �-�
configuration. It is normalized as∫

d3k|φ�-�(k)|2 = P�-�. (19)

Substituting Eq. (17) in Eq. (15) we have

dσ = (2π )4δ(4)(p1 + p2 + p�R
− pp̄ − pd )

4plabE�

|φ�-�(k)|2

× ∣∣Mπ1π2;p̄�

∣∣2 d3p1

(2π )32E1

d3p2

(2π )32E2
d3p�R

. (20)
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This equation can be further simplified by using the elemen-
tary differential cross section

dσp̄�→π1π2 = (2π )4δ(4)(p1 + p2 − pp̄ − p�)

4Ip̄�

∣∣Mπ1π2;p̄�

∣∣2

× d3p1

(2π )32E1

d3p2

(2π )32E2
, (21)

where

Ip̄� =
√

(pp̄p�)2 − m2
p̄m̃2

� (22)

is the Möller flux factor,

pp̄ = (Ep̄, 0, 0, plab) (23)

p� = pd − p�R
= (E�, k) (24)

are the four-momenta of the incoming antiproton and of the
struck �, respectively, and

m̃2
� = p2

� = (E�)2 − k2 (25)

is the (off-shell) invariant mass of the struck �.
Thus, using Eq. (21) we can rewrite Eq. (20) as

dσ = Ep̄

plab
vp̄�|φ�-�(k)|2dσp̄�→π1π2d

3p�R
, (26)

where

vp̄� = Ip̄�

Ep̄E�

(27)

is the relative velocity of the antiproton and the struck �.
Using the invariant

t = (p1 − pp̄ )2 (28)

we obtain

d4σ

d3p�R
dt

= Ep̄

plab
vp̄�|φ�-�(k)|2 dσp̄�→π1π2 (s ′, t )

dt
, (29)

where s ′ = (pp̄ + pd − p�R
)2. The kinematic prefactor in

Eq. (29) can be explicitly calculated as follows:

Ep̄

plab
vp̄� = Ip̄�

plabE�

=
√

(Ep̄E� − plabkz)2 − m2
p̄m̃2

�

plabE�

, (30)

where Ep̄ =
√

m2
p̄ + p2

lab, E� = md − E�R
, E�R

=√
m2

�R
+ p2

�R
. We recall that k = − p�R

in Eqs. (29),
(30) since these equations are obtained treating the deuteron
nonrelativistically.

One can formally express the kinematic prefactors in
Eq. (29) in terms of the light cone variable

α = E�R
− pz

�R

md/2
, (31)

as defined in the deuteron rest frame. Hence, α/2 is the
fraction of deuteron momentum carried by �R in the infinite
momentum frame (where �R moves fast in negative z direc-
tion). We have also

2 − α = E� − kz

md/2
. (32)

In the limit of very high beam momenta such that plab � Ep̄

one can neglect masses in the Möller flux factor Eq. (22):

Ip̄� � pp̄p� � plab(E� − kz) = plab
md

2
(2 − α). (33)

This leads to the relative velocity

vp̄� � md/2

E�

(2 − α). (34)

Using Eq. (34) we can rewrite the differential cross section
(29) as

d4σ

d3p�R
dt

= md/2

E�

(2 − α)|φ�−�(k)|2 dσp̄�→π1π2 (s ′, t )

dt
,

(35)

where

s ′ = (pp̄ + pd − p�R
)2

= (pp̄ + p�)2 � 2pp̄p� � plab md (2 − α). (36)

If we define the invariant energy squared for the antiproton
collision with a nucleon at rest

s ≡ (pp̄ + pN )2 = 2Ep̄mN + 2m2
N, (37)

then we have

s ′ � s(2 − α). (38)

We stress that Eq. (35) is simply the high-energy limit of
Eq. (29).

The problematic feature of the derivation given above
is that the contribution of the baryon-antibaryon pairs is
included in the NR wave function in an uncontrolled way.
This results in the finite value of |φ�−�(k)|2 at α > 2. This
problem can be solved within the LC formalism. It is clear that
the baryon-antibaryon pairs, i.e., vacuum fluctuations, should
not contribute to the LC wave function since it is evaluated in
the frame where the deuteron is fast, and thus the time scale
of its internal dynamics is slowed down [12,13].

Thus, in the LC formalism one should evaluate the graph
of Fig. 1 within the noncovariant perturbation theory (time
from left to right) and perform the transformation of the result
in the infinite momentum frame where another graph (not
shown) with the emission of an antidelta from the antiproton
disappears. The calculation is almost identical to that for
photon absorption in Ref. [12]. Thus, we will not repeat it
here and only show the final result:

E�R

d4σ

d3p�R
dt

=
∣∣∣∣∣ �d→��(pd, p�R

)

(2 − α)
(
m2

d − M2
�,�R

)
∣∣∣∣∣
2

× (2 − α)

(2π )3

dσp̄�→π1π2 (s ′, t )

dt
. (39)

Here, M2
�,�R

is the invariant mass of the intermediate �-�
state expressed as

M2
�,�R

= 4
(
m2

� + p2
�Rt

)
α(2 − α)

= 4
(
m2

� + k2), (40)
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where on the last step we inserted a new variable conveniently
used in the LC formalism (cf. [12,13] and Appendix A), the
internal momentum k defined by relations

α = 1 + kz√
m2

� + k2
, kt = − p�Rt , (41)

where α is related to the residual � momentum via Eq. (31).
Using Eqs. (A13), (A19) of Appendix A, the following ex-
pression for the differential cross section can be obtained:

E�R

d4σ

d3p�R
dt

= md/2

md − m�

|φ�−�(k)|2
2 − α

√
m2

� + k2

× dσp̄�→π1π2 (s ′, t )

dt
, (42)

where m� is the physical mass of the residual �.

III. WAVE FUNCTION OF THE �-� SYSTEM

The �-� component of the deuteron wave function is a
superposition of the 3S1,

3D1,
7D1, and 7G1 states. In our

calculations we applied the wave functions of the np and �-�
systems according to the coupled-channel folded-diagram
potential (CCF) model of Ref. [4]. This model has been pri-
marily developed for the description of many-body systems as
the resulting two-body potential is energy independent, which
substantially simplifies calculations. The two-body observ-
ables (NN phase shifts, deuteron properties) are reproduced
with an accuracy comparable to that of the (energy-dependent)
full Bonn potential [16]. Indeed, the analytic expressions for
the meson-baryon vertex functions are identical to those of the
Bonn potential. The numerical values of the meson-nucleon
coupling constants and cutoff masses are, however, readjusted
by a best fit to the empirical NN phase shifts. The CCF model
is defined in momentum space and thus we start directly from
the momentum space representation.

The �-� wave function in momentum space, Eq. (12), can
be represented in the LS basis as follows:

φ
λd

�−�

(
k; λ�R

, λ�

) =
∑
LS

(−i)LuLS (k)
∑
Mλ

〈1λd |LM; Sλ〉

× YLM (k̂) χSλ

(
λ�R

, λ�

)
. (43)

Using the orthogonality of the spin wave functions,∑
λ�R

λ�

χSλ

(
λ�R

, λ�

)
χ∗

S ′λ′
(
λ�R

, λ�

) = δSS ′δλλ′, (44)

and the properties of the spherical functions and Clebsch-
Gordan coefficients (cf. [17]) leads after some algebra to
the following expression for the c.m. momentum distribution,
Eq. (18):

|φ�−�(k)|2 = 1

4π

∑
LS

|uLS (k)|2. (45)

The probabilities of the different LS components are

P LS
�-� =

∫ +∞

0
dk k2 |uLS (k)|2,

∑
LS

P LS
�-� = P�-�. (46)

FIG. 2. The wave functions of the �-� system in (a) momentum
and (b) configuration space.

