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Fusion cross section for Ni-based reactions within the relativistic mean-field formalism
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In this theoretical study, we establish an interrelationship between the nucleon-nucleon potential and the
nuclear fusion reaction cross sections at low energies. The axially deformed self-consistent relativistic mean
field with nonlinear NL3∗ and TM1 force parameters is used to calculate the density distributions of the
projectile and target nuclei, which are further used in the double-folding approach to obtain the nucleus-
nucleus interaction potentials. The Wong formula is used to estimate the fusion cross section and barrier
distributions from the nucleus-nucleus optical potential for Ni-based systems, which are known for fusion
hindrance phenomena. The results of the application of the so-obtained nucleus-nucleus potential for the fusion
cross section from the recently developed relativistic effective NN interactions (R3Y) are compared with the
well-known, phenomenological M3Y potential. The effect of the nucleon-nucleon interaction potential on the
fusion cross section, in terms of the nuclear interaction potential, is included in the present analysis. We found
relatively good results from R3Y interactions below the barrier energies as compared to the M3Y potential
concerning the experimental data.
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I. INTRODUCTION

Efforts have been devoted to determining the nature of
nucleon-nucleon interaction since 1932 with the discovery of
the neutron by Chadwick as the heart of the nucleus in nuclear
physics [1–3]. In the simplest expression, the nucleon-nucleon
(NN) interaction is considered as central and to have a typical
square-well, Gaussian, or Yukawa potentials of various ranges
and strengths, which can obtain the observed phase shifts
in elastic-scattering processes [1,4,5]. The traditional goal
of nuclear physics is to understand the properties of atomic
nuclei regarding the bare interaction between a pair of nucle-
ons. Though substantial progress has taken place to explain
it in some theoretical and experimental attempts, it remains
an open problem at present. A large number of interactions
have been constructed via studying NN scattering, but there
exist extensive modifications in the scattering behavior due
to the presence of the surrounding nucleons in a nucleus
[4,6–9]. Further, the reconstruction of the NN potential
through particle exchanges is made possible by the devel-
opment of quantum field theory [10–13]. An effective phe-
nomenological interaction has an appropriate form to study
the nuclear structure and dynamics, which typically depend
on the local density of the nucleus.

At low energy, one can assume that the interaction potential
between a pair of nucleons is instantaneous and therefore the
concept of a substantial theory of nuclear forces is applica-
ble to nuclear structure calculations [14–17]. The analytical
derivation of potential through particle exchange is important
to understand the nuclear force as well as structural properties
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via the nucleus-nucleus optical potential for the study of
many nuclear aspects such as nuclear radioactivity, nuclear
scattering, nuclear fission, and fusion processes [18–20]. A
more fundamental approach to NN interactions at low energies
has been formulated in Refs. [11,14,17,21,22] in terms of an
effective theory for nonrelativistic nucleons. It involves a few
basic coupling constants, which have been determined from
nucleon scattering data at low energies. Furthermore, the new
effective NN interaction entitled the R3Y potential [18–20],
which is analogous to the M3Y form [3], can be derived
from the relativistic mean-field Lagrangian. This interaction
depends on the relativistic force parameters and the coupling
constant among the interacting mesons and their masses
[18–20].

One can consider any relativistic mean-field interactions
based on effective-field theoretical Lagrangian density: rela-
tivistic mean-field models with linear and/or nonlinear meson
couplings (all models with names starting with L, NL, or
PK, plus the models FSUGold, G1, G2, and TM1), density-
dependent meson-exchange couplings (DD-ME and RHF-PK
models), and zero-range point-coupling models (DD-PC1,
PC-PK1, and PC-PF1 models) to generate relativistic NN-
interaction potentials numerically for the respective force
parameters. The analytical derivation of the NN potential
can only be possible for the force parameters that contain
linear and/or nonlinear self-interactions. In other words, in
the case of nonlinear cross-coupling parameters (FSUGold,
G1, and G2), it is not possible to obtain the analytical ex-
pression for the NN interaction. Hence one has to follow the
numerical solution to estimate the potential [18,23–26]. See
Ref. [27] for details of various relativistic force parameters
and their interactions based on the abovementioned patterns
of couplings. Furthermore, more details of various NN po-
tentials and their applications in future studies and some