In the CCF model, the probabilities of the 3S1,
3D1,

7D1, and
7G1 �-� states are, respectively: P 01

�-� = 0.33%, P 21
�-� =

0.03%, P 23
�-� = 0.97%, and P 43

�-� = 0.02%. The total prob-
ability of the �-� states is P�-� = 1.35%.

For the purpose of comparison with other potential mod-
els we have also calculated the radial wave functions in
configuration space, which are obtained by a Fourier-Bessel
transformation

uLS (r )

r
=

√
2

π

∫ ∞

0
dkk2jL(kr )uLS (k). (47)

Figure 2 displays the partial wave functions of the �-�
system in momentum and coordinate representations.3 All LS
partial waves in momentum space are maximal around the ab-
solute value k � 0.4–0.6 GeV. The resulting c.m. momentum
distribution is plotted in Fig. 3 by the solid line. The result of
the coupled-channel model calculation is by far different from
the simple large-distance asymptotic form

φ�-�(k) = (κP�-�)1/2/π

κ2 + k2
, (48)

where the range parameter is κ = √
2μEb with the re-

duced mass μ = m�m�R
/(m� + m�R

) and the binding en-
ergy Eb = m� + m�R

− md . Note that, owing to the large
binding energy, the c.m. momentum distribution of the �-�
system is much harder than that of the ordinary deuteron.

The shapes of the r-space wave functions are similar to
those of other potential models with � degrees of freedom
(cf. Fig. 2 in Ref. [1], Fig. 10 in Ref. [18], and Fig. 14 in
Ref. [19]). In particular, the wave function of the dominating
7D1 �-� component is quite close to that of Ref. [18]. There
are some moderate differences for other components, e.g., in
the CCF model the wave function of the 3S1 �-� component
has a node at r � 0.9 fm, which is a feature of the particular
coupled-channel model realization (see, however, Ref. [20]
where a node in the 3S1 �-� component at r � 0.5 fm has
been reported too). Our feeling is that the differences in the

3The k-space partial waves behave as uLS (k) ∝ kL in the limit
k → 0. The r-space partial waves satisfy uLS (r ) ∝ rL+1 in the limit
r → 0.
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FIG. 3. Momentum distribution of the struck � in the �-� c.m.
frame. Solid line: CCF model, Eq. (45). Long-dashed line: large-
distance asymptotic solution, Eq. (48), obtained by setting m� =
m�R

= 1.232 GeV. Both lines are multiplied by an extra factor of
1/2, which is the isospin fraction of the �++-�− component. The
ordinary deuteron c.m. momentum distribution multiplied by a factor
of 10−6 is shown by the short-dashed line.

momentum distribution Eq. (45) will be quite small between
the various models. The main difference between the models
and, thus, the major uncertainty concerns the total probability
of the �-� configuration, which varies between ∼0.3% and
∼1%. In some sense the CCF model applied in this work rep-
resents the upper limit on the �-� admixture in the deuteron.

IV. BACKGROUND PROCESSES

A. Pion charge exchange

The antiproton may annihilate with the neutron producing
a π−π0 pair. The neutral pion may then experience inelastic
CEX scattering on the proton producing a π−�++ pair. This
CEX background process is depicted in Fig. 4. The amplitude
of Fig. 4 can be calculated starting from the S matrix.

However, a more economic way to derive it is to use the
vertex function �d→np(pd, pp ), which is defined similar to

FIG. 4. The background processes due to inelastic CEX of the
neutral pion on the proton.

Eq. (14):

i�d→np(pd, pp )

p2
n − m2

N + iε
=

(
2EpEd

En

)1/2

(2π )3/2φ(k), (49)

where φ(k) is the deuteron wave function in momentum
space (spin indices are implicit), k = −pp + pd/2, Ep =√

p2
p + m2

N , En = Ed − Ep. The invariant matrix element of
Fig. 4(a) can be written as

iM
(a)
π1π2�R ;p̄d =

∫
d4pp

(2π )4
iMπp(p2, p�; p2′ , pp )

× i

p2
p − m2

N + iε

i

p2
2′ − m2

π + iε

× iMp̄n(p1, p2′ ; pp̄, pn)
i

p2
n − m2

N + iε

×�d→np(pd, pp ). (50)

The integration contour over dp0
p can be closed in the lower

part of the complex plane where only the pole of the proton
propagator at p0

p = Ep − iε contributes, such that

∫
dp0

p

2π

i(
p0

p

)2 − E2
p + iε

= 1

2Ep

. (51)

Hence we obtain

iM
(a)
π1π2�R ;p̄d =

∫
d3pp

(2π )3/2

(
Ed

2EpEn

)1/2

× iMπp(p2, p�; p2′ , pp )
i

p2
2′ − m2

π + iε

× iMp̄n(p1, p2′ ; pp̄, pn)φ(k). (52)

A kinematically interesting scenario for the signal process
of antiproton annihilation on the �-� state emerges in the
case that both t = (p1 − pp̄ )2 and u = (p2 − pp̄ )2 (Fig. 1)
are large, i.e., t ∼ u ∼ −s/2, since one has to resolve a short
time interval of the deuteron existing in a �-� state. Thus the
p̄n → π−π0 amplitude is hard and can be factorized out in
Eq. (52) by neglecting the neutron Fermi motion. Such regime
corresponds to both pions having momenta with large positive
z components. Hence the momentum transfer q = pp − p� in
the CEX process π0p → π−�++ is small, q2  p2

2t . Under
these assumptions the inverse propagator of the pion can be
simplified:

p2
2′ − m2

π + iε = (p2 − q )2 − m2
π + iε

= 2pz
2

(
qz − q0 E2

pz
2

+ p2tqt

pz
2

+ q2

2pz
2

+ iε

)

= 2pz
2

(
pz

p + �0
π + iε

)
, (53)

054611-6



THEORETICAL STUDY OF THE �++-�− … PHYSICAL REVIEW C 98, 054611 (2018)

where

�0
π = −pz

� + (E� − mN )
E2

pz
2

+ p2t (ppt − p�t )

pz
2

. (54)

In Eq. (54) we neglected the term q2/2pz
2 and the Fermi

motion of the proton.
In the calculation of the pion CEX amplitude

Mπp(p2, p�; p2′ , pp ) we put the four-momentum p2′ of
the intermediate pion on mass shell by setting pz

p = −�0
π for

fixed proton transverse momentum ppt . After this setting the
pion CEX amplitude becomes independent of the longitudinal
momentum of the proton. This allows us to separate the
integral over dpz

p in Eq. (52) with the inverse pion propagator
of Eq. (53):

Iz =
∫

dpz
p

φ(−pp )

pz
p + �0

π + iε
, (55)

as given in the deuteron rest frame. The deuteron wave
function in momentum space can be expressed as follows (cf.
[15]):

φ(k) = 1√
4π

(
u(k) + w(k)√

8
S(k)

)
χM (56)

with the spin tensor operator

S(k) = 3(σ pk)(σ nk)

k2
− σ pσ n, (57)

and χM being the eigenfunction of the spin = 1 state with
spin projection M = 0,±1. We will apply the analytical
parametrization of the S- and D-wave components in the
spirit of the Paris [21] model, however, with the values of
parameters adjusted according to the CCF model [4]:

u(k) =
∑

j

cj

k2 + m2
j

, w(k) =
∑

j

dj

k2 + m2
j

, (58)

with additional conditions
∑

j cj = 0 and
∑

j dj =∑
j dj /m2

j = ∑
j djm

2
j = 0. These conditions guarantee

the decrease of both wave functions ∝1/k4 at large k and
w(k) ∝ k2 at small k. The latter guarantees the absence of a
pole at k = 0 in the product w(k)S(k).

The integration contour over dpz
p in Eq. (55) can be

closed in the upper part of the complex plane where only the
poles of the wave function at pz

p = imjt , mjt =
√

m2
j + p2

pt

contribute. This leads to the following expression for the
longitudinal momentum integral:

Iz = 1√
4π

∑
j

π

mjt

(
�0

π + imjt

)φM
j (−pp ), (59)

where

φM
j (−pp ) =

(
cj + dj√

8
S(−pp )

)
χM (60)

with pp = (ppt , imjt ). Using Eq. (59), after some alge-
bra Eq. (52) can finally be transformed to the following

FIG. 5. The background process initiated by antiproton annihila-
tion on the neutron into three pions.

expression:

M
(a)
π1π2�R ;p̄d = −m

1/2
d Mp̄n(p1, pp̄ + pn − p1; pp̄, pn)

16πmNpz
2

×
∫

d2pptMπp(p2, p�; p2 + p� − pp, pp )

×
∑

j

φM
j (−ppt ,−imjt )

mjt

(
�0

π + imjt

) , (61)

where pn = (mN, 0) and pp = (
√

m2
N + p2

pt + (�0
π )2, ppt ,

−�0
π ) are the neutron and proton four-momenta in the el-

ementary matrix elements. Note that the summation over
spin indices of intermediate proton and neutron is implicitly
assumed in Eq. (61).

B. Three-pion annihilation

Figure 5 shows another possible background channel
due to the two-step process p̄n → π−π−π+, π+p → �++.
Similar to Eq. (52), the invariant matrix element of Fig. 5 can
be expressed as

iM
(3π )
π1π2�R ;p̄d =

∫
d3pp

(2π )3/2

(
Ed

2EpEn

)1/2

iMπp(p�; p3, pp)

× i

p2
3 − m2

π + iε
iMp̄n(p1, p2, p3; pp̄, pn)φ(k),

(62)

where the intermediate proton is put on mass shell, i.e.,
p0

p = Ep =
√

p2
p + m2

N , p3 = p� − pp, En = Ed − Ep, and
k = −pp + pd/2.

Since all three particles in the πN� vertex have small
momenta, the simplification of the pion propagator in Eq. (62)
by neglecting proton Fermi motion in the spirit of Eq. (53) is
generally impossible. Thus, we simplified Eq. (62) by only
replacing proton and neutron energies in the denominator by
the nucleon mass. The resulting expression in the deuteron
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rest frame is

M
(3π )
π1π2�R ;p̄d = − m

1/2
d

4π3/2mN

∫
d2ppt

∫ +∞

−∞
dpz

p

Mπp(p�; p3, pp )Mp̄n(p1, p2, p3; pp̄, pn)φ(−pp )

p2
3 − m2

π + iε
. (63)

At fixed proton transverse momentum ppt , the pion propaga-
tor may have up to two poles at pz

p = �1 and pz
p = �2 with

�1 � �2. The poles are given by the zeros of the function

F (pp ) = p2
3 − m2

π = (p� − pp )2 − m2
π

= m2
� + m2

N − m2
π − 2E�Ep + 2p�pp. (64)

The calculation of the poles �1,2 is described in Appendix B.
In order to avoid numerical problems related to the poles,
we added a small artificial width to the pion. Thus, we
replaced in Eq. (63) ε → mπ�art

π with �art
π ∼ 10 MeV. This

allows us to compute the three-dimensional integral over the
proton momentum in the usual way. To achieve a smooth
dependence of the matrix element on the momentum of the �,
the numerical integration on the proton transverse momentum
has been performed separately in the subregions with and
without pion poles, while the integration over dpz

p has been
performed separately in the intervals pz

p < �1, �1 < pz
p <

�2, and �2 < pz
p. The moderate influence of the choice of

the artificial pion width on the results is displayed in Fig. 10
below.

One note is in order here. For simplicity, we perform
the background calculations using the NR description of
the deuteron. Since the ordinary deuteron wave function in
momentum space is quite narrow (cf. Fig. 3) the NR ap-
proximation should be indeed reasonable in evaluating mo-
mentum space integrals like in Eqs. (61), (62), provided that
the elementary amplitudes do not strongly grow in certain
regions of momentum space. For example, in the case of pion
inelastic CEX, the π0p → π−�++ amplitude drops quickly
with transverse momentum transfer and, thus, the integration
over proton transverse momentum in Eq. (61) is unprob-
lematic. However, the p̄n → π−π−π+ amplitude Mp̄n(s ′)
extracted from the fit to the available experimental data (see
Appendix C 4) strongly grows with decreasing s ′ = (pp̄ +
pd − pp )2. This makes the integral in Eq. (62) sensitive to
the lower limit of pz

p. Hence, in the spirit of the LC approach,
we have restricted the longitudinal proton momentum integral
by the condition (Ep − pz

p )/md < 1.

V. NUMERICAL RESULTS

The differential cross section of the background processes
is expressed by Eq. (15) where one has to replace M (0) by
M (a) + M (b) for the pion CEX background [see Eq. (61)
and the same equation with interchange p1 ↔ p2 for M (b)]
or by M (3π ) [see Eq. (63) for the three-pion annihilation
background]. Interference between signal and background
processes is neglected. The calculation of the differential cross

section4 E�d4σ/d3p�dt for the background is numerically
exhaustive, since it requires integration over pion azimuthal
angle. Thus we have calculated the following quantity:

E�

d5σ

d3p�d�π

=
∣∣Mπ1π2�;p̄d

∣∣2
p2

1

32(2π )5plabmdκ
, (65)

where �π is the solid angle defining the direction of the
momentum p1 in the deuteron rest frame, κ = |p1E2 + (p1 −
p̃ · p1/p1)E1|, p̃ = pp̄ − p�. In Eq. (65), |Mπ1π2�;p̄d |2 should
be replaced by the corresponding background or signal ex-
pression. For the signal, Eq. (17) is applied in the case of the
NR description, while in the case of the LC description we
have

∣∣M (0)
π1π2�;p̄d

∣∣2 = 2
(
m2

� + k2)1/2
md

(md − m�)(2 − α)2
(2π )3|φ�−�(k)|2

× ∣∣Mπ1π2;p̄�S

∣∣2
. (66)

All signal cross sections shown on the figures below include
an extra factor of 1/2, which is the isospin fraction of the
�−-�++ component.

Figure 6 shows the differential p̄d → π−π−�++ cross
sections calculated at 10 GeV/c beam momentum. The cross
sections are plotted in the t interval where both pions have
z components of their momenta larger than 1 GeV/c. On
one hand, this condition is needed in order to ensure the
softness of the pion CEX (otherwise our calculation becomes
inapplicable). On the other hand, the most interesting case
of hard p̄�− → π−π− interaction, i.e., when �c.m. � 90◦
and both pions have momenta with z components close to
plab/2, is fully covered. We have considered the representative
cases of the � at rest and of the � at 0.5 GeV/c momentum,
emitted at polar angles �� = 0◦, 90◦, and 180◦. In the case
of �� = 90◦ the cross section also depends on the azimuthal
angle between π and �.