2469-9985/2018/98(5)/054610(10) 054610-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.98.054610&domain=pdf&date_stamp=2018-11-19
https://doi.org/10.1103/PhysRevC.98.054610


M. BHUYAN AND RAJ KUMAR PHYSICAL REVIEW C 98, 054610 (2018)

general and up-to-date reviews on the subject can be found
in Refs. [11–13,18–21,26]. Moreover, the nucleus-nucleus
optical potential is quite important for the elastic scattering
of light- and heavy-ion studies, in particular for the simple
one-dimensional barrier penetration model of fusion reaction
and for the barrier energy, radius, and curvature via the nuclear
potential and the Coulomb potential [28–30]. A microscopic
description is required for calculating the interaction potential
that incorporates the physical process, which can significantly
influence the fusion process. The double-folding model is
a widely used method to obtain the nuclear potential by
integrating an NN interaction over the matter distributions of
two colliding nuclei [28–30]. It produces the nucleus-nucleus
optical potential for further use in various studies including
studies of radioactive decay [18–20,31–33].

At low energy, either the system can fuse by penetrating
the interaction barrier or it must have sufficient energy to
overcome the Coulomb barrier to get absorb. In the present
study, we have considered the Ni-based reactions, i.e., 58Ni +
58Ni, 58Ni + 124Sn, 58Ni + 132Sn, 64Ni + 64Ni, 64Ni + 124Sn,
and 64Ni + 132Sn, because their fusion excitation functions
are available experimentally and are also known for fusion
hindrance [34–43]. Below the Coulomb barrier, the nuclear
structure effects dominate the resulting fusion dynamics,
whereas the centrifugal potential suppresses the structure
effects at above-barrier energies. The estimation of fusion
characteristics of heavy ions at extreme subbarrier energies is
of great interest for understanding the reaction mechanisms
in astrophysics and the synthesis of the superheavy nuclei
[44–46]. Hence, it is of great interest at present to evaluate
the performance of the relativistic R3Y potential along with
the microscopic mean-field density to estimate the nuclear
interaction potential for the study of fusion reaction at low
energies. Here, most of the computational efforts are devoted
to solving the Dirac equation and calculating various den-
sities. The present calculations are limited to the spherical
coordinate system to generate the nucleus-nucleus interaction
potential. One may consider the coupling between fusion
and other degrees of freedom to generate a multidimensional
potential barrier, which enhances the fusion probabilities
[44–49]. More detailed studies of the multidimensional fusion
barrier and its effect on the fusion dynamics can be found in
Refs. [34–48,48–56].

This paper is organized as follows. In Sec. II, we discuss
the theoretical model for the relativistic mean-field approach
along with the double-folding procedure to obtain micro-
scopic nucleus-nucleus optical potentials. The use of the
Wong formula to study fusion characteristics is also discussed
in this section. Section III is assigned to the discussion of
the results obtained from our calculations and of the possible
correlations among the NN potentials and the fusion cross
sections. Finally, a summary and a brief conclusion are given
in Sec. IV.

II. RELATIVISTIC MEAN-FIELD FORMALISM

At present, quantum chromodynamics is not conceivable
to describe the complete picture of the hadronic matter due to
its nonperturbative properties. Hence, one needs to apply the

perspective of effective field theory at low energy, known as
quantum hadrodynamics (QHD) [23,24,57]. The mean-field
treatment of QHD has been used widely to describe the
nuclear structure and infinite nuclear matter characteristics
[23–25,57–64]. In the relativistic mean-field approach, the
nucleus is considered as a composite system of nucleons
interacting through the exchange of mesons and photons
[57,65–69]. Here, most of the computational effort is devoted
to solving the Dirac equation and to calculating various densi-
ties. We have used the microscopic self-consistent relativistic
mean-field (RMF) theory as a standard tool to investigate
fusion study via the Wong formula. Thefollowing is a typical
relativistic Lagrangian density for a nucleon-meson many-
body system [23,57,59–75]:

L = ψ{iγ μ∂μ − M}ψ + 1

2
∂μσ∂μσ − 1

2
m2

σ σ 2

− 1

3
g2σ

3 − 1

4
g3σ

4 − gsψψσ − 1

4
�μν�μν

+ 1

2
m2

ωωμωμ + 1

4
ξ3(ωμωμ)2 − gωψγ μψωμ

− 1

4
�Bμν · �Bμν + 1

2
m2

ρ �ρμ · �ρμ − gρψγ μ�τψ · �ρμ

− 1

4
FμνFμν − eψγ μ (1 − τ3)

2
ψAμ. (1)