At zero momentum of the residual � resonance, the LC
calculation produces much larger signal cross section than the
NR calculation does. This can be traced back to the struck
� momentum distribution in the �-� c.m. frame (Fig. 3). In
the NR calculation, the momentum k of the struck � is zero,
while in the LC calculation kz = 0.4 GeV/c corresponding
to α = 1.3 for the residual � at rest. When the residual �

moves transversely to the beam direction with momentum
0.5 GeV/c, the difference between LC and NR calculations
is practically invisible. If the residual � moves in positive
or negative z direction with 0.5 GeV/c momentum, then the
intrinsic momentum is kz = −0.14 GeV/c or 3.77 GeV/c,

4In this section we will denote the residual delta as “�” dropping
the lower index “R” for brevity. The struck delta will be denoted as
“�S”.
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FIG. 6. Differential cross section of the reaction p̄d →
π−π−�++ at plab = 10 GeV/c as a function of the Mandelstam t ,
which is defined as the four-momentum transfer squared between
one of the outgoing pions (first pion) and the antiproton [Eq. (28)].
The solid, dashed, dotted, and dot-dashed lines correspond to the LC
signal, NR signal, CEX background, and 3π background, respec-
tively. Different panels display the results for the different values of
the momentum p� and the polar angle �� of the � isobar and of the
relative azimuthal angle φπ� = φπ − φ� between first pion and �.
All quantities refer to the deuteron rest frame. The residual �++ is
assumed to be on the mass shell.

respectively, i.e., in regions where the struck � momentum
distribution is strongly suppressed, and thus the LC calcula-
tion predicts much smaller signal cross section as compared
to the NR calculation.

The characteristic shape of the �-� momentum distribu-
tion (Fig. 3) is certainly of primary interest. One expects that
it should be visible in the α distributions of the residual �:

αβ
d5σ

dαdβdφπ�p�t dp�t dp
2
�

=
∣∣Mπ1π2�;p̄d

∣∣2
p1tA

(
p2

�

)
16(2π )4plabmdκt

,

(67)

where

β = 2
(
E1 + pz

1

)
Ep̄ + md − E� + plab − pz

�

(68)

is the LC momentum fraction of one of the outgoing pions
(first pion), and φπ� = φπ − φ� is the relative azimuthal
angle between the first pion and the �. The quantity

κt = 2

∣∣∣∣p1t

E2 + pz
2

E1 + pz
1

+ p1t + p�t · p1t

p1t

∣∣∣∣ (69)

originates from expressing the phase space volume of the
outgoing particles in terms of the LC momentum fractions and
transverse momenta.

To take into account the possible off-shellness of the resid-
ual � we have also introduced in Eq. (67) the spectral function
of the � resonance

A(
p2

�

) =
√

p2
���/π(

p2
� − m2

�

)2 + m2
��2

�

, (70)

normalized as ∫ +∞

(mπ +mN )2
A(M2)dM2 = 1. (71)

The off-shell background matrix elements are obtained
in the usual way, i.e., by the replacements m� →

√
p2

�.
The expressions Eqs. (17), (66) for the moduli squared of the
signal matrix elements and the relation Eq. (41) between the
LC momentum fraction α and the internal momentum k are
not modified due to the �++ off-shellness. In the numerical
results below we have set the residual �++ on its mass shell.

Figure 7 displays α distributions of the residual � at
zero transverse momentum for β = 0.5, 1, and 1.5 for beam
momentum plab = 10 GeV/c. Indeed, the shape of the α
dependence of the signal cross section reflects the shape of the
momentum dependence of the �-� configuration.5 The latter
has a maximum at k = 0.41 GeV/c. In the case of p�t = 0
this maximum is reached at α = 1.80 and 0.95 (NR), or at
α = 1.32 and 0.68 (LC). Thus, due to the presence of the
internal-momentum-dependent denominator in Eq. (41) the
strength of the α distribution is shifted to smaller values of
α (i.e., larger positive pz

�) in the case of LC calculation as
compared to the NR one. Therefore, due to relativistic effects,
the signal should be clearly visible at intermediate values of
α because the background quickly decreases towards small α.
For β = 1.5 the signal is more pronounced. This can be under-
stood by using the approximate relation β = 1 + cos(�c.m.).
Thus, β = 1 corresponds to �c.m. = 90◦ while β = 1.5 corre-
sponds to �c.m. = 60◦. In the latter case, as shown in Fig. 18
of Appendix C 2, the elementary p̄�− → π−π− differential
cross section grows more slowly with decreasing s ′ at small
s ′. [In order to avoid misunderstanding, we would like to point
out that s in the abscissa of Fig. 18 has the meaning of s ′ in

5The matrix elements for β = 0.5 and β = 1.5 are identical due to
two identical pions in the final state. Thus, in these two cases the
cross sections differ only due to the factor κt of Eq. (69).
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FIG. 7. Differential cross section of the reaction p̄d →
π−π−�++ at plab = 10 GeV/c as a function of the LC momentum
fraction α of the residual � [Eq. (31)]. The � transverse momentum
is fixed to zero. The LC momentum fraction of the first pion (a)
β = 0.5, (b) β = 1, and (c) β = 1.5. Notations for lines are the same
as in Fig. 6.

Eq. (38).] As a result, the distortion of the α dependence of
the signal due to the elementary p̄�− → π−π− differential
cross section growing towards α → 2 is less pronounced for
β = 1.5 than for β = 1. Hence, we set β = 1.5 as the default
case.

At finite transverse momentum of the residual �, the range
of α where the struck � is still timelike becomes narrower.
This is demonstrated in Fig. 8. At the limiting values of α
the signal cross section diverges because the density matrix
of a spin-3/2 particle [the numerator in Eq. (C7)] becomes
singular for m� → 0. In other words, our calculation becomes
unreliable for far-offshell struck �. Below we focus on the
kinematics with p�t = 0.

Figure 9 compares the α distributions at beam momenta
plab = 10, 12, and 15 GeV/c on the linear scale. Both sig-
nal and background cross sections slightly decrease with
increasing plab. However, the background decreases faster and
becomes smoother at higher beam momenta. Hence, the peak
in the signal cross section becomes more pronounced with
increasing plab. We also observe a strong influence of the
underlying model for the �-� wave function on the results:
the LC calculation with the 3S1 wave function produces an α
distribution enhanced at larger α values. This is related to the
larger high-momentum tail of the 3S1 wave function, as seen
from Fig. 3. The NR �-� wave function, as compared to the
LC one, leads to the signal α distribution shifted to larger α
values, but its shape is still clearly distinguishable from the
background.

FIG. 8. Same as in Fig. 7(c) but for � transverse momentum of
0.4 GeV/c. The polar angle between the first pion and the residual �

is φπ� = 180◦. The range of α within which the signal calculations
are shown is restricted by the kinematic region where the struck � is
timelike.

FIG. 9. Differential cross section of the reaction p̄d →
π−π−�++ vs α of the residual � for (a) plab = 10 GeV/c, (b)
12 GeV/c, and (c) 15 GeV/c. Calculations are done with p�t =
0, β = 1.5. The dot-dot-dashed (green) line shows the LC signal
calculated with the large-distance asymptotic form of the �-� wave
function, Eq. (48). The notations for other lines are the same as in
Fig. 6.
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FIG. 10. The three-pion annihilation background cross section as
a function of α of the residual � for plab = 15 GeV/c at the kine-
matic condition p�t = 0, β = 1.5. The curves show the calculations
with different choice of the artificial pion width as indicated.

As discussed in Sec. IV B, in the calculation of the three-
pion background we had to introduce a finite value for the
width of the intermediate π+. Figure 10 displays the influence
of the choice of the pion width in our calculations. The height
of the peak close to α = 2 depends on the choice of the pion
width. However, the background in the range α < 1.7 is stable
against variation of �π .

We have performed a Monte Carlo sampling of events in
the three-body phase space of outgoing π1, π2,� according
to the probability

dP ∝ ∣∣Mπ1π2�;p̄d

∣∣2
d�3(pp̄ + pd ; p1, p2, p�)A(

p2
�

)
dp2

�,

(72)

where

d�3(pp̄ + pd ; p1, p2, p�)

= δ(4)(p1 + p2 + p� − pp̄ − pd )

× d3p�

(2π )32E�

d3p1

(2π )32E1

d3p2

(2π )32E2
(73)

is the three-body phase space volume element. Figure 11
shows the α distributions of simulated p̄d → π−π−�++
signal and background events for small transverse momentum
of the residual �++. As we see, the sampled and analytical
distributions practically coincide. Some deviation of the CEX
background from the analytical result is due to its strong
sensitivity to the transverse momentum of � at α � 2. (In
the simulations we included the cut p�t < 1.9 GeV/c for
the CEX background). Note that the absolute values of the
differential cross section are not accessible from Fig. 11
since the sampled distributions are normalized to unity after
integration over α and p�t .

FIG. 11. Histograms: probability distributions of the residual
�++ in α at plab = 15 GeV/c in the kinematics with p2

� = m2
�;

p�t < 0.1 GeV/c; β = 1.4−1.6; pz
1, p

z
2 > 1 GeV/c. Smooth lines:

the analytical results of Fig. 9(c) multiplied by constant factors for
appropriate normalization.

VI. SUMMARY AND CONCLUSIONS

We have theoretically studied the effect of the �−-�++
configuration of the deuteron on the differential cross sections
of the exclusive reaction p̄d → π−π−�++. For the analysis
we used the ordinary deuteron wave functions and the wave
functions of the �-� configuration according to the CCF
model of Ref. [4]. The signal cross section is proportional
to the wave function squared of the �-� configuration in
momentum space and the matrix element squared of the
p̄�− → π−π− process. The latter has been calculated within
the N,� exchange model. Two types of possible background
sources due to the following two-step processes have been
considered: (i) p̄n → π−π0, π0p → π−�++ and (ii) p̄n →
π−π−π+, π+p → �++. The discussion was focused on
kinematics with large momentum transfer between p̄ and both
π− mesons.

We have found that the pion CEX background (i) is im-
portant for forward production of �++ [cf. Fig. 6(d)]. In this
case the �++ may experience large longitudinal momentum
transfer from the scattered pion. In other situations the CEX
background is strongly suppressed relative to the three-pion
annihilation background (ii). The latter background grows
strongly for backward �++, because in this case the c.m.
energy of the colliding p̄n system is small, which leads to
a large p̄n → π−π−π+ amplitude.

Owing to the large binding of the �-� configuration in
the deuteron, the momentum distribution becomes signifi-
cantly harder than in the ordinary deuteron. This leads to
important relativistic corrections, which have been taken into
account in this work within the LC theory. Moreover, the
coupled-channel models of the deuteron with strong tensor
interaction predict the dominance of the 7D1 �-� state, which
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produces a pronounced maximum at about 0.5 GeV/c c.m.
momentum. We have demonstrated that the combination of
LC and coupled-channel effects leads to a specific shape of the
α distribution of the residual �++ peaking at α � 1.5−1.6 for
zero transverse momentum, which manifests the maximum
in the �-� c.m. momentum distribution. This behavior of
the signal cross section is clearly distinguishable from the
three-pion annihilation background smoothly increasing with
α. We have also found that there is a broad kinematic range of
residual �++ (α = 1.2−1.7, p�t < 0.4 GeV/c), where the
one-step signal process dominates over the two-step back-
ground processes. Even if the �-� probability would be
reduced by a factor of 5 down to ∼0.3%, the α distribution
of the � at low transverse momentum [Fig. 9(c)] would still
allow us to see the contribution of the p̄ annihilation on the
�-� component. These findings can be used not only to test
the presence of the �-� configuration in the deuteron, but also
to explore its c.m. momentum distribution.

On the basis of our model we have developed a Monte
Carlo event generator, which can be applied for detailed
feasibility studies with the PANDA detector system. The
results of these studies will be published elsewhere. Note that
a complementary test of the 7D1 �-� state dominance would
be possible with a polarized deuteron target at PANDA.

Finally, we note that the previous experimental analyses
quoted in Sec. I do not take into account the LC wave function,
and thus their conclusions on limits to the probability of a
�-� configuration need to be taken with caution.
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APPENDIX A: RELATION BETWEEN THE LC AND NR
WAVE FUNCTIONS OF THE �-� SYSTEM

Consider the electromagnetic form factor of the deuteron
viewed as a �-� state, Fig. 12. In the kinematics of high-

FIG. 12. Lowest-order contribution to the absorption amplitude
of a photon on the deuteron. q, pd and p′

d are the four-momenta of
the photon, initial, and final deuteron, respectively. p1, p2 and p′

1 are
the four-momenta of the intermediate �’s. Time axis is from left to
right.

energy ed scattering in the c.m. frame of colliding particles
the four-momentum transfer from electron to deuteron can be
written as follows (see equation on p. 225 of Ref. [13], note
opposite direction of z axis):

q =
(

2ν + q2

4P
, q t ,

2ν − q2

4P

)
, (A1)

where P → +∞ is the electron momentum directed along
the z axis (correspondingly, pz

d = −P ) and ν = pdq. At very
large P the four-momentum transfer becomes purely trans-
verse. This allows us to consider only the graph of Fig. 12,
since other graphs contain pair production and disappear for
qz = 0. The matrix element of Fig. 12 can be calculated
within the noncovariant perturbation theory rules [22], which
give the following expression:

M (q t ) = − �2
d→��

∫
d3p2

(2π )3

Mγ ∗ (q; p1)

2E p2
2E p1

2E p′
1

× 1

p0
d − E p2

− E p1
+ iε

1

p0′
d − E p2

− E p′
1
+ iε

,

(A2)

where E pi
=

√
m2

� + p2
i , i = 1, 2, 1′ are the energies of the

intermediate �’s with three-momenta p1 = pd − p2, p′
1 =

q + pd − p2, and Mγ ∗ (q; p1) is the invariant matrix element
of the electromagnetic transition, γ� → � (the spin indices
are implicit). For simplicity, a constant vertex factor �d→��

is assumed. Introducing the ratios

αi = −2pz
i

P
, i = 1, 2, 1′, (A3)

the particle energies can be expressed as

E pi
= |αi |P

2
+ m2

i + p2
it

|αi |P + O(1/P 3). (A4)

Using the relations α1 + α2 = α1′ + α2 = 2, p1t = p1′t −
q t = − p2t , which follow from three-momentum conservation
at the vertices, and the relation

d3p2

E p2

= dα2d
2p2t

α2
, (A5)

the matrix element Eq. (A2) can be expressed as follows:

M (q t ) = − �2
d→��

∫ 2

0

dα2

2α2(2 − α2)2

∫
d2p2t

(2π )3

2

m2
d − M2

1,2

× 2Mγ ∗ (q t ; α1, p1t )

m2
d − M2

1′,2
, (A6)

where

M2
1,2 = 4

(
m2

� + p2
2t

)
α2(2 − α2)

, (A7)

M2
1′,2 = 2

(
m2

� + p2
2t

)
α2

+ 2
(
m2

� + (q t − p2t )
2
)

2 − α2
− q2

t . (A8)
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Using the internal three-momenta k and k′ defined as

α2 = 1 + kz√
m2

� + k2
, kt = − p2t , (A9)