Here ψ denotes the Dirac spinors for the nucleons. The iso-
spin and the third component of the iso-spin are denoted by τ

and τ3, respectively. Here gσ , gω, gρ , and e2

4π
are the coupling

constants for the σ , ω, and ρ mesons and the photons, respec-
tively. The constants g2, g3, and ξ3 are for the self-interacting
nonlinear σ - and ω-meson fields. The masses of the σ , ω,
and ρ mesons and the nucleons are mσ , mω, mρ , and M ,
respectively. The quantity Aμ stands for the electromagnetic
field. The vector field tensors for ωμ, �ρμ, and photons are
given by

Fμν = ∂μAν − ∂νAμ, (2)

�μν = ∂μων − ∂νωμ, (3)

and

�Bμν = ∂μ �ρν − ∂ν �ρμ, (4)

respectively. From the above Lagrangian density we obtain
the field equations for the Dirac nucleons and the meson (i.e.,
σ , ω, and ρ) fields as follows:

(−iα · ∇ + β(M + gσσ ) + gωω + gρτ3ρ3)ψ = εψ,( − ∇2 + m2
σ

)
σ (r ) = −gσρs (r ) + g2σ

2(r ) + g3σ
3(r ),( − ∇2 + m2

ω

)
ω(r ) = gωρ(r ) − ξ3ω

3(r ),( − ∇2 + m2
ρ

)
ρ(r ) = gρρ3(r ). (5)

In the limit of one-meson exchange, for static baryonic
medium, the solutions of single nucleon-nucleon potentials
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for scalar (σ ) and vector (ω, ρ) fields are given by

Vσ = − g2
σ

4π

e−mσ r

r
+ g2

2

4π
re−2mσ r + g2

3

4π

e−3mσ r

r
,

Vω(r ) = + g2
ω

4π

e−mωr

r
− ξ 2

3

4π

e−3mωr

r
,

Vρ (r ) = + g2
ρ

4π

e−mρr

r
. (6)

As we mentioned in Sec. I, the analytical expression for the
relativistic NN interaction is only possible for the force pa-
rameters that contain the linear and/or nonlinear self-coupling
terms. In the case of relativistic forces with cross-coupling
terms (i.e., FSUGold, G1, G2, etc.), one has to follow the
numerical solution to generate NN interactions. The total
effective NN interaction is obtained from the scalar and vector
parts of the meson fields. The recently developed relativistic
NN-interaction potential analogous to the M3Y form [3] is
called the R3Y potential. Here the R3Y potential is derived
for the NL3∗ and TM1 forces, which can predict the nuclear
matter as well as the properties of the finite nuclei at very high
isospin asymmetries [18–20,25,26,58,61,62,70,75–77]. The
relativistic effective nucleon-nucleon interaction (V R3Y

eff ) for
NL3∗ and TM1 forces along with the single-nucleon exchange
effects is written as [3,18–20,25,26]

V R3Y
eff (r ) = g2

ω

4π

e−mωr

r
+ g2

ρ

4π

e−mρr

r
− g2

σ

4π

e−mσ r

r

+ g2
2

4π
re−2mσ r + g2

3

4π

e−3mσ r

r

− ξ 2
3

4π

e−3mωr

r
+ J00(E)δ(r ). (7)

On the other hand, the M3Y effective interaction, obtained
from a fit of the G-matrix elements based on the Reid-Elliott
soft-core NN interaction [3], in an oscillator basis, is the sum
of three Yukawa potentials (M3Y) with ranges of 0.25 fm
for a medium-range attractive part, 0.4 fm for a short-range
repulsive part, and 1.414 fm to ensure a long-range tail of the
one-pion exchange potential (OPEP). The widely used M3Y
effective interaction [V M3Y

eff (r )] is given by

V M3Y
eff (r ) = 7999

e−4r

4r
− 2134

e−2.5r

2.5r
+ J00(E)δ(r ), (8)

where the ranges are in fm and the strengths are in MeV.
Note that Eq. (8) represents the spin- and isospin-independent
parts of the central component of the effective NN interaction
along with the OPEP contribution. Comparing Eqs. (7) and
(8), we find the similarity among the behavior of the NN
interaction, and we feel that Eq. (7) can be used to obtain the
nucleus-nucleus optical potential. One can find more details in
Refs. [18,19,25,26]. The nuclear interaction potential, Vn(R),
between the projectile (p) and the target (t) nuclei, with the
respective RMF (NL3∗ and TM1 force parameter) calculated
nuclear densities ρp and ρt , is written as