α2 = 1 + k′z√
m2

� + k′2
, k′

t = kt + 1

2
α2q t , (A10)

and the relation

dα2d
2p2t

α2(2 − α2)
= d3k√

m2
� + k2

(A11)

one can express Eq. (A6) in the form

M (q t ) = − �2
d→��

∫
d3k

(2π )3
√

m2
� + k2(2 − α2)

1

m2
d − M2

1,2

× 2Mγ ∗ (q t ; α1, kt )

m2
d − M2

1′,2
, (A12)

with M2
1,2 = 4(m2

� + k2) and M2
1′,2 = 4(m2

� + k′2). We can
now introduce the LC wave function of the �-� state defined
according to Ref. [13] (see Sec. 2.3.1 of Ref. [13], the vertex
function χ is replaced by i�d→�� in our notation):

ψ�-�(k) = i�d→��

M2
1,2 − m2

d

. (A13)

Then Eq. (A12) can be rewritten in the form

M (q t ) =
∫

d3k

(2π )3
√

m2
� + k2(2 − α2)

ψ�-�(k)ψ�-�(k′)

× 2Mγ ∗ (q t ; 2 − α2, kt ). (A14)

Note that in the chosen frame the matrix element (A14) is
the only contribution to the Lorentz-invariant matrix element
calculated within the Feynman rules because the graphs with
pair production disappear in this frame.

On the other hand, we can calculate the photoabsorption
amplitude in the NR approximation. In this case we choose
the frame, where both the initial and the final deuteron move
slowly, | pd |, | p′

d |  md , but the electron is fast. We start from
the S-matrix element corresponding to Fig. 12 (spin indices
are suppressed for brevity):

SNR =
∫

d3r1

∫
d3r2

∫
d3r ′

1

∫
d3r ′

2φ
∗
�−�,f (r ′

1, r ′
2)φ�−�,i

× (r1, r2)
1

V 2

∫
V d3p1

(2π )3

∫
V d3p2

(2π )3

∫
V d3p′

1

(2π )3

× e−i p1 r1−i p2 r2+i p′
1 r ′

1+i p2 r ′
2Sγ ∗ (q; p1), (A15)

where

Sγ ∗ (q; p1) = (2π )4δ(4)(p′
1 − p1 − q )

(2E1V 2E′
1V 2q0V )1/2

iMγ ∗ (q; p1). (A16)

Here E1 = p0
d − E p2

and E′
1 = p′0

d − E p2
are the energies of

the first � before and after γ ∗ absorption (the second � is put
on the mass shell).

By integrating out the c.m. motion [similar to Eq. (7) of
Sec. II] we obtain the usual transition S matrix in a factorized
form:

SNR = (2π )4δ(4)(p′
d − pd − q )(

2p0
dV 2p′0

d V 2q0V
)1/2 iMNR, (A17)

where the invariant matrix element is

MNR =
∫

d3p2

(
p0

dp
′0
d

E1E
′
1

)1/2

φ∗
�-�

(
p′

d

2
− p2

)

×φ�-�

(
pd

2
− p2

)
Mγ ∗ (q; pd − p2). (A18)

Note that one can obtain Eq. (A18) also by treating the graph
Fig. 12 as a Feynman diagram and then using the relation (14).

It follows from Eq. (2.22) of Ref. [13] (where one
should replace the nucleon mass by the � mass) that the
function ψ�-�(k)/(m2

� + k2)1/4 satisfies the nonrelativistic
Schrödinger equation for the �-� bound state with binding
energy 2m� − md and the potential corresponding to the
kernel of the Bethe-Salpeter-type equation. Thus the function
ψ�−�(k)/(m2

� + k2)1/4 should be proportional to the NR
wave function φ�-�(k). The proportionality factor can be
obtained by taking the limit q = 0 (forward ed scattering)
and assuming a very narrow wave function φ�-�(k) peaking at
k = 0. In this case the LC and NR expressions, i.e., Eqs. (A14)
and (A18) with pd = p′

d = 0, should coincide. This leads to
the following relation:

2ψ2
�-�(k)

(2π )3
(
m2

� + k2)1/2 = md

md − m�

φ2
�-�(k). (A19)

APPENDIX B: POLES OF THE PION PROPAGATOR

To determine the poles of the pion propagator in the three-
pion annihilation background (see Fig. 5) for fixed values of
the proton transverse momentum, let us consider the π+p →
�++ transition in the frame where the � has a momentum
with a large negative z component. In that frame, the four-
momenta of the �, pion, and proton are, respectively,

p� =
(

P + m2
�t

2P
, p�t ,−P

)
, (B1)

pπ =
(

Pαπ + m2
πt

2Pαπ

, pπt ,−Pαπ

)
, (B2)

pp =
(

Pαp + m2
pt

2Pαp

, ppt ,−Pαp

)
, (B3)

where the transverse masses are m�t =
√

p2
�t + m2

�, mπt =√
p2

πt + m2
π with pπt = p�t − ppt , and mpt =

√
p2

pt + m2
N ,

and P → +∞. απ and αp are the longitudinal-boost-invariant
momentum fractions of the � carried by the pion and proton,
respectively. They satisfy the condition απ + αp = 1. In the
laboratory frame the fractions can be expressed as

απ = Eπ − pz
π

E� − pz
�

, αp = Ep − pz
p

E� − pz
�

. (B4)
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Energy conservation can be expressed as

m2
πt

απ

+ m2
pt

αp

= m2
�t . (B5)

This equation can be easily solved with respect to αp:

αp = (A ±
√

A2 − B )/2, (B6)

where

A = m2
pt + m2

�t − m2
πt

m2
�t

, B = 4m2
pt

m2
�t

. (B7)

The fraction of the deuteron momentum carried by the proton
is then

α̃p = α̃�αp, (B8)

where in the deuteron rest frame

α̃p = Ep − pz
p

md/2
, α̃� = E� − pz

�

md/2
. (B9)

Thus the two poles of the pion propagator are given by

pz
p = �1,2 = m2

pt

mdα̃p

− mdα̃p

4
. (B10)

The �1 (�2) is obtained by choosing + (−) sign in Eq. (B6).

APPENDIX C: ELEMENTARY AMPLITUDES

1. N̄ N → ππ

The amplitude of antinucleon-nucleon annihilation into
two pions is described within the nucleon and � exchange
model as displayed in Fig. 13. For the πNN and πN�

interactions we apply the following Lagrangians:

LπNN = fπNN

mπ

ψ̄γ μγ 5τψ∂μπ , (C1)

LπN� = fπN�

mπ

ψ̄μTψ∂μπ + H.c., (C2)

where fπNN = 1.008, fπN� = 2.202 [23]. Here, T is the
isospin transition 1/2 → 3/2 operator (cf. Ref. [24]):

T τ�τN
=

∑
l=0,±1

〈
3

2
τ�

∣∣∣∣1

2
τN ; 1l

〉
t (l)∗, (C3)

with t (0) = (0, 0, 1), t (±1) = ∓ 1√
2
(1,±i, 0) being the eigen-

vectors of Î 2 and Î3 operators for I = 1 in Cartesian basis.
The invariant matrix elements of Figs. 13(a) and 13(c) are

M
(a)
N̄N

=
(

fπNNFπNN (t )

mπ

)2 I (a)
N̄N

√
�

t − m2
N + iε

× ū(−p2,−λ2)/k2(/q − mN )/k1u(p1, λ1), (C4)

M
(c)
N̄N

= −
(

fπN�FπN�

(
t, m2

�

)
mπ

)2 I (c)
N̄N

√
�

t − m2
� + iε

× ū(−p2,−λ2)(/q + m�)k2μk1νPμν (q )u(p1, λ1),

(C5)