Vn( �R) =
∫

ρp(�rp )ρt (�rt )Veff (|�rp − �rt + �R| ≡ r )d3rpd3rt ,

(9)

obtained by using the well-known double-folding procedure
[3] for the M3Y potential and the recently developed R3Y
interaction potential, proposed in Refs. [18,19,25,26], sup-
plemented by a zero-range pseudopotential representing the
single-nucleon exchange effects. Adding the Coulomb po-
tential VC (R) (=ZpZte

2/R) results in the NN-interaction
potential VT (R) [= Vn(R) + VC (R)], used for calculating the
fusion properties. Because we know pairing plays an impor-
tant role in nuclear bulk properties including the density dis-
tribution of open-shell nuclei, one has to consider the pairing
correlation in their ground states [78]. In the case of nuclei not
too far from the β-stability line, the constant-gap BCS pairing
approach works reasonably well and simply to take care of
the pairing correlation [79]. The present analysis includes
the intermediate mass nuclei around the β stability; hence
we have used the relativistic mean-field results with BCS
treatment for the pairing correlation [59,61–63,70,75,80,81].

A. The Wong formula

In terms of � partial waves, the fusion cross section for
two nuclei colliding with the center-of-mass energy (Ec.m.) is
given by [82]

σ (Ec.m.) = π

k2

�max∑
�=0

(2� + 1)P�(Ec.m.), (10)

with k =
√

2μEc.m.

h̄2 and μ as the reduced mass. P� is the trans-
mission coefficient for each �, which describes the penetration
of barrier V �

T (R), given by

V �
T (R) = Vn(R,Ai ) + VC (R,Zi ) + h̄2�(� + 1)

2μR2
. (11)

Using the Hill-Wheeler [83,84] approximation, the penetrabil-
ity P�, in terms of its barrier height V �

B (Ec.m.) and curvature
h̄ω�(Ec.m.), is

P� =
[

1 + exp

(
2π

(
V �

B (Ec.m.) − Ec.m.

)
h̄ω�(Ec.m.)

)]−1

, (12)

with h̄ω� evaluated at the barrier position R = R�
B corre-

sponding to the barrier height V �
B , given as

h̄ω�(Ec.m.) = h̄
[∣∣d2V �

T (R)
/
dR2

∣∣
R=R�

B

/
μ

]1/2
, (13)

and the R�
B obtained from the condition∣∣dV �

T (R)
/
dR

∣∣
R=R�

B

= 0.

Instead of solving Eq. (10) explicitly, which requires the
complete �-dependent potentials V �

T (R), Wong [82] carried
out the � summation in Eq. (10) approximately under spe-
cific conditions: (i) h̄ω� ≈ h̄ω0, and (ii) V �

B ≈ V 0
B + h̄2�(�+1)

2μR0
B

2 ,

which means to assume R�
B ≈ R0

B also. In other words, both
V �

B and h̄ω� are obtained for the � = 0 case. Using these
approximations and replacing the � summation in Eq. (10)
by an integral gives, upon integration, the � = 0 barrier-based
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FIG. 1. The relativistic (R3Y) NN-interaction potential for NL-
HS (linear), NL3∗ (nonlinear σ field), and TM1 (nonlinear σ and
ω fields) force parameters along with the phenomenological M3Y
potential. See the text for details.

Wong formula [82]:

σ (Ec.m.) = R0
B

2
h̄ω0

2Ec.m.

ln

[
1 + exp

(
2π

h̄ω0

(
Ec.m. − V 0

B

))]
.