FIG. 13. Feynman graphs included in the calculation of the
N̄2N1 → π2π1 amplitude. (a) and (b) contain the exchange of a
nucleon. (c) and (d) contain the exchange of a � isobar. The
four-momenta of the exchange particle are denoted as q and q ′,
respectively, in the t-channel (a), (c) and u-channel (b), (d) graphs,
where t = q2, u = q ′2.

where p1, λ1, and p2, λ2 are the four-momenta and spin
projections of the nucleon and antinucleon, respectively, and
k1, k2 are the four-momenta of the pions. The Dirac spinors
are normalized as ūp1,λ1up1,λ1 = −ū−p2,−λ2u−p2,−λ2 = 2mN .
In obtaining Eqs. (C4), (C5) we used the Dirac propagator
of the nucleon

iG(q ) = i(/q + mN )

q2 − m2
N + iε

, (C6)

and the Rarita-Schwinger propagator of the � isobar

iGμν (q ) = −i(/q + m�)

q2 − m2
� + iε

Pμν (q ), (C7)

where

Pμν (q ) = gμν − γ μγ ν

3
− 2qμqν

3m2
�

+ qμγ ν − qνγ μ

3m�

. (C8)

The isospin factors are expressed as

I (a)
N̄N

= (−1)1/2+τ2
∑

τN=±1/2

(t (l2 )∗ · τ )−τ2,τN
(t (l1 )∗ · τ )τN ,τ1 ,

(C9)

I (c)
N̄N

= (−1)1/2+τ2
∑

τ�=±1/2,±3/2

(t (l2 )∗ · T †)−τ2,τ�
(t (l1 )∗ · T )τ�,τ1 ,

(C10)

where l1, l2 = 0,±1 are the isospin projections of the pions,
and τ1, τ2 = ±1/2 are the isospin projections of nucleon
and antinucleon, respectively. The common factor (−1)1/2+τ2

originates from the definition of the physical antineutron
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TABLE I. Isospin factors in the nucleon and � exchange ampli-
tudes of Fig. 13.

Channel I (a)
N̄N

I (b)
N̄N

I (c)
N̄N

I (d )
N̄N

p̄p → π−π+ −2 0 −1/3 −1
p̄p → π 0π 0 1 1 2/3 2/3
p̄n → π−π 0 −√

2
√

2
√

2/3 −√
2/3

state as |n̄〉 = −|N̄, τ = +1/2〉 as follows from the rela-
tion Ĝ|N̄, τ 〉 = −|N, τ 〉, where Ĝ = exp(iπ Î2)Ĉ is the G-
parity transformation operator [25]. For the u-channel graphs
[Figs. 13(b), 13(d)], the matrix elements are obtained by
replacing k1 ↔ k2, q → q ′ and t → u in Eqs. (C4), (C5),
and the isospin factors by replacing l1 ↔ l2 in Eqs. (C9),
(C10). For the channels with incoming antiproton the values
of isospin factors are listed in Table I.

To describe the finite size of the hadrons, we included
form factors in Eqs. (C4), (C5). Their choice is defined by
the asymptotic scaling law [26] at s → ∞, t/s = const.:

dσ

dt
= f (t/s)

sn
, n =

∑
ni − 2, (C11)

where ni is the number of the constituents in the incoming
and outgoing particles (nB = 3, nM = 2). Hence, n = 8 for
N̄N → ππ . By counting the powers of s (assuming t ∼ u ∼
s) one can deduce from the expression

dσ

dt
=

∣∣M (a)
N̄N

+ M
(b)
N̄N

+ M
(c)
N̄N

+ M
(d )
N̄N

∣∣2

64π
(
s/4 − m2

N

)
s

, (C12)

the powers of the vertex form factors:

FπNN (t ) =
(

�2
πNN − m2

N

�2
πNN − t

)2

, (C13)

FπN�(t,M2) =
(

�2
πN� − M2

�2
πN� − t

)5/2

. (C14)

Finally, following Ref. [27] the attenuation factor
√

� is in-
troduced in Eqs. (C4), (C5) to describe the initial-state interac-
tion in the N̄N channel. For simplicity, we assume this factor
to be energy- and angular-momentum-independent [28].

The values of the cutoff parameters �πNN = 2.0 GeV
and �πN� = 1.8 GeV have been adjusted to describe the
shape of the t dependence of the differential cross section
dσp̄p→π−π+/dt at plab = 5 GeV/c. After this, the parameter
� = 0.008 has been chosen to describe the absolute values of
dσp̄p→π−π+/dt close to �c.m. = 90◦ (−t = 4.7 GeV2). This
value of � is within the range of values from Ref. [28], where
meson-exchange models have been applied for the calculation
of the p̄p → �̄� cross section.

Figure 14 shows the comparison with experimental data for
the fitted values of the parameters. At small −t (forward c.m.
angles) the main contribution is given by neutron exchange,
while at large −t (backward c.m. angles) the cross section is
almost entirely due to �++ exchange. These features are in
line with other calculations [30,31].

FIG. 14. Differential cross section of the p̄p → π−π+ process
at plab = 5 GeV/c. Solid line: full calculation. Dashed, dotted,
and dash-dotted lines display the separate contributions of neutron,
�0 and �++ exchange, respectively. Experimental data are from
Ref. [29].

In Fig. 15 we display the s dependence of dσp̄p→π−π+/dt
at −t = s/2 − m2

N − m2
π . The quark counting rule at large s

is reproduced exactly.

2. N̄� → ππ

The Feynman graphs included in the nucleon-delta an-
nihilation amplitude into two pions are shown in Fig. 16.
The πNN and πN� coupling Lagrangians were already
explained in Appendix C 1 [see Eqs. (C1), (C2)]. The π��

FIG. 15. Solid line: differential cross section of the p̄p → π−π+

process calculated from Eq. (C12) at �c.m. = 90◦ as a function of
invariant s. Dashed line: large s asymptote ∝s−8.
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FIG. 16. Same as Fig. 13, but for the N̄2�1 → π2π1 amplitude.

coupling Lagrangian can be defined as follows (cf. Ref. [32]):

Lπ�� = fπ��

mπ

ψ̄νγ 5γ μT�ψν∂μπ , (C15)

where

(T�)τ�2 τ�1
=

√
15

2

∑
l=0,±1

〈
3

2
τ�2

∣∣∣∣3

2
τ�1 ; 1l

〉
t (l)∗, (C16)

is the isospin operator for I = 3/2. Within the SU(6) chiral
constituent quark model the following relation holds [32]:

fπ�� = 6
5fπNN . (C17)

The invariant matrix elements of the t-channel graphs (a) and
(c) of Fig. 16 are

M
(a)
N̄�

= fπNNFπNN (t )fπN�FπN�

(
t, m2

N

)
m2

π

I (a)
N̄�

√
�

t − m2
N + iε

× ū(−p2,−λ2)/k2γ
5(/q + mN )k1μuμ(p1, λ1),

(C18)

M
(c)
N̄�

= −fπN�FπN�

(
t, m2

�

)
fπ��Fπ��(t )

m2
π

I (c)
N̄�

√
�

t − m2
� + iε

× ū(−p2,−λ2)(/q + m�)kμ
2 Pμν (q )γ 5/k1u

ν (p1, λ1),

(C19)

where the isospin factors are

I (a)
N̄�

= (−1)1/2+τ2
∑

τN=±1/2

(t (l2 )∗ · τ )−τ2,τN
(t (l1 )∗ · T †)τN ,τ�1

,

(C20)

I (c)
N̄�

= (−1)1/2+τ2
∑

τ�=±1/2,±3/2

(t (l2 )∗ · T †)−τ2,τ�

× (t (l1 )∗ · T�)τ�,τ�1
. (C21)

FIG. 17. Differential cross section of the p̄�− → π−π− process
at plab = 5 GeV/c. Solid line: full calculation. Dashed and dotted
lines display the separate contributions of neutron and �0 exchange,
respectively.