(14)

This is the simple formula used in the present work to cal-
culate the fusion cross section using the barrier characteristics
such as V0

B , R0
B , and h̄ω0 within the barrier penetration model

for spherical nuclei. However, Wong’s specific �-summation
procedure, leading to the use of only the � = 0 barrier, seems
to exclude the modifications entering the potential due to its
� dependence. Therefore, a more precise formula, as given in
Eq. (10), with penetrability P� given by Eqs. (12) and (13)
can be employed for calculating the fusion cross section. This
formula is also known as the �-summed Wong formula. For
details see Ref. [85]. This formula will improve the theoretical
predictions as well.

III. CALCULATION AND DISCUSSION

The RMF calculations furnish the fusion hindrance reac-
tion phenomena principally using the self-consistent relativis-
tic mean-field formalism via the Wong formula. Parallel to the
force parameter dependence of the infinite nuclear matter ob-
servables and the structural properties of finite nuclei, here one
may expect the effect of force parameters on fusion character-
istics. In this regard, in the first step, we calculate the M3Y
potential [using Eq. (8)] and the microscopic R3Y [using
Eq. (7)] NN potential for NL3∗ and TM1 force parameters. In
Fig. 1, we have shown the effective NN interaction (in MeV)
for relativistic NL-HS (linear σ , ω, and ρ fields) [70] (dotted
line), NL3∗ (linear σ , ω, and ρ fields along with nonlinear
self-interacting σ fields) [73] (dashed line), and TM1 (linear
σ , ω, and ρ fields along with nonlinear self-interacting σ and
ω fields) (dotted-dashed line) force parameters as a function
of radius. The phenomenological M3Y potential (solid line in
Fig. 1) is given for comparison. More detail of the forces and

their values can be found in Refs. [18,25–27,73,75]. From the
figure, one can find, that the curves from M3Y and R3Y (for
NL-HS, NL3∗, and TM1) interactions show similar trends. In
the second step, we calculate the bulk properties such as the
binding energy, the quadrupole moment Q20, the total density
distribution (i.e., the sum of the proton and neutron densities),
the root-mean-square nuclear (neutron, proton, and charge)
radii, and the single-particle energy level for nucleons. Instead
of concentrating on the nuclear structure output profile for
the NL3∗ and TM1 force parameters, we use the monopole
component of the densities for the target (t) and projectile
(p) as the input for estimation of the nucleus-nucleus inter-
action potential using Eq. (9). The expression for the spin-
independent proton and neutron mean-field densities within
the RMF theory is given as

ρ(R) = ρ(r, z, ϕ). (15)

Here r , ϕ, and z are the cylindrical coordinates of the radial
vector R. From the definitions given in Refs. [86,87], the
nucleon density distribution functions depend on the coordi-
nates r and z only. Explicitly, we can write the single-particle
densities as

ρi (R) = ρi (r, z) = |�+
i (r, z)|2 + |�−

i (r, z)|2, (16)

where �±
i are the wave functions expanded into the eigen-

functions of an axially deformed harmonic oscillator potential
in cylindrical coordinates. The normalization of the densities
is given by ∫

ρ(R)dR = X, (17)

where X = N and Z for the neutron number and the proton
number, respectively. Further, the multipole decomposition
of the density can be written in terms of even values of the
multipole index λ as

ρ(r, z) =
∑

λ

ρλ(R)Pλ(cos θ ). (18)

The monopole component of the density distribution of the ex-
pansion in Eq. (18) is used for calculating the nucleus-nucleus
optical potential. In Fig. 2, we have plotted the neutron (black
solid line), proton (red solid line), and total density (green
solid line) distributions for 58,64Ni and 124,132Sn obtained from
the NL3∗ force and the corresponding dashed lines are for
TM1 force parameter as a function of radius. In gray scale, the
upper, middle and lower solid (dashed) curves in each panel
are for the total (ρT ), neutron (ρN ), and proton (ρZ) densities,
respectively, for the NL3∗ (TM1) force parameter. From the
figure, one can see that the central density is a bit smaller in
magnitude and is enhanced a little towards the surface region
in the case of 124,132Sn compared with that of 58,64Ni, which is
accepted to be a common feature in the heavy nucleus and
plays a significant role in the scattering studies [88]. Fur-
thermore, a very small difference in the density distributions
can be found by comparing both the force parameters, which
also plays a small roll in the fusion cross section in terms of
nuclear interaction potential. The systematic and quantitative
effects of this small relative difference of density on fusion
characteristics are not analyzed in the present study.
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FIG. 2. The RMF (NL3∗ and TM1), proton (ρZ), neutron (ρN ),
and total (ρT ) density distributions for 58,64Ni and 124,132Sn nuclei.
See the text for details.

A. Nucleus-nucleus optical potential

The nuclear interaction potential Vn(R) between the p and
t nuclei is calculated using the well-known double-folding
procedure in Eq. (9) [3,18] from respective RMF matter
densities ρp and ρt for the M3Y potential and the recently de-
veloped relativistic R3Y NN potential. The R3Y interactions
are estimated for NL3∗ and TM1 force parameters [19,61,62],
in which the effective Lagrangian is taken to describe the
nucleons’ interaction through the effective mesons and elec-
tromagnetic fields. Here, we have obtained the nuclear interac-
tion for the M3Y potential using only NL3∗ density. It is worth
mentioning that the R3Y interaction potentials are used for the
radioactivity studies of some highly unstable proton- and/or
neutron-rich nuclei using the preformed cluster decay model
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FIG. 3. The total nucleus-nucleus optical potential VT (R) and
the individual contributions [the nuclear Vn(R) (M3Y) and Vn(R)
(R3Y) for NL3∗ and TM1 parameter sets and the Coulomb VC (R)
potential] as a function of radial separation R for 58Ni + 58Ni. See
the text for details.

FIG. 4. Fusion-evaporation cross section as a function of center-
of-mass energy Ec.m., calculated by using the Wong formula for R3Y
for NL3∗ (solid line), TM1 (dotted line), M3Y (dashed line) NN
interactions along with the corresponding cross section using the
�-summed Wong formula and compared with experimental data for
58Ni + 58Ni [40]. See the text for details.

of Gupta and co-workers [18–20]. The conservation of the
angular momentum in the present analysis is only limited to
the ground state for the estimation of fusion characteristics of
the constituent nuclei. To corelate the theoretical calculation
with the experimental fusion data, one needs to adjust the
spectroscopic factor by including the particle vibration cou-
pling. Nevertheless, without this particle vibration coupling,
our present formalism simply with the nonlinear σ and ω
mesons in Eq. (6) is able to produce reasonable agreement
with the experimental data [19]. Furthermore, these nonlinear
terms in the σ and ω fields play an important role in the study
of nuclear matter and the detailed nuclear structure inherited
by the density while calculating the proton and cluster decay
properties (mostly a surface phenomenon) [62,63,73,75].

The total interaction potentials VT (R) = Vn(R) + VC (R)
for the Ni-based reactions such as 58Ni + 58Ni, 58Ni + 124Sn,
58Ni + 132Sn, 64Ni + 64Ni, 64Ni + 124Sn, and 64Ni + 132Sn
are obtained for the M3Y and R3Y interactions for NL3∗
densities. To examine the effect of the NN potential on
fusion-evaporation cross sections, we have calculated the
Vn(R) for the 58Ni + 58Ni system for both NL3∗ and TM1
force parameters. As a representative case, the results for the
nucleus-nucleus interaction potentials without the Coulomb
potential for the M3Y potential (solid black line) and the
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FIG. 5. Same as for Fig. 4, but for the reaction 58Ni + 124Sn. The
experimental data are taken from Refs. [37,41,42]. See the text for
details.

R3Y interactions for the NL3∗ (solid red line) and TM1 (solid
blue line) force parameters are displayed in Fig. 3. The total
interaction potentials (corresponding dashed line) along with
the Coulomb potential VC (blue dotted line) are also shown
in Fig. 3. It is worth mentioning that, in gray scale, the
upper, lower, and middle solid (dashed) curves are for the
nuclear Vn(R) potential without the Coulomb potential (with
the Coulomb potential) for the relativistic TM1 and NL3∗
parameter sets and the phenomenological M3Y potential, re-
spectively. From the figure, we note that the natures of the total
VT (R) and the nuclear Vn(R) potentials are similar for both
the R3Y and M3Y NN interactions (see Fig. 3). Quantitatively,
both the nuclear potentials obtained from M3Y and R3Y
(TM1 force) differ significantly particularly in the central
region from R3Y (NL3∗), and this difference is reduced
simultaneously with respect to the radial distance. Further,
the height of the barrier for the M3Y and R3Y (TM1) NN
interactions are a bit higher as compare to the R3Y (NL3∗)
case (see the inset in Fig. 3). For example, the R3Y (NL3∗)
case is more attractive by about 1 MeV, with a barrier height
lower by a few kiloelectron volts, compared to the M3Y and
R3Y (TM1) NN interactions, as is illustrated in the inset in
Fig. 3.