The u-channel matrix elements of the graphs (b) and (d) of
Fig. 16 are obtained from Eqs. (C18), (C19) by the replace-
ments k1 ↔ k2, q → q ′ and t → u, and the corresponding
isospin factors by replacement l1 ↔ l2 in Eqs. (C20), (C21).
After some algebra we get the following values for the channel
p̄�− → π−π−: I (a)

N̄�
= I (b)

N̄�
= √

2, I (c)
N̄�

= I (d )
N̄�

= 1/
√

2.
To get the high-energy asymptotic behavior of Eq. (C11)

with n = 8, the π�� vertex form factor should be taken in
the form

Fπ��(t ) =
(

�2
π�� − m2

�

�2
π�� − t

)3

. (C22)

The value of the cutoff �π�� is quite uncertain. However, we
expect that it should not strongly deviate from �πN� in the
hard regime −t ∼ −u ∼ s/2, s → +∞. This is supported by
the result of the previous section, that the cutoffs �πN� and
�πNN are also quite similar. Thus, to reduce the number of
free parameters, we set �π�� = �πN�.

Figure 17 shows the t dependence of the p̄�− → π−π−
differential cross section at 5 GeV/c beam momentum. (The
cross section is symmetric with respect to replacement t ↔
u.) We see that �0 exchange is important at small −t , but
becomes almost negligible at �c.m. = 90◦ [i.e., at −t = (s −
m2

N − m2
�)/2 − m2

π ]. Figure 18 displays the s dependence of
dσ/dt at �c.m. = 90◦ and 60◦ for the p̄�− → π−π− process.
At large s, the quark counting rule is exactly respected.

3. π N → π ′� charge exchange

The amplitude of Fig. 19 has been evaluated with the ρππ
interaction Lagrangian [33]

Lρππ = gρππ [∂μπ × π ] · ρμ, (C23)
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FIG. 18. Differential cross section of the p̄�− → π−π− process
at �c.m. = 90◦ (solid line) and 60◦ (dotted line). The large-s asymp-
totic behavior ∝s−8 is shown for both cases by the dashed lines.

where g2
ρππ/4π = 2.88 (cf. Ref. [30]) such that the ρ decay

width

�ρ→ππ = g2
ρππ

4π

mρ

12

(
1 − 4m2

π

m2
ρ

)3/2

(C24)

is equal to the phenomenological value 0.150 GeV at the pole
mass mρ = 0.771 GeV. The ρN� interaction Lagrangian has
been taken in the form with derivative coupling [32,34]:

LρN� = ifρN�

mρ

(ψ̄μγ νγ 5Tψ − ψ̄γ νγ 5T †ψμ)(∂νρμ−∂μρν ).

(C25)

We will use the value of the coupling constant fρN� = 14.0,
which is about two times larger than in Refs. [32,34] but
agrees with estimations in Ref. [35].

FIG. 19. Feynman graph of the inelastic pion CEX amplitude
πN → π ′� due to t-channel ρ-meson exchange.

The invariant amplitude corresponding to Fig. 19 can be
expressed as

MπN = −i
gρππfρN�

mρ

IπN

t − m2
ρ + iε

(k + k′)μ
(

−gμν + qμqν

m2
ρ

)

× [−ūν (p�, λ�)/qγ 5u(p, λ)

+ ūα (p�, λ�)qαγ νγ 5u(p, λ)], (C26)

where k and k′ are the four-momenta of the incoming
and outgoing pion, respectively, and t = q2. The Rarita-
Schwinger vector spinors of the � resonance are normalized
as ūμ(p�, λ�)uμ(p�, λ�) = −2m�. The isospin factor is

IπN = T τ�τ · [t (l) × t (l′ )∗], (C27)

where τ = ±1/2 and τ� = ±1/2,±3/2 are the isospin pro-
jections of nucleon and �, respectively, and l, l′ = 0,±1 are
the isospin projections of the incoming and outgoing pion,
respectively. For the relevant channel π0p → π−�++ (and
also for the channel π+p → π0�++) we obtain IπN = i.

Small −t scattering at high energies is well described
within Regge theory, which approximates the exchange of
a set of particles with the same internal quantum numbers
(such as B, I, S, etc.) by the exchange of a Regge trajectory
[36,37]. In particular, the ρ meson trajectory includes the
a2(1320), ρ3(1690), and a4(2040) states. The Reggeization of

FIG. 20. Differential cross section of the π+p → π 0�++ CEX
process. Different curves represent calculations with different param-
eters of the ρ meson Regge trajectory as indicated. Experimental data
at 3.6 GeV/c, 5.45 GeV/c, and 16 GeV/c are from Refs. [38,39], and
[40] respectively.
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FIG. 21. Fit to the experimental data of Ref. [41] on the
p̄n → π−π−π+ cross section by the exponential function given in
Eq. (C30).

the amplitude, Eq. (C26), is reached by replacing

1

t − m2
ρ + iε

→ Pρ
Regge =

(
s

s0

)αρ (t )−1 πα′
ρ

sin[παρ (t )]

× −1 + exp[−iπαρ (t )]

2

1

�[αρ (t )]
,

(C28)

where s0 = 1 GeV2, αρ (t ) = αρ0 + α′
ρt with an intercept

αρ0 and a slope α′
ρ determined from the data on exclusive

reactions assuming linearity of the ρ meson trajectory and
imposing the condition that αρ (m2

ρ ) = 1.
We have calculated the differential cross section

dσ

dt
= |MπN |2

64π (plabmN )2
, (C29)

of the π+p → π0�++ process with different parameters of
the ρ Regge trajectory. As shown in Fig. 20, the intercept
αρ0 = 0.49 and slope α′

ρ = 0.94 GeV−2 produce a quite rea-
sonable description of available experimental data at small −t .
Thus, these parameters are used in the calculations of the CEX
background (Sec. IV A).

4. N̄ N → πππ

For the three-pion annihilation amplitude we assume an s-
dependent invariant matrix element extracted from the fit of
the p̄n → π−π−π+ cross section, see Fig. 21, by the function

σp̄n→π−π−π+ = 11.8 exp(−1.35 plab), (C30)

where plab is in GeV/c and the cross section in mb. The
invariant matrix element can be estimated as

Mp̄n(s) =
(

4Ip̄nσp̄n→π−π−π+

(2π )4�3(s)

)1/2

, (C31)

where Ip̄n =
√

(s/4 − m2
N )s is the Möller flux factor and

�3(s) is the three-body phase space integral (cf. PDG review
[42]).

5. π N → �

The πN� interaction is described by the standard P -
wave coupling Lagrangian of Eq. (C2). The invariant matrix
element of the π+p → �++ transition (see Fig. 5) is

iMπp(p�; p3, pp )

= fπN�FπN�(p3)

mπ

p3μūμ(p�, λ�)u(pp, λp ). (C32)

The form factor is chosen in the monopole form

FπN�(q ) = �2 − m2
π

�2 + q2
, (C33)

with � = 1.2 GeV [3]. Note that the form factors of Eq. (C14)
and Eq. (C33) differ since they are applied in different
regimes: the former is valid in the hard while the latter is valid
in the soft regime.
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