B. Fusion cross sections

The barrier characteristics of the nuclear interaction po-
tential, i.e., barrier height, position, and frequency from the

FIG. 6. Same as for Fig. 4, but for the reaction 58Ni + 132Sn. The
experimental data are taken from Refs. [43]. See the text for details.

total interaction potential, are used in the Wong formula [see
Eq. (14)] to estimate the fusion-reaction cross sections for
the systems such as 58Ni + 58Ni, 58Ni + 124Sn, 58Ni + 132Sn,
64Ni + 64Ni, 64Ni + 124Sn, and 64Ni + 132Sn, known for fu-
sion hindrance phenomena. Figure 4 shows the comparison of
the fusion cross sections obtained for 58Ni + 58Ni around the
Coulomb barrier with the experimental data [40]. The solid
line shows the fusion cross sections using the R3Y interaction
and the dashed line shows the fusion cross-sections using the
M3Y potential within the Wong formula for NL3∗ densities.
In order to see the effect of the NN potential, the interaction
potential is calculated using the double-folding procedure
within the R3Y interaction for NL3∗ (nonlinear σ field) and
TM1 (nonlinear σ and ω fields) force parameters. Figure 4
shows that the fusion cross section calculated using R3Y
(TM1 force) (dotted line) lies between the R3Y (NL3∗ force)
and M3Y interactions. It is observed using the Wong formula
that the R3Y interaction with the NL3∗ force parameter is
relatively superior to that with the TM1 force parameter and
M3Y interaction in comparison with the experimental data
[40] at below barrier energies. Also the M3Y interaction is
a better choice at above-barrier energies within the Wong
formula. However the estimate of R3Y (for both NL3* and
TM1 force parameters) interactions, at energies above the
barrier, is improved by adopting the �-summed Wong for-
mula [85] and this is clear from Fig. 4 as well. Further the
R3Y interaction with NL3∗ is relatively superior to the R3Y
interaction with TM1 in comparison with the experimental
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FIG. 7. Same as for Fig. 4, but for the reaction 64Ni + 64Ni. The
experimental data are taken from Ref. [34]. See the text for details.

data. The �max values at these energies are estimated using
the sharp cutoff approximation [40]. For more details one
can refer to Ref. [85]. For the sake of comparison, we limit
the calculations onward to the Wong formula using the R3Y
interaction with NL3∗ and the M3Y interaction.

Motivated by these observations, the above calculations are
then pursued for 58Ni + 124Sn and 58Ni + 132Sn as shown in
Figs. 5 and 6, respectively. The experimental data [37,41–43]
are given for comparison. For the 58Ni + 124Sn reaction, the
experimental data [37,41,42] are available for energies near
and/or below the Coulomb barrier, and for the other reaction,
data are available for above the Coulomb barrier center-of-
mass energies. In Figs. 5 and 6, the solid line is for the
R3Y potential and the dashed line is for the M3Y potential.
The cross sections corresponding to the R3Y potential are
relatively close to the experimental data for energies below
the Coulomb barrier, whereas the M3Y potential fits the data
only at above-barrier energies. In other words, the nuclear in-
teraction from the R3Y potential explains the cross sections at
comparatively lower energies. It is to be noted that the fusion
cross section corresponding to the R3Y interaction is always
larger compared to that of the M3Y potential. Furthermore a
few similar calculations are done for other Ni-based reactions,
i.e., 64Ni + 64Ni, 64Ni + 124Sn, and 64Ni + 132Sn, shown in
Figs. 7–9, respectively, with the experimental data [34–39].
It is clear from all these systems in Figs. 4–9 that the recently
developed R3Y interaction with the NL3∗ force parameter has

FIG. 8. Same as for Fig. 4, but for the reaction 64Ni + 124Sn.
The experimental data are taken from Refs. [35–37]. See the text
for details.

proven to be a relatively better choice than the M3Y potential
for considering the fusion reactions below the barrier at low
energies. In other words, the R3Y interaction allows the nuclei
to relax, which reduces the barrier height and hence increases
the fusion cross section.

The transmission function is used to obtain the fusion
barrier distribution d2(Eσ )

dE2 by differentiation with respect to
center-of-mass energy. Classically, the transmission probabil-
ity is a step function at an energy equal to the height of the
fusion barrier. The Fermi function modifies the step function
into a smoother function, a parabolic barrier. The fusion
barrier distribution d2(Eσ )

dE2 from fusion excitation functions are
shown in Fig. 10 for the R3Y (solid line) and M3Y (dashed
line) interactions. In the figure, we have shown the fusion bar-
rier distribution for the reduced cross sections (a) 58Ni + 58Ni,
(b) 58Ni + 124Sn, (c) 58Ni + 132Sn, (d) 64Ni + 64Ni, (e) 64Ni +
124Sn, and (f) 64Ni + 132Sn along with the experimental data
[34–43] for comparison. As expected, here we found the sim-
ilar predictions as reaction cross section, the obtained results
from R3Y interaction are relatively closer to the experimental
data for energies below the Coulomb barrier whereas the M3Y
potential fits the data only for above-barrier energies. From
the reaction cross section and the barrier distribution, one can
conclude that the R3Y interaction produces relatively better
results than the M3Y potential in comparison to experimental
data. Hence, one can choose whole microscopic studies using
the relativistic mean-field density and the recently developed
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FIG. 9. Same as for Fig. 4, but for the reaction 64Ni + 132Sn.
The experimental data are taken from Refs. [38,39]. See the text for
details.

relativistic R3Y NN potential for fusion characteristics for the
abovementioned mass region to generate the nuclear potential
within the double-folding procedure.

IV. SUMMARY AND CONCLUSIONS

We have investigated possible relationships between the
nucleon-nucleon interaction potential and the fusion-reaction
cross section for a few Ni-based systems known for fusion
hindrance phenomena. The fusion barrier distribution for the
reduced fusion cross section is also estimated from fusion ex-
citation function for R3Y and M3Y NN interactions. We have
considered six reaction systems, namely 58Ni + 58Ni, 58Ni +
124Sn, 58Ni + 132Sn, 64Ni + 64Ni, 64Ni + 124Sn, and 64Ni +
132Sn, for the present analysis. A microscopic approach based
on an axial-deformed relativistic mean-field with recently
developed NL3∗ and TM1 forces has been used along with
the Wong formula to provide a transparent and analytic way
to calculate the fusion cross section by means of a convenient
approach to the nucleus-nucleus optical potential. We have
considered the well-known M3Y potential and the recently
developed relativistic R3Y nucleon-nucleon interaction for es-
timating the nuclear interaction potential. The NL3∗ and TM1
densities for targets and projectiles are used for calculating
the corresponding nuclear potential within the double-folding
procedure for the study of fusion at low energies. The NL3∗
densities for projectiles and targets are used to obtain the
nuclear interaction for the M3Y potential. It is worth mention-

FIG. 10. The barrier distributions for the reactions (a) 58Ni + 58Ni, (b) 58Ni + 124Sn, (c) 58Ni + 132Sn, (d) 64Ni + 64Ni, (e) 64Ni + 124Sn,
and (c) 64Ni + 132Sn, as a function of the center-of-mass energy. The experimental data are taken from Refs. [34–43]. See the text for details.
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ing that the quadrupole, odd multipole (octupole, etc.) shape
degrees of freedom, and the corresponding space reflection
symmetry may provide some interesting issues and will throw
more light on the fusion properties. We found that the R3Y
interaction for NL3∗ force parameters has proven to be a better
choice than the M3Y potential for considered fusion reactions
below the barrier energies in the prediction of cross sections.
The fusion cross sections of the R3Y interaction are improved
at above-barrier energies by adopting the �-summed Wong
model. Further the R3Y interaction with NL3∗ is relatively
superior to the R3Y interaction with TM1. Thus it can be
inferred that the R3Y interaction with NL3∗ allows interacting
nuclei to recline, which leads to lowering the barrier and
hence increasing the cross section appreciably at the energies
below the Coulomb barrier. The present analysis pursues a
full microscopic study by taking the R3Y potential along with

the relativistic mean-field densities within the double-folding
procedure.
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